A new connection between irreversible random walks and electric networks

Work in progress, joint with Áron Folly

Márton Balázs

University of Bristol

Combinatorics and Statistical Mechanics Warwick, April 2014.

Reducing a network Thomson, Dirichlet principles Monotonicity, transience, recurrence

Irreversible chains and electric networks

The part From network to chain From chain to network Effective resistance What works

The electric network

Reducing the network Nonmonotonicity Dirichlet principle

Reversible chains and resistors Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy}h_y, \qquad h_a = 1, \quad h_b = 0.$$

Reversible chains and resistors Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy}h_y, \qquad h_a = 1, \quad h_b = 0.$$

Electric resistor network: the voltage *u* is harmonic (C = 1/R):

$$u_x = \sum_y \frac{C_{xy}}{\sum_z C_{xz}} \cdot u_y; \qquad u_a = 1, \quad u_b = 0.$$

Reversible chains and resistors Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

$$h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$$
 (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy}h_y, \qquad h_a = 1, \quad h_b = 0.$$

Electric resistor network: the voltage *u* is harmonic (C = 1/R):

$$u_x = \sum_y \frac{C_{xy}}{\sum_z C_{xz}} \cdot u_y; \qquad u_a = 1, \quad u_b = 0.$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}}$$

Thus,

$$P_{xy} = rac{C_{xy}}{\sum_{z} C_{xz}} = : rac{C_{xy}}{C_{x}}.$$

$$P_{xy} = C_{xy}/C_x$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_x}.$$

Stationary distribuion:

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$
$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$

$$P_{xy} = C_{xy}/C_x$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_x}.$$

Stationary distribuion:

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$
$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$
$$\rightsquigarrow C_{x} = \mu_{x}.$$

$$P_{xy} = C_{xy}/C_x$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_x}.$$

Stationary distribuion:

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$
$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$
$$\rightsquigarrow C_{x} = \mu_{x}.$$

$$P_{xy} = C_{xy}/C_x$$

$$C_x = \mu_x$$

Thus,

$$P_{xy} = \frac{C_{xy}}{\sum_{z} C_{xz}} = : \frac{C_{xy}}{C_x}.$$

Stationary distribuiion:

 $P_{xv} = C_{xv}/C_x$

$$\mu_{x} = \sum_{y} \mu_{y} P_{yx} = \sum_{y} \mu_{y} \frac{C_{xy}}{C_{y}}$$
$$C_{x} = \sum_{y} C_{y} \frac{C_{xy}}{C_{y}}$$

$$\rightsquigarrow C_{\mathbf{x}} = \mu_{\mathbf{x}}.$$

Notice $\mu_x P_{xy} = C_{xy} = C_{yx} = \mu_y P_{yx}$, so the chain is reversible.

$$C_x = \mu_x$$

$$n_x = \sum_y n_y P_{yx} = \sum_y \frac{C_{xy}}{C_y} n_y$$

$$P_{xy} = C_{xy}/C_x$$

$$C_x = \mu_x$$

$$n_x = \sum_y n_y P_{yx} = \sum_y \frac{C_{xy}}{C_y} n_y$$
$$u_x = \sum_y \frac{C_{xy}}{C_x} \cdot u_y$$

$$P_{xy} = C_{xy}/C_x$$

$$C_x = \mu_x$$

$$n_x = \sum_y n_y P_{yx} = \sum_y \frac{C_{xy}}{C_y} n_y$$
$$u_x = \sum_y \frac{C_{xy}}{C_x} \cdot u_y$$
$$u_x C_x = \sum_y \frac{C_{xy}}{C_y} \cdot u_y C_y$$

$$P_{xy} = C_{xy}/C_x$$

$$C_x = \mu_x$$

1

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{C_{xy}}{C_{x}} \cdot u_{y}$$
$$u_{x} C_{x} = \sum_{y} \frac{C_{xy}}{C_{y}} \cdot u_{y} C_{y}$$
$$\rightsquigarrow u_{x} C_{x} = n_{x}.$$

$$P_{xy} = C_{xy}/C_x$$

$$C_x = \mu_x$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{C_{xy}}{C_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{C_{xy}}{C_{x}} \cdot u_{y}$$
$$u_{x} C_{x} = \sum_{y} \frac{C_{xy}}{C_{y}} \cdot u_{y} C_{y}$$
$$\rightsquigarrow u_{x} C_{x} = n_{x}.$$

 E_a (signed current $x \rightarrow y$ before absorbed in b)

 $= n_x P_{xy} - n_y P_{yx} = (u_x - u_y) C_{xy} = i_{xy}.$ normalisation...

$$P_{xy} = C_{xy}/C_x$$

$$C_x = \mu_x$$

Reducing a network

Series:

 $R_{\rm eff} = R + Q$

Parallel:

Reducing a network

Star-Delta:

$${\it R}_*=rac{{\sf Q}_\Delta{\sf S}_\Delta}{{\it R}_\Delta+{\it Q}_\Delta+{\it S}_\Delta},\qquad {\it R}_\Delta=rac{{\it R}_*{\it Q}_*+{\it R}_*{\it S}_*+{\it Q}_*{\it S}_*}{{\it R}_*}.$$

Thomson, Dirichlet principles

Thomson principle:

The physical unit current is the unit flow that minimizes the sum of the ohmic power losses $\sum i^2 R$.

Thomson, Dirichlet principles

Thomson principle:

The physical unit current is the unit flow that minimizes the sum of the ohmic power losses $\sum i^2 R$.

Dirichlet principle:

The physical voltage is the function that minimizes the ohmic power losses $\sum (\nabla u)^2 / R$.

Monotonicity, transience, recurrence

The monotonicity property:

Between any disjoint sets of vertices, the effective resistance is a non-decreasing function of the individual resistances.

Monotonicity, transience, recurrence

The monotonicity property:

Between any disjoint sets of vertices, the effective resistance is a non-decreasing function of the individual resistances.

 \leadsto can be used to prove transience-recurrence by reducing the graph to something manageable in terms of resistor networks.

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

Voltage amplifier: keeps the current, multiplies the potential.

$$(u_{x}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{y}$$

Voltage amplifier: keeps the current, multiplies the potential.

$$(u_x - i \cdot \frac{R}{2}) \cdot \lambda - i \cdot \frac{R}{2} = u_y$$

Voltage amplifier: keeps the current, multiplies the potential.

$$(u_{\mathbf{x}}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{\mathbf{y}}$$

Voltage amplifier: keeps the current, multiplies the potential.

$$(u_{\mathbf{x}}-i\cdot\frac{R}{2})\cdot\lambda-i\cdot\frac{R}{2}=u_{\mathbf{y}}$$

$$R^{\mathsf{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = rac{\lambda+1}{2} \cdot R$$

$$R^{\rm pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = \frac{\lambda+1}{2} \cdot R$$

$$R^{\mathsf{pr}} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = rac{\lambda+1}{2} \cdot R$$

$$u_{\mathbf{X}} = \sum_{\mathbf{y}} \frac{C_{\mathbf{x}\mathbf{y}}^{\mathrm{se}}}{\sum_{\mathbf{z}} C_{\mathbf{x}\mathbf{z}}^{\mathrm{se}}} \cdot \lambda_{\mathbf{x}\mathbf{y}} u_{\mathbf{y}}$$

$$R^{\rm pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = \frac{\lambda+1}{2} \cdot R$$

$$u_{\mathbf{x}} = \sum_{\mathbf{y}} \frac{C_{\mathbf{x}\mathbf{y}}^{\mathsf{se}}}{\sum_{\mathbf{z}} C_{\mathbf{x}\mathbf{z}}^{\mathsf{se}}} \cdot \lambda_{\mathbf{x}\mathbf{y}} u_{\mathbf{y}}$$

$$R^{\rm pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

$$R^{se} = \frac{\lambda+1}{2} \cdot R$$

$$R^{\rm pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

 $R^{se} = \frac{\lambda+1}{2} \cdot R$

$$R^{\rm pr} = \frac{\lambda+1}{2\lambda} \cdot R$$

 $R^{se} = rac{\lambda+1}{2} \cdot R$

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy+1}}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz+1}}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y}$$

with $\gamma_{xy} = \sqrt{\lambda_{xy}} = 1/\gamma_{yx}$, $D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy} + 1) = D_{yx}$.

$$R^{\mathrm{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$
 $R^{\mathrm{se}} = rac{\lambda+1}{2} \cdot R$

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y}$$

with $\gamma_{xy} = \sqrt{\lambda_{xy}} = 1/\gamma_{yx}$, $D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy} + 1) = D_{yx}$.

$$R^{\mathrm{pr}} = rac{\lambda+1}{2\lambda} \cdot R$$
 $R^{\mathrm{se}} = rac{\lambda+1}{2} \cdot R$

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$

with $\gamma_{xy} = \sqrt{\lambda_{xy}} = 1/\gamma_{yx}$, $D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy} + 1) = D_{yx}$.

$$R^{\rm pr} = rac{\lambda+1}{2\lambda} \cdot R$$
 $R^{\rm se} = rac{\lambda+1}{2} \cdot R$

$$u_{x} = \sum_{y} \frac{C_{xy}^{se}}{\sum_{z} C_{xz}^{se}} \cdot \lambda_{xy} u_{y} = \sum_{y} \frac{C_{xy} \frac{2}{\lambda_{xy}+1}}{\sum_{z} C_{xz} \frac{2}{\lambda_{xz}+1}} \cdot \lambda_{xy} u_{y}$$
$$= \sum_{y} \frac{D_{xy} \gamma_{xy}}{\sum_{z} D_{xz} \gamma_{zx}} \cdot u_{y} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$

with $\gamma_{xy} = \sqrt{\lambda_{xy}} = 1/\gamma_{yx}$, $D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1) = D_{yx}$.

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

 $h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$ (τ is the hitting time)

is harmonic:

$$h_x = \sum_y P_{xy}h_y, \qquad h_a = 1, \quad h_b = 0.$$

$$u_x = \sum_y \frac{D_{xy} \gamma_{xy}}{D_x} \cdot u_y, \qquad u_a = 1, \quad u_b = 0.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

 $h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$ (τ is the hitting time)

is harmonic:

$$h_{x} = \sum_{y} P_{xy}h_{y}, \qquad h_{a} = 1, \quad h_{b} = 0.$$
$$u_{x} = \sum_{y} \frac{D_{xy}\gamma_{xy}}{D_{x}} \cdot u_{y}, \qquad u_{a} = 1, \quad u_{b} = 0.$$
$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_{x}}.$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$ $D_{xy} = 2\gamma_{xy} C_{xy}/(\lambda_{xy} + 1)$

Irreducible Markov chain: on Ω , $a \neq b$, $x \in \Omega$,

 $h_x := \mathbf{P}_x \{ \tau_a < \tau_b \}$ (τ is the hitting time)

is harmonic:

$$\begin{split} h_x &= \sum_y P_{xy} h_y, \qquad h_a = 1, \quad h_b = 0. \\ u_x &= \sum_y \frac{D_{xy} \gamma_{xy}}{D_x} \cdot u_y, \qquad u_a = 1, \quad u_b = 0. \\ P_{xy} &= \frac{D_{xy} \gamma_{xy}}{D_x}. \end{split}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Stationary distribuion:

$$\mu_{x} = \sum_{z} \mu_{z} P_{zx} = \sum_{z} \mu_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$D_{x} = \sum_{z} D_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Stationary distribuion:

$$\mu_{x} = \sum_{z} \mu_{z} P_{zx} = \sum_{z} \mu_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$D_{x} = \sum_{z} D_{z} \frac{D_{zx} \gamma_{zx}}{D_{z}}$$
$$\rightsquigarrow D_{x} = \mu_{x}.$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \qquad D_x = \sum_z D_{xz} \gamma_{zx} \qquad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$
 $P_{xy} = D_{xy} \gamma_{xy} / D_x$

$$D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$
$$D_{x} := \sum_{z} D_{xz} \gamma_{zx}$$

$$\gamma_{xy} = \sqrt{\lambda_{xy}}$$
 $D_x = \sum_z D_{xz} \gamma_{zx}$
 $P_{xy} = D_{xy} \gamma_{xy} / D_x$

$$D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$$

$$u_{x} = \sum_{z} P_{xz} u_{z}; \qquad \sum_{z} P_{xz} = 1$$

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$
$$D_{x} := \sum_{z} D_{xz} \gamma_{zx} = \sum_{z} D_{xz} \gamma_{xz}.$$

$$egin{aligned} \gamma_{xy} & = \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} \ P_{xy} & = D_{xy} \gamma_{xy} / D_x \end{aligned}$$

$$D_{xy} = 2\gamma_{xy}C_{xy}/(\lambda_{xy}+1)$$

$$u_x = \sum_z P_{xz} u_z; \qquad \sum_z P_{xz} = 1$$

$$\sum_{z} P_{xz} = \sum_{z} \frac{D_{xz} \gamma_{xz}}{D_{x}} = 1$$
$$D_{x} := \sum_{z} D_{xz} \gamma_{zx} = \sum_{z} D_{xz} \gamma_{xz}.$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x} = \frac{D_{xy}\gamma_{xy}}{\mu_x}$$
$$\mu_x P_{xy} \cdot \mu_y P_{yx} = D_{xy}^2;$$
$$\frac{\mu_x P_{xy}}{\mu_y P_{yx}} = \gamma_{xy}^2 = \lambda_{xy}$$

•

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

$$P_{xy} = \frac{D_{xy}\gamma_{xy}}{D_x} = \frac{D_{xy}\gamma_{xy}}{\mu_x}$$
$$\mu_x P_{xy} \cdot \mu_y P_{yx} = D_{xy}^2;$$
$$\frac{\mu_x P_{xy}}{\mu_y P_{yx}} = \gamma_{xy}^2 = \lambda_{xy}.$$

Reversed chain: Replace P_{xy} by $\hat{P}_{xy} = P_{yx} \cdot \frac{\mu_y}{\mu_x}$.

 \rightsquigarrow D_{xy} stays, λ_{xy} reverses to λ_{yx} .

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$
$$u_{x} D_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{y}} \cdot u_{y} D_{y}$$

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$n_{x} = \sum_{y} n_{y} P_{yx} = \sum_{y} \frac{D_{yx} \gamma_{yx}}{D_{y}} n_{y}$$
$$u_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{x}} \cdot u_{y}$$
$$u_{x} D_{x} = \sum_{y} \frac{D_{xy} \gamma_{xy}}{D_{y}} \cdot u_{y} D_{y}$$
$$\rightsquigarrow \quad \hat{u}_{x} D_{x} = n_{x}$$

in the reversed chain.

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Let $n_x = \mathbf{E}_a$ (number of visits to x before absorbed in b). Then

$$\rightsquigarrow \hat{u}_x D_x = n_x$$

in the reversed chain.

 $\mathbf{E}_{a}(\text{signed current } x \to y \text{ before absorbed in } b)$ = $n_{x}P_{xy} - n_{y}P_{yx} = (\hat{u}_{x}\gamma_{xy} - \hat{u}_{y}\gamma_{yx})D_{xy} = \hat{i}_{xy}.$ normalisation...

$$\begin{split} \gamma_{xy} &= \sqrt{\lambda_{xy}} \quad D_x = \sum_z D_{xz} \gamma_{zx} = \sum_z D_{xz} \gamma_{xz} \quad D_{xy} = 2\gamma_{xy} C_{xy} / (\lambda_{xy} + 1) \\ P_{xy} &= D_{xy} \gamma_{xy} / D_x \end{split}$$

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \rightarrow The "Markovity" property has another solution: constant u_b potentials with zero external currents.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \rightarrow The "Markovity" property has another solution: constant u_b potentials with zero external currents.

→ The difference of these two: $\{u_x - u_b\}_{x \in \Omega}$ is a solution too, with *i*_a flowing in the network.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \rightarrow The "Markovity" property has another solution: constant u_b potentials with zero external currents.

→ The difference of these two: $\{u_x - u_b\}_{x \in \Omega}$ is a solution too, with *i*_a flowing in the network.

→ Going backwards from $u_b - u_b = 0$ at *b*, all currents and potentials are proportional to $u_a - u_b$ at *a*.

Suppose u_a , u_b given, the solution is $\{u_x\}_{x \in \Omega}$ and $\{i_{xy}\}_{x \sim y \in \Omega}$. Current

$$i_a = \sum_{x \sim a} i_{ax}$$

flows in the network at a.

 \rightarrow The "Markovity" property has another solution: constant u_b potentials with zero external currents.

→ The difference of these two: $\{u_x - u_b\}_{x \in \Omega}$ is a solution too, with *i*_a flowing in the network.

→ Going backwards from $u_b - u_b = 0$ at *b*, all currents and potentials are proportional to $u_a - u_b$ at *a*.

→ In particular, i_a is proportional to $u_a - u_b$. We have effective resistance.

What works

... the analogy with $\mathbf{P}\{\tau_a < \tau_b\}$.

What works

... the analogy with $\mathbf{P}\{\tau_a < \tau_b\}$.

Modulo normalisation...

 \mathbf{E}_a (signed current $x \rightarrow y$ before absorbed in b) = \hat{i}_{xy} .

in the reversed network!

What works

... the analogy with $\mathbf{P}\{\tau_a < \tau_b\}$.

Modulo normalisation...

 \mathbf{E}_a (signed current $x \to y$ before absorbed in b) = \hat{i}_{xy} .

in the reversed network!

Theorem Commute time = $R_{eff} \cdot all$ conductances.

Reducing Nonmonotonicity Dirichlet

The electric network Series:

The electric network

Parallel:

Compare this with

The electric network

Star-Delta:

Star to Delta works,

Delta to Star only works if Delta does not produce a circular current by itself ($\lambda \mu \nu = 1$).

Nonmonotonicity

Dirichlet principle Classical case:

Dirichlet principle Classical case:

$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)),$$

$$E_{Ohm}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$

Dirichlet principle

Classical case:

$$C_{\rm eff} = E_{\rm Ohm}(i_u),$$

$$(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y))$$
$$E_{Ohm}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}.$$
Classical case:

$$\begin{split} \boldsymbol{C}_{\text{eff}} &= \min_{\boldsymbol{u}:\boldsymbol{u}(\boldsymbol{a})=1,\;\boldsymbol{u}(\boldsymbol{b})=0} \boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}), \\ &(i_{\boldsymbol{u}})_{\boldsymbol{x}\boldsymbol{y}} = \boldsymbol{C}_{\boldsymbol{x}\boldsymbol{y}} \cdot \left(\boldsymbol{u}(\boldsymbol{x}) - \boldsymbol{u}(\boldsymbol{y})\right), \\ &\boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}) = \sum_{\boldsymbol{x} \sim \boldsymbol{y}} (i_{\boldsymbol{u}})_{\boldsymbol{x}\boldsymbol{y}}^2 \cdot \boldsymbol{R}_{\boldsymbol{x}\boldsymbol{y}}. \end{split}$$

Classical case:

$$\begin{split} C_{\text{eff}} &= \min_{\substack{u:u(a)=1, u(b)=0}} E_{\text{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot (u(x) - u(y)), \\ &E_{\text{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

$$(i_u^*)_{xy} = rac{2\lambda_{xy}}{\lambda_{xy}+1}C_{xy}u(x) - rac{2}{\lambda_{xy}+1}C_{xy}u(y),$$
 $E_{Ohm}(i_u^*-\Psi) = \sum_{x\sim y} (i_u^*-\Psi_{xy})^2 \cdot R_{xy}.$

Classical case:

$$\begin{split} \boldsymbol{C}_{\text{eff}} &= \min_{\boldsymbol{u}: \boldsymbol{u}(\boldsymbol{a}) = 1, \, \boldsymbol{u}(\boldsymbol{b}) = 0} \boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}), \\ &(i_{\boldsymbol{u}})_{\boldsymbol{x} \boldsymbol{y}} = \boldsymbol{C}_{\boldsymbol{x} \boldsymbol{y}} \cdot \left(\boldsymbol{u}(\boldsymbol{x}) - \boldsymbol{u}(\boldsymbol{y})\right), \\ &\boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}) = \sum_{\boldsymbol{x} \sim \boldsymbol{y}} (i_{\boldsymbol{u}})_{\boldsymbol{x} \boldsymbol{y}}^2 \cdot \boldsymbol{R}_{\boldsymbol{x} \boldsymbol{y}}. \end{split}$$

$$C_{
m eff} = E_{
m Ohm}(i_u^* - \Psi),$$

$$(i_u^*)_{xy} = \frac{2\lambda_{xy}}{\lambda_{xy} + 1} C_{xy} u(x) - \frac{2}{\lambda_{xy} + 1} C_{xy} u(y),$$
$$E_{\text{Ohm}}(i_u^* - \Psi) = \sum_{x \sim y} (i_u^* - \Psi_{xy})^2 \cdot R_{xy}.$$

Classical case:

$$\begin{split} \mathbf{C}_{\mathsf{eff}} &= \min_{\substack{u:u(a)=1, \, u(b)=0 \\ (i_u)_{xy} = \, \mathbf{C}_{xy} \cdot \left(u(x) - u(y)\right), \\ \mathbf{E}_{\mathsf{Ohm}}(i_u) &= \sum_{x \sim y} (i_u)_{xy}^2 \cdot \mathbf{R}_{xy}. \end{split}$$

$$\begin{split} \mathbf{C}_{\mathsf{eff}} &= \min_{\Psi:\,\mathsf{flow}} E_{\mathsf{Ohm}}(i_u^* - \Psi), \\ (i_u^*)_{xy} &= \frac{2\lambda_{xy}}{\lambda_{xy} + 1} C_{xy} u(x) - \frac{2}{\lambda_{xy} + 1} C_{xy} u(y), \\ E_{\mathsf{Ohm}}(i_u^* - \Psi) &= \sum_{x \sim y} (i_u^* - \Psi_{xy})^2 \cdot R_{xy}. \end{split}$$

Classical case:

$$\begin{split} \boldsymbol{C}_{\text{eff}} &= \min_{\boldsymbol{u}: \boldsymbol{u}(\boldsymbol{a}) = 1, \, \boldsymbol{u}(\boldsymbol{b}) = 0} \boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}), \\ &(i_{\boldsymbol{u}})_{\boldsymbol{x} \boldsymbol{y}} = \boldsymbol{C}_{\boldsymbol{x} \boldsymbol{y}} \cdot \left(\boldsymbol{u}(\boldsymbol{x}) - \boldsymbol{u}(\boldsymbol{y})\right), \\ &\boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}) = \sum_{\boldsymbol{x} \sim \boldsymbol{y}} (i_{\boldsymbol{u}})_{\boldsymbol{x} \boldsymbol{y}}^2 \cdot \boldsymbol{R}_{\boldsymbol{x} \boldsymbol{y}}. \end{split}$$

$$\begin{split} \boldsymbol{C}_{\text{eff}} &= \min_{\boldsymbol{u}:\boldsymbol{u}(\boldsymbol{a})=1,\,\boldsymbol{u}(\boldsymbol{b})=0} \min_{\boldsymbol{\Psi}:\,\text{flow}} \boldsymbol{E}_{\text{Ohm}}(i_{u}^{*}-\boldsymbol{\Psi}), \\ &(i_{u}^{*})_{xy} = \frac{2\lambda_{xy}}{\lambda_{xy}+1}\boldsymbol{C}_{xy}\boldsymbol{u}(x) - \frac{2}{\lambda_{xy}+1}\boldsymbol{C}_{xy}\boldsymbol{u}(y), \\ &\boldsymbol{E}_{\text{Ohm}}(i_{u}^{*}-\boldsymbol{\Psi}) = \sum_{x\sim y} \left(i_{u}^{*}-\boldsymbol{\Psi}_{xy}\right)^{2}\cdot\boldsymbol{R}_{xy}. \end{split}$$

Classical case:

$$\begin{split} \mathbf{C}_{\mathsf{eff}} &= \min_{\substack{u:u(a)=1, \, u(b)=0}} E_{\mathsf{Ohm}}(i_u), \\ &(i_u)_{xy} = C_{xy} \cdot \big(u(x) - u(y)\big), \\ &E_{\mathsf{Ohm}}(i_u) = \sum_{x \sim y} (i_u)_{xy}^2 \cdot R_{xy}. \end{split}$$

Irreversible case (A. Gaudillière, C. Landim / M. Slowik):

$$\begin{split} \boldsymbol{C}_{\text{eff}} &= \min_{\boldsymbol{u}:\boldsymbol{u}(\boldsymbol{a})=1,\,\boldsymbol{u}(\boldsymbol{b})=0} \min_{\boldsymbol{\Psi}:\,\text{flow}} \boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}^{*}-\boldsymbol{\Psi}), \\ &(i_{\boldsymbol{u}}^{*})_{\boldsymbol{x}\boldsymbol{y}} = \frac{2\lambda_{\boldsymbol{x}\boldsymbol{y}}}{\lambda_{\boldsymbol{x}\boldsymbol{y}}+1}\boldsymbol{C}_{\boldsymbol{x}\boldsymbol{y}}\boldsymbol{u}(\boldsymbol{x}) - \frac{2}{\lambda_{\boldsymbol{x}\boldsymbol{y}}+1}\boldsymbol{C}_{\boldsymbol{x}\boldsymbol{y}}\boldsymbol{u}(\boldsymbol{y}), \\ &\boldsymbol{E}_{\text{Ohm}}(i_{\boldsymbol{u}}^{*}-\boldsymbol{\Psi}) = \sum_{\boldsymbol{x}\sim\boldsymbol{y}} (i_{\boldsymbol{u}}^{*}-\boldsymbol{\Psi}_{\boldsymbol{x}\boldsymbol{y}})^{2}\cdot\boldsymbol{R}_{\boldsymbol{x}\boldsymbol{y}}. \end{split}$$

Thank you.