Asymmetric exclusion: a way to anomalous
scaling

Marton Balazs

Alfréd Rényi Institute of Mathematics
MTA-BME Stochastics Research Group

Erdés Centennial
July 1., 2013



An easy example

The totally asymmetric simple exclusion process

Exotic scaling

Proof
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An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting
times. Its position at time t is S(t), the number of
steps.

~» Continuous time Markov jump process with rate 1.

S(t)

lim =+ =1 as.
t—o0
t—o0

t&ngo% ~ N(0, 1).
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TASEP

The totally asymmetric simple exclusion process

Bernoulli(p) product distribution.

Particles step to the right with rate 1,
unless the destination site is occupied.

The Bernoulli(o) distribution is stationary (and non-reversible)
forall0 < p < 1.
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Stochastic coupling: evolution as close as possible
Second class particle

Its position at time t: Q(t).

EQ(t)
t

Its velocity: tIim =1 — 2p = characteristic velocity.
—00

This is the speed of information propagation.

Jv (t) = net flux of particles
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Exotic scaling

On the characteristics V = 1 — 20:

Theorem (B. - Seppéalainen)

Var(Jl,gg(t)) Var(Jl,zg(t))

0 < liminf <limsu .
< t—o0 t2/3 - t—>oop t2/3 < o0
Important preliminaries: ,
Func. analytic methods: . Combi.-analytic

methods:
and many others

Jv (t) = net flux of particles
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Miracle: exact identities.

Theorem (B. - Seppéalainen,;

)

EQ(t) = (1 — 20},
Var(Jy 2,(t)) = ¢ - E|[Q(t) — EQ(t)] = ¢ - E[Q(1)].

Proof by combinatorial tricks, partial summations, covariances,
independence.

EQ(t) = (1 - 20)t Var(J:_2,(t)) = ¢ - E[Q(t)]



2. Many second class particles

° o e o 8 Bernoulli(p)
° o e o Bernoulli(\)
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Push Q abnormally to the right: é(t) >u

= abnormally many second class particles pass
— abnormally large difference between J and J*
= via Chebyshev’s inequality:

P{Q(t)>u}<c- lt; -Var(J;_2,(t))
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2. Many second class particles

Coupling three processes:

(1]
(e]e]
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Push Q abnormally to the right: é(t) >u

= abnormally many second class particles pass
= abnormally large difference between J and J*
= via Chebyshev’s inequality:

_ 2
P{Q(t) >u} <c- % Var(Ji-2,(t))

P{Q(t) > u} <c- & -Var(Ji 2,(t)) Var(Ji_2,(t)) = ¢ - E[Q(t)]
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Repeat to the left:
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Recall the miracle:

- t2 - t2
P{|Q(t)] >u} <c- e E|Q(t)]=:c- e E.

P{Q(t)| >u} <c- & E Var(J1-2,(t)) = ¢ - E|Q(1))
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3. The calculation
P{Q()| >u} <c- L -E.

E = E[Q(t) = /ooo P{IQ(t)] > u} du
:E/O P{O(t)] > VE} dv

* onA 1

<€ [ P{QW)] > vE} dv+ 5E
1/2 2
t2 1

< C+ — -

<c- =5 +3E,

thatis: E3 <c -t2,
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3. The calculation
P{Q()| >u} <c- L -E.

E = E[Q(t) = /ooo P{IQ(t)] > u} du
:E/O P{O(t)] > VE} dv

<E /OO P{|Q(t)| > VE} dv + 1e
1/2

2
t2 1
<c-— + zE
SC 3 + 55
that is: E3 < ¢ - t2.
Var(J; »,(t)) = const.-E <c-t?/3 m

P{IQ()| >u} <c- & -E Var(d_z,(1)) = ¢ - E[Q(1)]
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Lower bounds tend to be more messy.



Lower bound
In the upper bound, the relevant orders were

u Q(t)) ~t?¥3, o= A~ tTY3

The lower bound
Var(J; ,,(t)) > ¢ -t?/3

works with similar arguments: compare models of which the
densities differ by t=1/3, and use connections between Q(t),
the green second class particles, and heights.

Lower bounds tend to be more messy.

Thank you.
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