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The Bernoulli(p) distribution is time-stationary for any
(0<o<).
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hyt(t) = height as seen by a moving observer of velocity V.
= net number of particles passing the window s — Vs.
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Question: What is the time-order of Var(hy;(t))?
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Hydrodynamics (very briefly)

The density o : = E(w) and the hydrodynamic flux
H : = E[growth rate] both depend on a parameter of the
stationary distribution.

» H(p) is the hydrodynamic flux function.

» If the process is locally in equilibrium, but changes over
some large scale (variables X =¢i and T = &t), then

Oro(T, X) +&H(o(T, X)) =0 ( ).

» The characteristics is a path X(T) where o(T, X(T)) is
constant.
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A single discrepancyt, the second class particle, is conserved.
Its position at time t is Q(t).
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Tool: the second class particle

Theorem (B. - Seppéalainen;

)

Started from ( ) equilibrium,
E(Q(t))=C-t

in a whole bunch of processes.

C is the characteristic speed.

The second class particle follows the characteristics, people
have known this for a long time.
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Picture:

The position X (t) of1° follows the Rankine-Hugoniot speed R.
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Convex flux ( ):

Recall C=H (o) >R = H(Q):')"\()‘)

2
Do we have Q(t) > X(t) + tight error
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Once we have Q(t) > X(t) ( )or Q(t) < X(t) ( ),
Theorem (Ferrari-Fontes ( ); B.)
tlrgow — Var(w) . ‘C _V’

Initial fluctuations are transported along the characteristics on
this scale.
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Abnormal fluctuations:

Once we have Q(t) > X(t) ( )or Q(t) < X(t) ( )
On the characteristics V = C,

Theorem (B. - Seppalainen ( so far, but...))

0 < limint Y& (et () Var (hei(t))

t—o0 t2/3 < lim sup t2/3

t—oo

Important preliminaries were ,

Both these arguments seem to be robust once H(p) is strictly
convex or concave, and we have Q(t) > X(t) ( ) or

Q(t) < X(1) ( ).
There are limit distribution results for TASEP by

Their methods are completely different, relying on combinatorial
tricks and asymptotic analysis of certain determinants.
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Linear models

There are asymmetric models with linear hydrodynamics:
» The random average process (RAP),
» The AZRP with linear rates

In their cases, we have

. Var(hg(t))
R

even convergence of the finite-dimensional distributions of the
hct(t) process to Gaussian limits is known (

)-
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Nonconvex, nonconcave

And there are attractive asymmetric models with nonlinear,
nonconvex and nonconcave hydrodynamics:

» 2-jump exclusion: ——+3-3 H(p) is a cubic polynomial;
» A three-state process with variable rates ( ).
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Thank you.
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