Construction of the zero range process and a deposition model with superlinear growth rates

Márton Balázs (UW-Madison)

Joint work with
Firas Rassoul-Agha (Ohio State University) and
Timo Seppäläinen (UW-Madison)

Budapest, 2005

1. The zero range process and the bricklayers' process
2. Construction materials
3. Transferring the estimates
4. Results

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right)$,

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

| | |
| :--- | :--- |$\omega_{i} \in \mathbb{Z}^{+}$

With rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

$$
\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

$$
\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

$$
\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

$$
\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

$$
\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Bricklayers' process (BL) (Bálint)

$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

With rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

$$
\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Assumptions:

Assumptions:

- $r(z)$ is strictly increasing,

Assumptions:

- $r(z)$ is strictly increasing,
\rightsquigarrow the process (to be constructed) is attractive: higher neighbors \Rightarrow faster growth.

Assumptions:

- $r(z)$ is strictly increasing,
\rightsquigarrow the process (to be constructed) is attractive: higher neighbors \Rightarrow faster growth.
- $r(z) \cdot r(1-z)=\left\{\begin{array}{l}0 \text { for } \mathrm{ZR}, \\ 1 \text { for } \mathrm{BL}\end{array} \quad \forall z \in \mathbb{Z}\right.$,

Assumptions:

- $r(z)$ is strictly increasing,
\rightsquigarrow the process (to be constructed) is attractive: higher neighbors \Rightarrow faster growth.
- $r(z) \cdot r(1-z)=\left\{\begin{array}{l}0 \text { for } \mathrm{ZR}, \\ 1 \text { for } \mathrm{BL}\end{array} \quad \forall z \in \mathbb{Z}\right.$,
$\rightsquigarrow \omega_{i}$'s being iid. μ^{θ}-distributed
is (formally) an equilibrium of the process.
Parameter θ sets the average of ω_{i},
i.e. the slope of the wall.
- The process is constructed if

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- The process is constructed if

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

- The process is constructed if

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

Unfortunately, the process is not constructed at that time.

- The process is constructed if

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

Unfortunately, the process is not constructed at that time.

- Goal: construct the dynamics if

$$
r(z) \leq \mathrm{e}^{\beta z}
$$

only $(\beta>0)$,

- The process is constructed if

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

Unfortunately, the process is not constructed at that time.

- Goal: construct the dynamics if

$$
r(z) \leq \mathrm{e}^{\beta z}
$$

only $(\beta>0),+$ the previous assumptions for attractivity and the μ^{θ}-equilibrium.

- The process is constructed if

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

Unfortunately, the process is not constructed at that time.

- Goal: construct the dynamics if

$$
r(z) \leq \mathrm{e}^{\beta z}
$$

only $(\beta>0),+$ the previous assumptions for attractivity and the μ^{θ}-equilibrium.
Estimates used by Andjel do not work.

2. Construction materials

Equilibrium in finite volume
$\zeta_{i}=$ negative discrete gradient

\curvearrowright : with rate $r\left(\zeta_{i}\right)$
\curvearrowleft : with rate $r\left(-\zeta_{i}\right)$
\downarrow : with rate $\mathrm{E}^{\mu^{\theta}} r\left(\zeta_{i}\right)$
$(\ell, \mathfrak{r}, \theta)$-process
\downarrow : with rate $\mathrm{E}^{\mu^{\theta}}{ }^{\prime}\left(-\zeta_{i}\right)$

2. Construction materials

Equilibrium in finite volume
$\zeta_{i}=$ negative discrete gradient

\curvearrowright : with rate $r\left(\zeta_{i}\right)$
\curvearrowleft : with rate $r\left(-\zeta_{i}\right)$
$\left.\begin{array}{l}\downarrow: \text { with rate } \mathrm{E}^{\mu^{\theta}} r\left(\zeta_{i}\right) \\ \downarrow: \text { with rate } \mathrm{E}^{\mu^{\theta}}{ }_{r\left(-\zeta_{i}\right)}\end{array}\right\}$
$(\ell, \mathfrak{r}, \theta)$-process
$\rightsquigarrow \zeta_{i}$'s, $i=\ell \ldots$ r, being iid. μ^{θ}-distributed is the equilibrium of the process.
Parameter θ sets the average of ζ_{i},
i.e. the slope of the wall.

The monotone process

$\omega_{i}=$ negative discrete gradient

$\left.\begin{array}{l}\curvearrowright: \text { with rate } r\left(\omega_{i}\right) \\ \curvearrowleft: \text { with rate } r\left(-\omega_{i}\right)\end{array}\right\}[\ell, \mathfrak{r}]$-monotone process

The monotone process

$\omega_{i}=$ negative discrete gradient

$\left.\begin{array}{l}\curvearrowright: \text { with rate } r\left(\omega_{i}\right) \\ \curvearrowleft: \text { with rate } r\left(-\omega_{i}\right)\end{array}\right\}[\ell, \mathfrak{r}]$-monotone process
\rightsquigarrow This process is far from equilibrium!

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, r. \Rightarrow We have a limit of the monotone processes.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, r. \Rightarrow We have a limit of the monotone processes. Is the limit finite?

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\underline{\omega}}$ is bounded by the height of that column of $\underline{\zeta}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\underline{\omega}}$ is bounded by the height of that column of $\underline{\zeta}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\underline{\omega}}$ is bounded by the height of that column of $\underline{\zeta}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\omega}$ is bounded by the height of that column of $\underline{\zeta}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\underline{\omega}}$ is bounded by the height of that column of $\underline{\zeta}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process.
\rightsquigarrow Coupling 1: The height of a column of the monotone process is monotone in ℓ, \mathfrak{r}. \Rightarrow We have a limit of the monotone processes. Is the limit finite? Yes, it is.
- Start the $\zeta\left(\ell, \mathfrak{r}, \theta_{1}\right)$-process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\underline{\omega}}$ is bounded by the height of that column of $\underline{\zeta}$.

3. Transferring the estimates

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

3. Transferring the estimates
 Uniformly in ℓ, \mathfrak{r} :

$$
\underline{\zeta} \text { is almost in equilibrium } \Rightarrow \text { nice }
$$

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

3. Transferring the estimates

Uniformly in ℓ, \mathfrak{r} :

4. Results

4. Results

\rightsquigarrow The state space

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\}\right.
$$

is preserved.

4. Results

\rightsquigarrow The state space

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\}\right.
$$

is preserved.
\rightsquigarrow The measure $\underline{\mu}^{\theta}$ is stationary for $\underline{\omega}(t)$.

4. Results

\rightsquigarrow The state space

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\}\right.
$$

is preserved.
\rightsquigarrow The measure $\underline{\mu}^{\theta}$ is stationary for $\underline{\omega}(t)$. $\tilde{\Omega}$ is μ^{θ}-measure one.

4. Results

\rightsquigarrow The state space

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\}\right.
$$

is preserved.
\rightsquigarrow The measure $\underline{\mu}^{\theta}$ is stationary for $\underline{\omega}(t)$. $\tilde{\Omega}$ is μ^{θ}-measure one.
\rightsquigarrow We have an $S(t)$ strongly continuous $\mathbb{L}_{\underline{\mu}^{\theta^{-}}}^{2}$ semigroup.

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions.

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions.

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions,

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions.

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions, up to a time $T=T(\underline{\omega})$.

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions.

$$
S(t) \varphi(\underline{\omega})=\varphi(\underline{\omega})+\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s
$$

for φ bounded Lipschitz-functions, up to a time $T=T(\underline{\omega})$.

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} S(t) \varphi(\underline{\omega})\right|_{t=0}=L \varphi(\underline{\omega})
$$

for φ bounded Lipschitz-functions.

Missing: The second class particle, started on an equilibrium $\underline{\omega}$, is not positive recurrent.

Missing: The second class particle, started on an equilibrium $\underline{\omega}$, is not positive recurrent.
\rightsquigarrow This would imply ergodicity of $\underline{\omega}$ in $\underline{\mu}^{\theta}$.

Missing: The second class particle, started on an equilibrium $\underline{\omega}$, is not positive recurrent.
\rightsquigarrow This would imply ergodicity of $\underline{\omega}$ in $\underline{\mu}^{\theta}$.
Our semigroup results do not seem to be enough for the usual Dirichlet-form proof of ergodicity.

Thank you.

