
Homework set 1

Measure theory background

Martingale Theory with Applications, 1st teaching block, 2018
School of Mathematics, University of Bristol

Problems with •’s are to be handed in. These are due in class or in the blue locker with my
name on the ground floor of the Main Maths Building before 17:00 on Thursday, 11th October.
Please show your work leading to the result, not only the result. Each problem worth the
number of •’s you see right next to it. Hence, for example, Problem 1.6 worth three marks.

1.1 Let (Ω, F) be a measurable space. Prove that if A, B ∈ F , then

A ∩ B, A−B (set-difference,) A∆B (symmetric set-difference)

are also in F .

1.2 Is the union of two σ-algebras (on the same set) also a σ-algebra? If yes, prove it, if no,
give a counterexample.

1.3 Is the intersection of two σ-algebras (on the same set) also a σ-algebra? If yes, prove it,
if no, give a counterexample.

1.4 Define the Borel σ-algebra on R as we did in class:

B(R) : = σ
{

n
⋃

i=1

(ai, bi] : n < ∞, a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn in R

}

.

Show that each of

(a, b), [a, b), [a, b], {a}, (a, ∞)

are in B(R) for any a < b in R.

1.5 (Shiryaev.) Let Ω be a countable set and F the collection of all its subsets. Put µ(A) = 0
if A is finite and µ(A) = ∞ if A is infinite. Show that the set function µ is finitely additive
but not σ-additive.

1.6 ••• Consider an example similar to that of the exercise class: Ω = {1, 2, . . . , 8}, F =
P(Ω), P is uniform on Ω, and the random variables X and Y are defined by X(ω) = ⌈ω

2
⌉,

Y (ω) = ⌈ω

4
⌉, G = σ(Y ). Show in this example that E(XY | G) = Y E(X | G). This is

referred to as ‘taking out what’s known’ or ‘given Y , Y is not random’.

1.7 ••• In the example of Problem 1.6, let H : = σ(X). Calculate each of

• E
(

E(X | G) | H
)

,

• E
(

E(X | H) | G
)

,

• E
(

E(Y | G) | H
)

,

• E
(

E(Y | H) | G
)

.

Compare with E(X | G), E(X | H), E(Y | G), E(Y | H). It is important here that one of

the two σ-algebras contains the other!

1



1.8 However, give an example of a probability space (Ω, F , P), sub-σ algebras F1 ⊂ F ,F2 ⊂
F , and a random variable X such that

E
(

E(X | F1) | F2

)

6= E
(

E(X | F2) | F1

)

.

Why is it not a contradiction with the previous problem?

1.9 ••• (Monty Hall problem with σ-algebras.) The famous Monty Hall problem goes like this:

We have three doors. Behind one of them is a car, behind the others, goats.

1. You pick a door, let us assume it’s door number 1.

2. Monty opens another door with a goat behind it.

3. Now you pick one of the two closed doors (repeat your choice, or switch to the other
one).

4. Whatever is behind this door is yours.

Make the natural assumptions about the probabilities of the location of the car and the
choice of door Monty opens (if he has a choice). Would you repeat your choice or switch?

(a) Write the full probability space of the experiment that involves the first two steps
above.

(b) In this sample space, write the event A = {door 3 has a goat}, and its generated
σ-algebra F = σ(A).

(c) Let X = 1, 2, 3 be the location of the car. Calculate E(X | F).

(d) Now write the event B = {Monty opens door 3}, and its generated σ-algebra G =
σ(B).

(e) Calculate E(X | G).

(f) Conclude the optimal strategy for the player in this problem.

1.10 •• Let X and Y be random variables on a probability space (Ω, F , P), and G = σ(Y ).
Show that X is independent of G if and only if for any bounded and measurable functions
f and g, we have E

(

f(X) · g(Y )
)

= Ef(X) · Eg(Y ) (the Probability 1 definition of
independence).

1.11 • Let A and B be two events in a probability space, B of positive probability. Derive
the Probability 1 definition of the conditional probability P{A |B} from our definition of
conditional expectations.

1.12 •• Based on your definition above, show that for any fixed event B of positive probability
in the probability space (Ω, F , P), the set function Q(·) : = P{· |B} is a probability
measure.

1.13 ••• Continuing the previous problem, show that for any events B and C with a positive
probability intersection,

Q(· |C) = P(· |B ∩ C).

1.14 Let X1, X2, . . . , Xn be iid. random variables with finite mean, and Sn their sum. Calcu-
late E(X1 |Sn).

1.15 (Shiryaev.) Let µ be the Lebesgue-Stieltjes measure generated by a continuous distribu-
tion function. Show that if the set A is at most countable, then µ(A) = 0.
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1.16 (Construction of the Vitali set – an example that cannot be Lebesgue measurable.) Let
Ω := [0, 1) and define on Ω the following equivalence relation:

x ∼ y iff x− y ∈ Q (the rational numbers).

Let V ⊂ [0, 1) consist of exactly one representative element from each equivalence class of

∼. (Notice: this construction relies on the Axiom of Choice.) For q ∈ Q ∩ [0, 1), denote

Vq : = {x+ q (mod 1) : x ∈ V }.

Prove that

(a) The sets Vq are congruent: for any q, q′ ∈ Q ∩ [0, 1), Vq′ = (q′ − q) + Vq (mod1).

(b) If q 6= q′ in Q ∩ [0, 1), then Vq ∩ Vq′ = ∅.

(c)
⋃

q∈Q∩[0, 1) Vq = [0, 1).

Conclude that the Vitali set V cannot be Lebesgue measurable.

1.17 Let X and Y be random variables with finite mean on a probability space. Prove that if
E(X | Y ) = Y and E(Y |X) = X , then X = Y a.s.

1.18 Let X and Y be random variables with finite second moment on the probability space
(Ω, F , P). Let G be a sub-σ algebra of F . Suppose that E(X | G) = Y and EX2 = EY 2.
Prove that X = Y a.s.
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