Conditional expectation toy example

Márton Balázs*

October 3, 2017

We start with Kolmogorov's Theorem on conditional expectations.
Theorem 1 (Thm 9.2 in Williams) Let X be a random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E}|X|<\infty$. Let \mathcal{G} be a sub σ-algebra. Then there exists a random variable V such that
(a) V is \mathcal{G}-measurable,
(b) $\mathbb{E}|V|<\infty$,
(c) $\mathbb{E}(V ; G)=\mathbb{E}(X ; G)$ for any $G \in \mathcal{G}$.

This V is unique up to zero-measure sets and is called a version of the conditional expectation $\mathbb{E}(X \mid \mathcal{G})$.
Our toy example will be the following. Let $\Omega=\{1,2, \ldots, 12\}, \mathcal{F}=\mathcal{P}(\Omega)$, and \mathbb{P} be the uniform measure on the finite set Ω. Elementary outcomes in Ω will be denoted by ω. Define the random variables

$$
Y:=\left\lceil\frac{\omega}{4}\right\rceil=\left\{\begin{array}{ll}
1, & \text { if } \omega=1,2,3,4, \\
2, & \text { if } \omega=5,6,7,8, \\
3, & \text { if } \omega=9,10,11,12,
\end{array} \quad X:=\left\lceil\frac{\omega}{2}\right\rceil= \begin{cases}2, & \text { if } \omega=3,4 \\
3, & \text { if } \omega=5,6 \\
4, & \text { if } \omega=7,8 \\
5, & \text { if } \omega=9,10 \\
6, & \text { if } \omega=11,12\end{cases}\right.
$$

The σ-algebra generated by Y is

$$
\begin{aligned}
\mathcal{G}:= & \sigma(Y):=\sigma\left(Y^{-1}(\mathcal{B}(\mathbb{R}))\right)=\sigma(\{1,2,3,4\},\{5,6,7,8\},\{9,10,11,12\}) \\
= & \{\emptyset,\{1,2,3,4\},\{5,6,7,8\},\{9,10,11,12\} \\
& \quad\{1,2,3,4,5,6,7,8\},\{1,2,3,4,9,10,11,12\},\{5,6,7,8,9,10,11,12\}, \Omega\} .
\end{aligned}
$$

Similarly, the σ-algebra generated by X is

$$
\mathcal{H}:=\sigma(X):=\sigma\left(X^{-1}(\mathcal{B}(\mathbb{R}))\right)=\sigma(\{1,2\},\{3,4\},\{5,6\},\{7,8\},\{9,10\},\{11,12\})
$$

We see that $\mathcal{G} \subset \mathcal{H} \subset \mathcal{F}$. The σ-algebra \mathcal{G} is coarser (contains less information), while \mathcal{H} is finer (more information). We also see that

- Y is \mathcal{G}-measurable (by definition).
- Y is \mathcal{H}-measurable (due to $\mathcal{G} \subset \mathcal{H}$).
- X is \mathcal{H}-measurable (by definition).
- X is not \mathcal{G}-measurable (e.g., $X^{-1}\{1\}=\{1,2\} \notin \mathcal{G}$).

Next, we find the conditional expectation $\mathbb{E}(X \mid \mathcal{G})$ based on the definition above. As $\mathcal{G}=\sigma(Y)$, an equivalent notation for this is $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(X \mid Y)$. Due to $|\Omega|=12<\infty$, finite mean of $V=\mathbb{E}(X \mid \mathcal{G})$ is not an issue. We look for a \mathcal{G}-measurable random variable V with $\mathbb{E}(V ; G)=\mathbb{E}(X ; G)$ for any $G \in \mathcal{G}$.

[^0]An efficient choice for G is $\{1,2,3,4\}$. As V is \mathcal{G}-measurable, and \mathcal{G} has no set that distinguishes between these four outcomes, we find that $V(\omega)$ is the same for $\omega=1,2,3,4$. The above expectations turn into

$$
\begin{gathered}
V(1) \mathbb{P}\{1\}+V(2) \mathbb{P}\{2\}+V(3) \mathbb{P}\{3\}+V(4) \mathbb{P}\{4\}=X(1) \mathbb{P}\{1\}+X(2) \mathbb{P}\{2\}+X(3) \mathbb{P}\{3\}+X(4) \mathbb{P}\{4\} \\
V(1) \mathbb{P}\{1\}+V(1) \mathbb{P}\{2\}+V(1) \mathbb{P}\{3\}+V(1) \mathbb{P}\{4\}=X(1) \mathbb{P}\{1\}+X(2) \mathbb{P}\{2\}+X(3) \mathbb{P}\{3\}+X(4) \mathbb{P}\{4\} \\
V(1)=V(2)=V(3)=V(4)=\frac{1 \cdot \frac{1}{12}+1 \cdot \frac{1}{12}+2 \cdot \frac{1}{12}+2 \cdot \frac{1}{12}}{\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}}=1.5 .
\end{gathered}
$$

Similarly, with the respective choices $G=\{5,6,7,8\}$ and $G=\{9,10,11,12\}$,

$$
\begin{gathered}
V(5)=V(6)=V(7)=V(8)=\frac{3 \cdot \frac{1}{12}+3 \cdot \frac{1}{12}+4 \cdot \frac{1}{12}+4 \cdot \frac{1}{12}}{\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}}=3.5, \\
V(9)=V(10)=V(11)=V(12)=\frac{5 \cdot \frac{1}{12}+5 \cdot \frac{1}{12}+6 \cdot \frac{1}{12}+6 \cdot \frac{1}{12}}{\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}}=5.5 .
\end{gathered}
$$

Hence the conditional expectation is the random variable

$$
\mathbb{E}(X \mid \mathcal{G})(\omega)=V(\omega)= \begin{cases}1.5, & \text { if } \omega=1,2,3,4 \\ 3.5, & \text { if } \omega=5,6,7,8 \\ 5.5, & \text { if } \omega=9,10,11,12\end{cases}
$$

being just the average of X over the smallest nontrivial respective units in \mathcal{G}.
In a similar way one can check

$$
\mathbb{E}(Y \mid \mathcal{G})(\omega)=\left\{\begin{array}{ll}
1, & \text { if } \omega=1,2,3,4 \\
2, & \text { if } \omega=5,6,7,8 \\
3, & \text { if } \omega=9,10,11,12
\end{array}\right\}=Y(\omega)
$$

and indeed it is always the case that $\mathbb{E}(Y \mid Y)=Y$ almost everywhere (a.e.).
Further examples are $\mathbb{E}(X \mid\{\emptyset, \Omega\})$, where the random variable V we are looking for is measurable w.r.t. the trivial σ-algebra $\{\emptyset, \Omega\}$, in other words is a constant. Picking $G=\emptyset$ gives $\mathbb{E}(V ; \emptyset)=0=$ $\mathbb{E}(X ; \emptyset)$, which is not very informative. The choice $G=\Omega$ on the other hand fixes the value of the constant V :

$$
\begin{aligned}
\mathbb{E}(V ; \Omega) & =\mathbb{E}(X ; \Omega) \\
\mathbb{E} V & =\mathbb{E} X \\
V & =\mathbb{E} X,
\end{aligned}
$$

that is, $\mathbb{E}(X \mid\{\emptyset, \Omega\})=\mathbb{E} X$. This is again true a.e. in general, conditioning on the trivial σ-algebra always produces a full expectation.

If, on the other hand, one conditions on the full σ-algebra \mathcal{F} that has all information that can be available in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, then every event $G \in \mathcal{F}$ can be substituted, and the very detailed ones completely fix the conditional expectation. In our example we can e.g., take $\{7\}$ to obtain

$$
\begin{aligned}
\mathbb{E}(V ;\{7\}) & =\mathbb{E}(X ;\{7\}) \\
V(7) \cdot \mathbb{P}\{7\} & =X(7) \cdot \mathbb{P}\{7\} \\
V(7) & =X(7)=4
\end{aligned}
$$

Similarly, for any $\omega \in \Omega$ one has $V(\omega)=X(\omega)$, which leads us to $\mathbb{E}(X \mid \mathcal{F})=V=X$. This is again a.e. true for general probability spaces: conditioning on the full information does not do any averaging and gives back the random variable instead.

Our final example is

$$
\begin{aligned}
\mathcal{I}: & =\sigma(\{1,5,9\},\{3,7,11\}) \\
= & \{\emptyset,\{1,5,9\},\{3,7,11\},\{2,4,6,8,10,12\},\{1,3,5,7,9,11\} \\
& \{1,2,4,5,6,8,9,10,12\},\{2,3,4,6,7,8,10,11,12\}, \Omega\} .
\end{aligned}
$$

We compute $V=\mathbb{E}(Y \mid \mathcal{I})$ as before. This is \mathcal{I}-measurable, hence constant on $\{1,5,9\}$, as well as on $\{3,7,11\}$ and on $\{2,4,6,8,10,12\}$. Substituting these as G (the rest in \mathcal{I} will not provide additional help) in $\mathbb{E}(V ; G)=\mathbb{E}(Y ; G)$ results in

$$
\begin{gathered}
V(1)=V(5)=V(9)=\frac{Y(1) \mathbb{P}\{1\}+Y(5) \mathbb{P}\{5\}+Y(9) \mathbb{P}\{9\}}{\mathbb{P}\{1\}+\mathbb{P}\{5\}+\mathbb{P}\{9\}}=\frac{1 \cdot \frac{1}{12}+2 \cdot \frac{1}{12}+3 \cdot \frac{1}{12}}{\frac{1}{12}+\frac{1}{12}+\frac{1}{12}}=2, \\
V(3)=V(7)=V(11)=\frac{Y(3) \mathbb{P}\{3\}+Y(7) \mathbb{P}\{7\}+Y(11) \mathbb{P}\{11\}}{\mathbb{P}\{3\}+\mathbb{P}\{7\}+\mathbb{P}\{11\}}=\frac{1 \cdot \frac{1}{12}+2 \cdot \frac{1}{12}+3 \cdot \frac{1}{12}}{\frac{1}{12}+\frac{1}{12}+\frac{1}{12}}=2,
\end{gathered}
$$

$$
\begin{aligned}
& V(2)=V(4)=V(6) \\
&=V(8)=V(10)=V(12)=\frac{Y(2) \mathbb{P}\{2\}+Y(4) \mathbb{P}\{4\}+Y(6) \mathbb{P}\{6\}+Y(8) \mathbb{P}\{8\}+Y(10) \mathbb{P}\{10\}+Y(12) \mathbb{P}\{12\}}{\mathbb{P}\{2\}+\mathbb{P}\{4\}+\mathbb{P}\{6\}+\mathbb{P}\{8\}+\mathbb{P}\{10\}+\mathbb{P}\{12\}} \\
&=\frac{1 \cdot \frac{1}{12}+1 \cdot \frac{1}{12}+2 \cdot \frac{1}{12}+2 \cdot \frac{1}{12}+3 \cdot \frac{1}{12}+3 \cdot \frac{1}{12}}{\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}} .
\end{aligned}
$$

We find that $\mathbb{E}(Y \mid \mathcal{I})$ is actually a constant, and in fact $=\mathbb{E} Y$.
We can repeat this calculation with any function $f: \mathbb{R} \rightarrow \mathbb{R}$ (in general this is chosen to be bounded and measurable) to find $\mathbb{E}(f(Y) \mid \mathcal{I})=\mathbb{E}(f(Y))$, a constant. This is when we say that the random variable Y is independent of the σ-algebra \mathcal{I}. Knowing which of the events $\{1,5,9\}$ and $\{3,7,11\}$ did or did not happen will not tell us any information about Y.

If \mathcal{I} happens to be generated by yet another random variable $Z, \mathcal{I}=\sigma(Z)$, then the above is equivalent to variables Y and Z being independent.

[^0]: *University of Bristol

