
Construction of the zero range
process and a deposition model with

superlinear growth rates

Márton Balázs (UW-Madison)

Joint work with

Firas Rassoul-Agha (Ohio State University)

and
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Bricklayers’ process (BL) (Bálint)

ωi = negative discrete gradient
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Bricklayers’ process (BL) (Bálint)
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Assumptions:

• r(z) is strictly increasing,

 the process (to be constructed) is attractive:

higher neighbors ⇒ faster growth.

• r(z) · r(1 − z)=

{
0 for ZR,

1 for BL
∀z ∈ Z,

 ωi’s being iid. µθ-distributed

is (formally) an equilibrium of the process.

Parameter θ sets the average of ωi,

i.e. the slope of the wall.
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• The process is constructed if

r(z + 1) − r(z) ≤ K

Andjel 1982, Booth and Quant 2002.

• B. 2001 and 2004 finds nice distributions

related to shocks in the exponential BL

process:

r(z) = A · eBz.

Unfortunately, the process is not constructed at

that time.

• Goal: construct the dynamics if

r(z) ≤ eβz

only (β > 0), + the previous assumptions for

attractivity and the µθ-equilibrium.

Estimates used by Andjel do not work.
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2. Construction materials
Equilibrium in finite volume

ζi = negative discrete gradient

%

y

y y y y yx x x x x

x

$

ℓ r

PP

PP

PP

PP

PP

PP

PP

PP

y : with rate r(ζi)

x : with rate r(−ζi)

% : with rate E
µθ

r(ζi)

$ : with rate E
µθ

r(−ζi)





(ℓ, r, θ)-process

 ζi’s, i = ℓ . . . r, being iid. µθ-distributed

is the equilibrium of the process.

Parameter θ sets the average of ζi,

i.e. the slope of the wall.
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The monotone process

ωi = negative discrete gradient
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}
[ℓ, r]-monotone process

 This process is far from equilibrium!
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ω(0)

• Fix a state ω(0) ∈ Ω̃.

 Coupling 1: The height of a column of the mono-
tone process is monotone in ℓ, r.
⇒ We have a limit of the monotone processes. Is
the limit finite?

• Start the ζ (ℓ, r, θ1)-process in distribution µθ2 on

the left, µθ1 on the right. ⇒ With positive probabil-
ity, each column of ζ is higher than that column of
ω.

 Coupling 2: In this case, the height of a column of
ω is bounded by the height of that column of ζ.
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tone process is monotone in ℓ, r.
⇒ We have a limit of the monotone processes. Is
the limit finite?

• Start the ζ (ℓ, r, θ1)-process in distribution µθ2 on

the left, µθ1 on the right. ⇒ With positive probabil-
ity, each column of ζ is higher than that column of
ω.

 Coupling 2: In this case, the height of a column of
ω is bounded by the height of that column of ζ.
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• Fix a state ω(0) ∈ Ω̃. Start a monotone process.

 Coupling 1: The height of a column of the mono-
tone process is monotone in ℓ, r.
⇒ We have a limit of the monotone processes. Is
the limit finite? Yes, it is.

• Start the ζ (ℓ, r, θ1)-process in distribution µθ2 on

the left, µθ1 on the right. ⇒ With positive probabil-
ity, each column of ζ is higher than that column of
ω.

 Coupling 2: In this case, the height of a column of
ω is bounded by the height of that column of ζ.
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3. Transferring the estimates
Uniformly in ℓ, r:

ζ is almost in equilibrium ⇒ nice
y

many non-growing columns in ζ
y

bounds on ζ’s column growth
y

Conditional
Coupling

bounds on ω’s column growthy
ωi’s are nicey

many non-growing columns in ωy
bounds on disturbance propagation in ω
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4. Results

 The state space

Ω̃ = {ω :





lim sup
i→−∞

1

|i|

0∑

j=i+1

|ωj| < ∞

lim sup
i→∞

1

i

i∑

j=1

|ωj| < ∞

}

is preserved.

 The measure µθ is stationary for ω(t).

Ω̃ is µθ-measure one.

 We have an S(t) strongly continuous L2
µθ-

semigroup.
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S(t)ϕ(ω) = ϕ(ω) +

t∫

0

S(s)Lϕ(ω) ds

for ϕ bounded Lipschitz-functions.

 

S(t)ϕ(ω) = ϕ(ω) +

t∫

0

LS(s)ϕ(ω) ds

for ϕ bounded Lipschitz-functions, up to a

time T = T (ω).

 

d

dt
S(t)ϕ(ω)

∣∣∣∣
t=0

= Lϕ(ω)

for ϕ bounded Lipschitz-functions.
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Missing: The second class particle, started on

an equilibrium ω, is not positive recurrent.

 This would imply ergodicity of ω in µθ.

Our semigroup results do not seem to be enough for

the usual Dirichlet-form proof of ergodicity.
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Thank you.
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