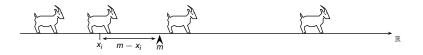
# Modelling flocks and prices: jumping particles with an attractive interaction Joint work with Miklós Zoltán Rácz and Bálint Tóth

#### Márton Balázs<sup>1</sup>

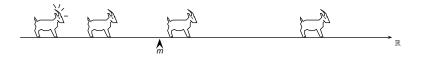
Budapest University of Technology and Economics MTA-BME Stochastics Research Group

Particle systems and PDE's U do Minho, December 5, 2012.

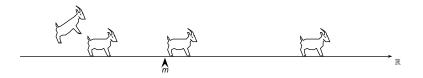
<sup>&</sup>lt;sup>1</sup>Bolyai Scholarship of the HAS; OTKA K100473;TAMOP422



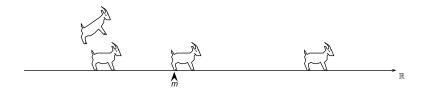
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



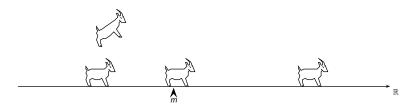
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



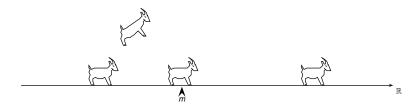
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



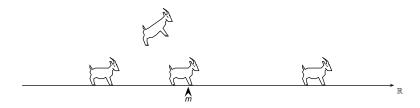
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



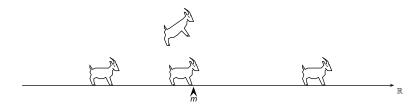
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



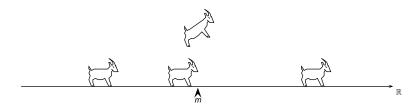
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



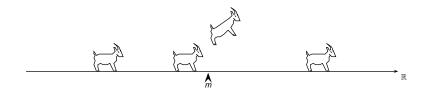
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



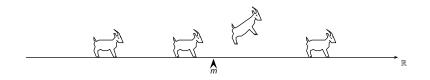
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



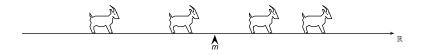
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



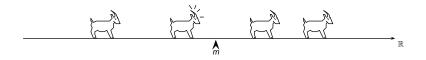
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



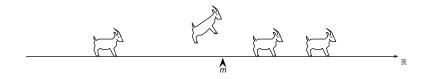
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



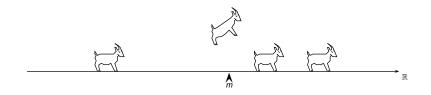
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



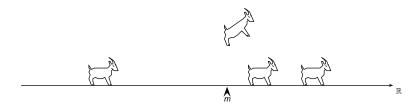
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



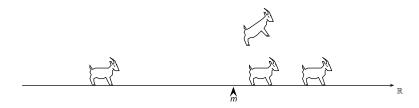
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



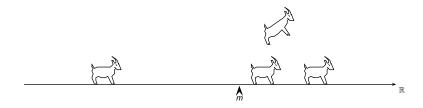
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



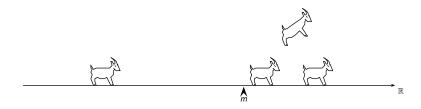
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



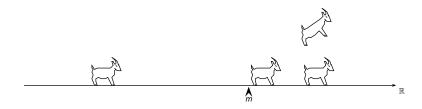
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



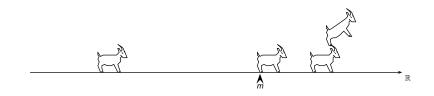
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



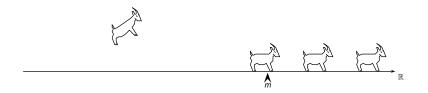
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



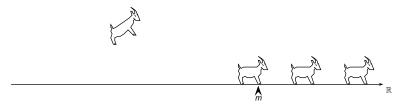
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



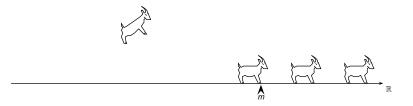
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



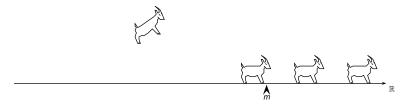
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



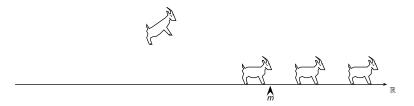
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



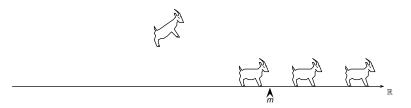
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



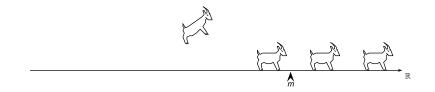
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



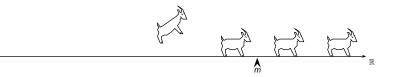
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



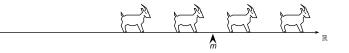
- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x₁, x₂, ..., xn of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.



- *n* goats jump on  $\mathbb{R}$  (state space is  $\mathbb{R}^n$ ).
- Given a configuration x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub> of goats the center of mass is m = <sup>1</sup>/<sub>n</sub> ∑<sup>n</sup><sub>i=1</sub> x<sub>i</sub>.
- Goat *i* jumps with rate w(x<sub>i</sub> − m), where w is the jump rate function: ℝ → ℝ<sup>+</sup>, decreasing.
- Jumps are positive, random, independent of everything, and are of density φ, mean one.

#### Stationary distribution

#### Mean field equation

Exponential jumps Extreme value statistics Fourier methods

#### Fluid limit

Where do we live? Tightness The limit solves the mean field eq. Uniqueness

#### Questions

Can describe

motion of flocks, herds (as you have seen...),

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks, etc.

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks, etc.

Found results of the types:

- rat race model (D. ben-Avraham, S.N. Majumdar, S. Redner 2007)
- interacting diffusions with linear drift (A. Greven et. al.),
- rank dependent drift of Brownian motions (S. Pal, J. Pitman 2008, S. Chatterjee, S. Pal 2009),
- relocation of random walking particles (A. Manita, V. Shcherbakov 2005),
- interacting jump processes (A. Greenberg, V.A. Malyshev, S.Yu. Popov 1995)
- multiplicative steps as well (I. Grigorescu, M. Kang 2010).

First question: what is the stationary distribution?

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n = 2 particles: just an exercise.

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

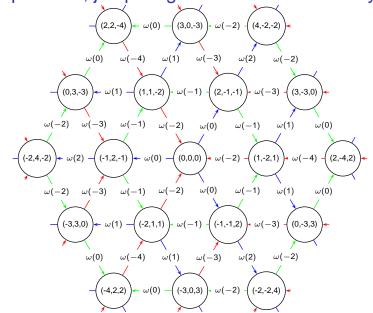
n = 2 particles: just an exercise. But I have never before seen a density like  $\cosh^{-2}(z)$  appearing (case  $\varphi \sim \text{Exp}(1)$  jumps,  $w(x) = e^{-2x}$  jump rates).

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n = 2 particles: just an exercise. But I have never before seen a density like  $\cosh^{-2}(z)$  appearing (case  $\varphi \sim \text{Exp}(1)$  jumps,  $w(x) = e^{-2x}$  jump rates).

n = 3 particles: already seems hopeless. The process is "very irreversible".

n = 3 particles, jump lengths are deterministically 1



Take  $n \to \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

Take  $n \to \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{aligned} \frac{\partial \varrho(\mathbf{x},t)}{\partial t} &= -w(\mathbf{x}-m(t)) \cdot \varrho(\mathbf{x},t) \\ &+ \int_{-\infty}^{\mathbf{x}} w(\mathbf{y}-m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x}-\mathbf{y}) \quad \mathrm{d}\mathbf{y}, \end{aligned}$$

Take  $n \rightarrow \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

 $\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x} - m(t)) \cdot \varrho(\mathbf{x},t) + \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x} - \mathbf{y}) \, \mathrm{d}\mathbf{y},$ 

Take  $n \rightarrow \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

 $\frac{\partial \varrho(\mathbf{x}, t)}{\partial t} = -w(\mathbf{x} - m(t)) \cdot \varrho(\mathbf{x}, t)$ 

$$+\int_{-\infty}^{\mathbf{x}} w(\mathbf{y}-\mathbf{m}(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x}-\mathbf{y}) \, \mathrm{d}\mathbf{y},$$

Take  $n \rightarrow \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

 $\begin{array}{rl} \underset{\partial \varrho(x,t)}{\frac{\partial \varrho(x,t)}{\partial t}} = & -w(x-m(t)) \cdot \varrho(x,t) \\ & \\ & \\ & \\ +\int_{-\infty}^{x} w(y-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) \quad \mathrm{d}y, \end{array}$ 

Take  $n \to \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{array}{rl} & \underset{\partial \varrho(\mathbf{x},t)}{\frac{\partial \varrho(\mathbf{x},t)}{\partial t}} = & -w(\mathbf{x}-m(t)) \cdot & \varrho(\mathbf{x},t) \\ & \underset{\partial ump \text{ rate at } \mathbf{y}}{\text{ jump rate at } \mathbf{y}} & \underset{\partial (\mathbf{x},t)}{\text{ density at } \mathbf{y}} \\ & + \int_{-\infty}^{\mathbf{x}} & w(\mathbf{y}-m(t)) \cdot & \varrho(\mathbf{y},t) \cdot & \varphi(\mathbf{x}-\mathbf{y}) & \mathrm{d}\mathbf{y}, \end{array}$$

Take  $n \to \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{array}{rl} & \underset{\partial \varrho(x,t)}{\frac{\partial \varrho(x,t)}{\partial t}} = & -w(x-m(t)) \cdot & \varrho(x,t) \\ & \underset{\partial ump \text{ rate at } y}{\text{ jump rate at } y} & \underset{\partial ensity at y}{\text{ density at } y} & \underset{\partial ensity at y}{\text{ prob to jump to } x} \\ & + \int_{-\infty}^{x} & w(y-m(t)) \cdot & \varrho(y,t) \cdot & \varphi(x-y) & dy, \end{array}$$

Take  $n \to \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{array}{rl} & \underset{\partial \varrho(x,t)}{j \text{ump rate at } x} & \underset{\partial ensity \text{ at } x}{\text{density at } x} \\ & \frac{\partial \varrho(x,t)}{\partial t} = & -w(x-m(t)) \cdot \varrho(x,t) \\ & \underset{\int -\infty}{j \text{ump rate at } y} & \underset{\partial ensity \text{ at } y}{\text{density at } y} & \underset{\partial ensity \text{ prob to jump to } x}{\text{prob to jump to } x} \\ & + \int_{-\infty}^{x} w(y-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) & \underset{\partial ensity \text{ dy,}}{\text{dy,}} \end{array}$$

and

$$m(t)=\int_{-\infty}^{\infty}x\varrho(x,t)\,\mathrm{d}x.$$

Take  $n \to \infty$ , do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{jump rate at } x & \text{density at } x \end{array} \\ \hline \frac{\partial \varrho(x,t)}{\partial t} = & - w(x-m(t)) \cdot \varrho(x,t) \\ \\ \text{jump rate at } y & \text{density at } y & \text{prob to jump to } x \end{array} \\ + \int_{-\infty}^{x} w(y-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) & \mathrm{d} y, \end{array}$$

and

$$m(t)=\int_{-\infty}^{\infty}x\varrho(x,t)\,\mathrm{d}x.$$

These equations conserve  $1 = \int \rho(x, t) dx$  and give  $\dot{m}(t) = \int w(x - m(t)) \cdot \rho(x, t) dx$ .

We look for stationary solution of this equation as seen from the center of mass.

Idea: as  $n \to \infty$ , in a stationary distribution m(t) would stabilize. So assume

$$m(t) = ct$$
 and  $\varrho(x, t) = \varrho(x - ct).$ 

We look for stationary solution of this equation as seen from the center of mass.

Idea: as  $n \to \infty$ , in a stationary distribution m(t) would stabilize. So assume

$$m(t) = ct$$
 and  $\varrho(x, t) = \varrho(x - ct).$ 

Plug this in to get

$$\begin{aligned} -c\varrho'(x) &= -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, \mathrm{d}y, \\ 0 &= \int_{-\infty}^{\infty} y\varrho(y) \, \mathrm{d}y. \end{aligned}$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, \mathrm{d}y$$

Cases we can solve:

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y$$

#### Cases we can solve:

When the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y$$

#### Cases we can solve:

- When the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.
  - When  $w(x) = e^{-\beta x}$ ,

$$\varrho(\boldsymbol{x}) = \boldsymbol{G}_{\frac{1}{\beta}}(\operatorname{const} \cdot \boldsymbol{x}),$$

 $G_{\frac{1}{\beta}}$  is the generalized Gumbel density.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y$$

#### Cases we can solve:

- When the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.
  - When  $w(x) = e^{-\beta x}$ ,

$$\varrho(\boldsymbol{x}) = \boldsymbol{G}_{\frac{1}{\beta}}(\operatorname{const} \cdot \boldsymbol{x}),$$

 $G_{\frac{1}{2}}$  is the generalized Gumbel density.

When w is a (down-)step function, p is the Laplace density.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y$$

#### Cases we can solve:

- When the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.
  - When  $w(x) = e^{-\beta x}$ ,

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\operatorname{const} \cdot \mathbf{x}),$$

- $G_{\frac{1}{2}}$  is the generalized Gumbel density.
- When w is a (down-)step function, p is the Laplace density.
- When w is a (down-)step function, but with a linear decrease around 0, *ρ* is Laplace with a normal segment in the middle.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y$$

#### Cases we can solve:

- When the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.
  - When  $w(x) = e^{-\beta x}$ ,

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\operatorname{const} \cdot \mathbf{x}),$$

#### $G_{\frac{1}{2}}$ is the generalized Gumbel density.

- When w is a (down-)step function, p is the Laplace density.
- When w is a (down-)step function, but with a linear decrease around 0, *ρ* is Laplace with a normal segment in the middle.

When the jumps are Exp(1):  $\varphi(x) = e^{-x}$ , jump rate is exponential:  $w(x) = e^{-x}$ ,  $\rightsquigarrow \varrho(x) = G(\text{const} \cdot x)$ , standard Gumbel density. Why?

When the jumps are Exp(1):  $\varphi(x) = e^{-x}$ , jump rate is exponential:  $w(x) = e^{-x}$ ,  $\rightsquigarrow \varrho(x) = G(\text{const} \cdot x)$ , standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx.  $e^{ct-X(t)} dt$ . And when it jumps, it jumps Exp(1).

When the jumps are Exp(1):  $\varphi(x) = e^{-x}$ , jump rate is exponential:  $w(x) = e^{-x}$ ,  $\rightsquigarrow \varrho(x) = G(\text{const} \cdot x)$ , standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx.  $e^{ct-X(t)} dt$ . And when it jumps, it jumps Exp(1).

When the jumps are Exp(1):  $\varphi(x) = e^{-x}$ , jump rate is exponential:  $w(x) = e^{-x}$ ,  $\rightsquigarrow \varrho(x) = G(\text{const} \cdot x)$ , standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx.  $e^{ct-X(t)} dt$ . And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time *t*, let we have  $N(t) = e^{ct}/c$  of them. Define Y(t) as the maximum.

When the jumps are Exp(1):  $\varphi(x) = e^{-x}$ , jump rate is exponential:  $w(x) = e^{-x}$ ,  $\rightsquigarrow \varrho(x) = G(\text{const} \cdot x)$ , standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx.  $e^{ct-X(t)} dt$ . And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time *t*, let we have  $N(t) = e^{ct}/c$  of them. Define Y(t) as the maximum.

Between t and t + dt,  $dN(t) = e^{ct} dt$  many new Exp(1) particles try to break the record. So the probability that Y(t) jumps is

$$1 - (1 - e^{-Y(t)})^{e^{ct} dt} \simeq e^{ct - Y(t)} dt \qquad \text{(for large } Y(t)\text{)}.$$

And when it jumps, it jumps Exp(1). But we know that  $Y(t) - ct + \log c$  converges to standard Gumbel.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y.$$

Cases we can solve:

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y.$$

#### Cases we can solve:

Seen: when the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.

## Fluid limit: a mean field equation

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \,\mathrm{d}y.$$

#### Cases we can solve:

- Seen: when the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.
- When  $w(x) = e^{-\beta x}$  is exponential: take Fourier transform to get

$$\operatorname{Ci}\tau\widehat{\varrho}(\tau) = (\widehat{\varphi}(\tau) - 1) \cdot \widehat{\varrho}(\tau + i\beta).$$

Hope to solve the recurrence relation on the  $\Im \mathfrak{m}$  line, then analytic continuation gives a hint on the form of  $\widehat{\varrho}$ , to be verified.

## Fluid limit: a mean field equation

$$-c\varrho'(\mathbf{x}) = -w(\mathbf{x})\varrho(\mathbf{x}) + \int_{-\infty}^{\mathbf{x}} w(\mathbf{y})\varrho(\mathbf{y})\varphi(\mathbf{x}-\mathbf{y}) \,\mathrm{d}\mathbf{y}.$$

#### Cases we can solve:

- Seen: when the jumps are Exp(1): φ(x) = e<sup>-x</sup>, the above becomes a linear second order ODE, easy to solve.
- When  $w(x) = e^{-\beta x}$  is exponential: take Fourier transform to get

$$\operatorname{Cit}\widehat{\varrho}(\tau) = (\widehat{\varphi}(\tau) - 1) \cdot \widehat{\varrho}(\tau + i\beta).$$

Hope to solve the recurrence relation on the  $\Im m$  line, then analytic continuation gives a hint on the form of  $\hat{\varrho}$ , to be verified.

Method tested when φ(x) = e<sup>-x</sup> (also seen before), hope to work with other φ's too.

## Taking the fluid limit

Recall the original mean field equation:

$$\begin{aligned} \frac{\partial \varrho(\mathbf{x},t)}{\partial t} &= -w(\mathbf{x}-m(t)) \cdot \varrho(\mathbf{x},t) \\ &+ \int_{-\infty}^{\mathbf{x}} w(\mathbf{y}-m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x}-\mathbf{y}) \, \mathrm{d}\mathbf{y}, \end{aligned}$$

or, for all f test functions:

$$egin{aligned} \langle f,\mu(t)
angle - \langle f,\mu(0)
angle \ &= \int_0^t ig\langle \left\{ \mathbf{E}[f(\mathbf{x}+\mathbf{Z})] - f(\mathbf{x}) 
ight\} w(\mathbf{x}-m(\mathbf{s})), \, \mu(\mathbf{s}) ig
angle \, \, \mathrm{d}\mathbf{s}, \ m(\mathbf{s}) &= \langle \mathbf{x}, \, \mu(\mathbf{s}) 
angle. \end{aligned}$$

Here **E** refers to expectation of Z w.r.t. the jump length distribution.

$$egin{aligned} &\langle f,\mu(t)
angle - \langle f,\mu(0)
angle \ &= \int_0^t \left\langle \left\{ \mathbf{E}[f(\mathbf{x}+\mathbf{Z})] - f(\mathbf{x}) 
ight\} \, w(\mathbf{x}-\mathbf{m}(\mathbf{s})), \, \mu(\mathbf{s})
ight
angle \, \mathrm{d}\mathbf{s}, \ &m(\mathbf{s}) = \langle \mathbf{x}, \, \mu(\mathbf{s})
angle. \end{aligned}$$

$$\begin{split} \langle f, \mu(t) \rangle &- \langle f, \mu(0) \rangle \\ &= \int_0^t \left\langle \left\{ \mathsf{E}[f(x+Z)] - f(x) \right\} w(x - m(s)), \, \mu(s) \right\rangle \, \mathrm{d}s, \\ m(s) &= \langle x, \, \mu(s) \rangle. \end{split}$$

Define the *n*-particle empirical measure  $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ . Goal:

$$\begin{split} \langle f, \mu(t) \rangle &- \langle f, \mu(0) \rangle \\ &= \int_0^t \left\langle \left\{ \mathsf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) \right\} w(\mathbf{x} - m(\mathbf{s})), \, \mu(\mathbf{s}) \right\rangle \, \mathrm{d}\mathbf{s}, \\ m(\mathbf{s}) &= \langle \mathbf{x}, \, \mu(\mathbf{s}) \rangle. \end{split}$$

Define the *n*-particle empirical measure  $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ . Goal:

1. Tightness of  $\{\mu_n(\cdot)\}_{n\geq 1}$  in some path space of measures.

$$\begin{split} \langle f, \mu(t) \rangle &- \langle f, \mu(0) \rangle \\ &= \int_0^t \langle \{ \mathbf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) \} \ \mathbf{w}(\mathbf{x} - \mathbf{m}(\mathbf{s})), \ \mu(\mathbf{s}) \rangle \ \mathrm{d}\mathbf{s}, \\ \mathbf{m}(\mathbf{s}) &= \langle \mathbf{x}, \ \mu(\mathbf{s}) \rangle. \end{split}$$

Define the *n*-particle empirical measure  $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ . Goal:

- 1. Tightness of  $\{\mu_n(\cdot)\}_{n\geq 1}$  in some path space of measures.
- 2. Weak limits convergence to a solution  $\mu(\cdot)$  of the above equation.

$$egin{aligned} \langle f, \mu(t) 
angle &- \langle f, \mu(0) 
angle \ &= \int_0^t \langle \left\{ \mathbf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) 
ight\} \, w(\mathbf{x} - m(\mathbf{s})), \, \mu(\mathbf{s}) 
ight
angle \, \mathrm{d}\mathbf{s}, \ &m(\mathbf{s}) = \langle \mathbf{x}, \, \mu(\mathbf{s}) 
angle. \end{aligned}$$

Define the *n*-particle empirical measure  $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ . Goal:

- 1. Tightness of  $\{\mu_n(\cdot)\}_{n\geq 1}$  in some path space of measures.
- 2. Weak limits convergence to a solution  $\mu(\cdot)$  of the above equation.
- 3. Uniqueness of solutions of the above equation.

$$\begin{split} \langle f, \mu(t) \rangle &- \langle f, \mu(0) \rangle \\ &= \int_0^t \left\langle \left\{ \mathsf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) \right\} w(\mathbf{x} - m(\mathbf{s})), \, \mu(\mathbf{s}) \right\rangle \, \mathrm{d}\mathbf{s}, \\ m(\mathbf{s}) &= \langle \mathbf{x}, \, \mu(\mathbf{s}) \rangle. \end{split}$$

Define the *n*-particle empirical measure  $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ . Goal:

- 1. Tightness of  $\{\mu_n(\cdot)\}_{n\geq 1}$  in some path space of measures.
- 2. Weak limits convergence to a solution  $\mu(\cdot)$  of the above equation.
- 3. Uniqueness of solutions of the above equation.

Assumptions: the rate function *w* is bounded; third moment of the jump distribution  $\varphi$ .

$$\begin{split} \langle f, \mu(t) \rangle &- \langle f, \mu(0) \rangle \\ &= \int_0^t \langle \{ \mathbf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) \} w(\mathbf{x} - m(\mathbf{s})), \, \mu(\mathbf{s}) \rangle \, \mathrm{d}\mathbf{s}, \\ m(\mathbf{s}) &= \langle \mathbf{x}, \, \mu(\mathbf{s}) \rangle \quad !!! \end{split}$$

Define the *n*-particle empirical measure  $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$ . Goal:

- 1. Tightness of  $\{\mu_n(\cdot)\}_{n\geq 1}$  in some path space of measures.
- 2. Weak limits convergence to a solution  $\mu(\cdot)$  of the above equation.
- 3. Uniqueness of solutions of the above equation.

Assumptions: the rate function *w* is bounded; third moment of the jump distribution  $\varphi$ .

Problem: bounded functions and "just measures" are not enough!

Probability measures on  $\mathbb{R}$  with finite first moment:  $\mathcal{P}_1$ .

Probability measures on  $\mathbb{R}$  with finite first moment:  $\mathcal{P}_1$ .

Wasserstein metric on  $\mathcal{P}_1$ :

$$d_1(\mu, \nu) = \inf_{\pi: ext{ coupling meas.}} \int_{\mathbb{R} imes \mathbb{R}} |x - y| \, \pi(\, \mathrm{d} x, \, \mathrm{d} y).$$

Probability measures on  $\mathbb{R}$  with finite first moment:  $\mathcal{P}_1$ .

Wasserstein metric on  $\mathcal{P}_1$ :

$$d_1(\mu, \nu) = \inf_{\pi: ext{ coupling meas.}} \int_{\mathbb{R} imes \mathbb{R}} |m{x} - m{y}| \, \pi(\, \mathrm{d}m{x}, \, \, \mathrm{d}m{y}).$$

Test functions:

$$\{f : \text{ cont's}; |f| \le 1\} \cup \{\text{Id}\}.$$

Convergence in  $d_1$  implies convergence of the integrals of such test functions.

Probability measures on  $\mathbb{R}$  with finite first moment:  $\mathcal{P}_1$ .

Wasserstein metric on  $\mathcal{P}_1$ :

$$d_1(\mu, \nu) = \inf_{\pi: ext{ coupling meas.}} \int_{\mathbb{R} imes \mathbb{R}} |m{x} - m{y}| \, \pi(\, \mathrm{d}m{x}, \, \, \mathrm{d}m{y}).$$

Test functions:

$$\{f : \text{ cont's}; |f| \le 1\} \cup \{\text{Id}\}.$$

Convergence in  $d_1$  implies convergence of the integrals of such test functions.

All these needed to be able to handle the center of mass

 $m(s) = \langle x, \mu(s) \rangle.$ 

Probability measures on  $\mathbb{R}$  with finite first moment:  $\mathcal{P}_1$ .

Wasserstein metric on  $\mathcal{P}_1$ :

$$d_1(\mu, \nu) = \inf_{\pi: ext{ coupling meas.}} \int_{\mathbb{R} imes \mathbb{R}} |m{x} - m{y}| \, \pi(\, \mathrm{d}m{x}, \, \, \mathrm{d}m{y}).$$

Test functions:

$$\{f : \text{ cont's}; |f| \le 1\} \cup \{\text{Id}\}.$$

Convergence in  $d_1$  implies convergence of the integrals of such test functions.

All these needed to be able to handle the center of mass

$$m(\mathbf{s}) = \langle \mathbf{x}, \, \mu(\mathbf{s}) \rangle.$$

Goal: convergence of the *n*-particle empirical measures  $\mu_n(t)$  in the Skohorod space  $D([0, \infty), \mathcal{P}_1)$ .

Step 1: Tightness of ⟨f, µn(t)⟩ in D([0, ∞], ℝ); f bounded, continuous. (Grigorescu-Kang 2010)

- Step 1: Tightness of ⟨f, µn(t)⟩ in D([0, ∞], ℝ); f bounded, continuous. (Grigorescu-Kang 2010)
- Step 2: Any limit point is a.s. continuous.

- Step 1: Tightness of ⟨f, µn(t)⟩ in D([0, ∞], ℝ); f bounded, continuous. (Grigorescu-Kang 2010)
- Step 2: Any limit point is a.s. continuous.

C-relative compactness

- Step 1: Tightness of ⟨f, µn(t)⟩ in D([0, ∞], ℝ); f bounded, continuous. (Grigorescu-Kang 2010)
- Step 2: Any limit point is a.s. continuous.

C-relative compactness

Method for these bounds: introduce *ghost goats*: they jump with rate  $\sup_{x} w(x)$ , they have the same jump length distribution as their planetary counterparts. Couple such that ghost goat<sub>i</sub> can jump without goat<sub>i</sub>, but not vice-versa.  $\rightsquigarrow$  increments of ghosts dominate increments of the planetary goats.

#### Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$ .

- Step 3: C-relative compactness of  $\mu_n(t)$  in  $D([0, \infty], \mathcal{P}_1)$ .
  - Generalize Perkins' theorem (Perkins, St.-Flour notes, 1999) to include measures with first moments, not only bounded ones.

- Step 3: C-relative compactness of  $\mu_n(t)$  in  $D([0, \infty], \mathcal{P}_1)$ .
  - Generalize Perkins' theorem (Perkins, St.-Flour notes, 1999) to include measures with first moments, not only bounded ones.

For the compactness-type conditions, use again the ghost goats.

# 2. The limit solves the mean field eq.

Let

$$\begin{split} \mathbf{A}_{t,f}(\mu) &:= \langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle \\ &- \int_0^t \left\langle \left\{ \mathbf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) \right\} w(\mathbf{x} - m(\mathbf{s})), \, \mu(\mathbf{s}) \right\rangle \, \mathrm{d}\mathbf{s} \\ &= \langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle - \int_0^t L \langle f, \mu(\mathbf{s}) \rangle \, \mathrm{d}\mathbf{s}, \\ \mathbf{m}(\mathbf{s}) &= \langle \mathbf{x}, \, \mu(\mathbf{s}) \rangle. \end{split}$$

Recall that the mean field equation was

$$A_{t,f}(\mu)=0.$$

# 2. The limit solves the mean field eq.

Step 1:

$$\sup_{0 \le s \le t} |A_{s,f}(\mu_n)| \xrightarrow{\mathbb{P}} 0$$

in probability.

## 2. The limit solves the mean field eq.

Step 1:

$$\sup_{0 \le s \le t} |A_{s,f}(\mu_n)| \xrightarrow[n \to \infty]{\mathbb{P}} 0$$

in probability.

Step 2: If  $\mu_n \Rightarrow \mu$  in  $D([0, \infty], \mathcal{P}_1)$ , then

$$A_{s,f}(\mu_n) \Rightarrow A_{s,f}(\mu)$$

in  $\mathbb{R}$ .

#### 3. Uniqueness of solutions of the mean field eq.

Step 1: Look at the distance

$$d_{H}(\mu, \nu) := \sup_{f} |\langle f, \mu \rangle - \langle f, \nu \rangle|,$$

sup is over our test functions.

## 3. Uniqueness of solutions of the mean field eq.

Step 1: Look at the distance

$$d_{H}(\mu, \nu) := \sup_{f} |\langle f, \mu \rangle - \langle f, \nu \rangle|,$$

sup is over our test functions.

Step 2: Apply to solutions μ(t) and ν(t) of the mean field equation:

$$\langle f, \mu(t) \rangle = \langle f, \mu(0) \rangle \\ + \int_0^t \langle \{ \mathsf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \, \mu(s) \rangle \, \mathrm{d}s.$$

Terms in the difference of integrals can be bounded in terms of  $d_H(\mu(s), \nu(s))$ .

## 3. Uniqueness of solutions of the mean field eq.

Step 1: Look at the distance

$$d_H(\mu, \nu) := \sup_f |\langle f, \mu \rangle - \langle f, \nu \rangle|,$$

sup is over our test functions.

Step 2: Apply to solutions μ(t) and ν(t) of the mean field equation:

$$\langle f, \mu(t) \rangle = \langle f, \mu(0) \rangle \\ + \int_0^t \langle \{ \mathsf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle \, \mathrm{d}s.$$

Terms in the difference of integrals can be bounded in terms of  $d_H(\mu(s), \nu(s))$ .

 $\rightsquigarrow d_H(\mu(t), \nu(t)) \le d_H(\mu(0), \nu(0)) + c \int_0^t d_H(\mu(s), \nu(s)) ds$ , apply Grönwall's inequality.

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^{\gamma}}{n^{lpha}}.$$

Miklós did some (small) simulations. It seems that:

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^{\gamma}}{n^{lpha}}.$$

Miklós did some (small) simulations. It seems that:

• Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^\gamma}{n^lpha}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .
- Stepfunction jump rates, exponential jumps:

$$\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$$

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^\gamma}{n^lpha}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .
- Stepfunction jump rates, exponential jumps:

 $\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$ 

Stepfunction with linear segment jump rates, exponential jumps: γ ≃ 1, 1/2 ≤ α ≤ 1.

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^\gamma}{n^lpha}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .
- Stepfunction jump rates, exponential jumps:

- Stepfunction with linear segment jump rates, exponential jumps: γ ≃ 1, 1/2 ≤ α ≤ 1.
- In general, limit distribution theorems?

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^\gamma}{n^lpha}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .
- Stepfunction jump rates, exponential jumps:

- Stepfunction with linear segment jump rates, exponential jumps: γ ≃ 1, 1/2 ≤ α ≤ 1.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^\gamma}{n^lpha}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .
- Stepfunction jump rates, exponential jumps:

- Stepfunction with linear segment jump rates, exponential jumps: γ ≃ 1, 1/2 ≤ α ≤ 1.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?
- And for the fluid limit, general rate functions / jump distributions?

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim rac{t^\gamma}{n^lpha}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps:  $\gamma \simeq \alpha \simeq 1$ .
- Stepfunction jump rates, exponential jumps:

- Stepfunction with linear segment jump rates, exponential jumps: γ ≃ 1, 1/2 ≤ α ≤ 1.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?
- And for the fluid limit, general rate functions / jump distributions?