Homework set 5
Borel-Cantelli Lemmas, Law of Large Numbers
Further Topics in Probability, $2^{\text {nd }}$ teaching block, 2016
School of Mathematics, University of Bristol

Problems with ©'s are to be handed in. These are due in class or in the blue locker with my name on the ground floor of the Main Maths Building before 16:00pm on Thursday, $21^{\text {st }}$ April. Please show your work leading to the result, not only the result. Each problem worth the number of 's you see right next to it. Random variables are defined on a common probability space unless otherwise stated.
5.1 • (Shiryaev.) Let Ω be a countable set and \mathcal{F} the collection of all its subsets. Put $\mu(A)=0$ if A is finite and $\mu(A)=\infty$ if A is infinite. Show that the set function μ is finitely additive but not σ-additive.
5.2 a) Prove that Markov's inequality is sharp in the following sense: fixing $0<m \leq$ λ, there exists a non-negative random variable X with expectation $\mathbf{E} X=m$ and 'saturated' Markov's inequality: $\mathbf{P}\{X \geq \lambda\}=m / \lambda$.
b) Prove that Markov's inequality is not sharp, in the following sense: for any fixed non-negative random variable X with finite mean, $\lim _{\lambda \rightarrow \infty} \lambda \mathbf{P}\{X \geq \lambda\} / \mathbf{E} X=0$.
5.3 Show that $\mathbf{E} X^{2}<\infty$ if and only if $\sum_{n=1}^{\infty} n \cdot \mathbf{P}\{|X|>n\}<\infty$.
5.4^{\bullet} Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{n}, \ldots, X$ and Y be defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$, and suppose $X_{n} \xrightarrow{\mathbf{P}} X$ and $Y_{n} \xrightarrow{\mathbf{P}} Y$. Prove
a) $X_{n} Y_{n} \xrightarrow{\mathbf{P}} X Y$,
b) if $Y_{n} \neq 0$ and $Y \neq 0$ a.s., then $X_{n} / Y_{n} \xrightarrow{\mathbf{P}} X / Y$.
5.5 Let X_{1}, X_{2}, \ldots be independent. Prove that $\sup _{n} X_{n}<\infty$ a.s. if and only if $\sum_{n=1}^{\infty} \mathbf{P}\left\{X_{n}>\right.$ $A\}<\infty$ for some positive finite A.
5.6 Prove that for any sequence X_{1}, X_{2}, \ldots of random variables there exists a deterministic sequence c_{1}, c_{2}, \ldots of real numbers for which $\frac{X_{n}}{c_{n}} \xrightarrow{\text { a.s. }} 0$.
5.7 ••• Formulate necessary and sufficient conditions for independent (but not identically distributed) Exponential $\left(\lambda_{i}\right)$ variables X_{i} to converge to 0
a) in distribution;
b) almost surely.
5.8 We perform infinitely many independent experiments. The $n^{\text {th }}$ one is successful with probability $n^{-\alpha}$ and fails with probability $1-n^{-\alpha}, 0<\alpha<1$. Let $k \geq 1$. We are happy if we see k consecutive successes infinitely often. What is the probability of this?
5.9 (The longest run of heads, I.)

Let X_{1}, X_{2}, \ldots be iid. random variables with $\mathbf{P}\left\{X_{k}=1\right\}=p, \mathbf{P}\left\{X_{k}=0\right\}=q$, where $p+q=1$. Fix a parameter $\lambda>1$, and denote by $A_{k}^{(\lambda)}$ the following events for $k=$ $0,1,2, \ldots$:

$$
A_{k}^{(\lambda)}:=\left\{\exists r \in\left[\left\lfloor\lambda^{k}\right\rfloor,\left\lfloor\lambda^{k+1}\right\rfloor-k\right] \cap \mathbb{N}: X_{r}=X_{r+1}=\cdots=X_{r+k-1}=1\right\}
$$

In plain words: $A_{k}^{(\lambda)}$ means that somewhere between $\left\lfloor\lambda^{k}\right\rfloor$ and $\left\lfloor\lambda^{k+1}\right\rfloor-1$ there is a sequence of k consecutive 1's. Prove that
a) If $\lambda<p^{-1}$, then a.s. only finitely many of the events $A_{k}^{(\lambda)}$ occur.
b) If $\lambda>p^{-1}$, then a.s. infinitely many of the events $A_{k}^{(\lambda)}$ occur.
c) What happens for $\lambda=p^{-1}$?
5.10 (The longest run of heads, II.)

Let

$$
R_{n}:=\sup \left\{k \geq 0: X_{n}=X_{n+1}=\cdots=X_{n+k-1}=1\right\}
$$

That is: R_{n} is the length of the run of consecutive 1's that starts at n. (If $X_{n}=0$, then set $R_{n}=0$.) Prove that

$$
\mathbf{P}\left\{\limsup _{n \rightarrow \infty} \frac{R_{n}}{\log n}=|\log p|^{-1}\right\}=1
$$

HINT: For a fixed parameter $\alpha>0$, let

$$
B_{n}^{(\alpha)}:=\left\{R_{n}>\alpha \log n /|\log p|\right\}
$$

If $\alpha>1$, then by the first Borel-Cantelli Lemma and direct computation, only finitely many of the $B_{n}^{(\alpha)}$'s occur a.s. If $\alpha \leq 1$, then from the previous exercise it follows that a.s. infinitely many of the $B_{n}^{(\alpha)}$'s occur.
5.11 • On the (simplified version of the) game Roulette, a player bets $£ 1$, and looses his bet with probability $19 / 37$, but is given his bet and an extra pound back with probability $18 / 37$. Use the Weak Law of Large Numbers to find the probability that the casino looses money with this game on the (very) long run. Explain your answer.
5.12 Rolling a die 100 times, denote the outcome of roll i by X_{i}. Estimate the probability

$$
\mathbf{P}\left\{\prod_{i=1}^{100} X_{i} \leq a^{100}\right\}
$$

for real $1<a<6$.
$5.13{ }^{\bullet \bullet}$ (The simplest form of the McMillan Theorem.)
Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{r}\right)$, where $p_{i}, i=1,2, \ldots, r$ are positive numbers with $p_{1}+p_{2}+\cdots+$ $p_{r}=1$. That is: given is a probability distribution on the set $\{1,2, \ldots, r\}$. The entropy of the distribution \mathbf{p} is defined by $H(\mathbf{p}):=-\sum_{j=1}^{r} p_{j} \log p_{j}$. Let X_{1}, X_{2}, \ldots be iid. random variables from this distribution \mathbf{p}. Define the random variables $R_{n}:=\prod_{k=1}^{n} p_{X_{k}}$: this is the a priori probability of the observed sequence $X_{1}, X_{2}, \ldots, X_{n}$ of outcomes. Prove that

$$
\mathbf{P}\left\{\lim _{n \rightarrow \infty} n^{-1} \log R_{n}=-H(\mathbf{p})\right\}=1
$$

$5.14{ }^{\bullet \bullet}$ Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Prove

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} f\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=f\left(\frac{1}{2}\right) . \\
& \lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} f\left(\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=f\left(\frac{1}{e}\right) .
\end{aligned}
$$

5.15 Prove

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} \frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{x_{1}+x_{2}+\cdots+x_{n}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{n}=\frac{2}{3}
$$

5.16 Let $S^{n-1}:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ be the surface of the n-dimensional Euclidean unit sphere. There is a unique probability measure $\nu^{(n-1)}$ on S^{n-1} that is invariant to orthogonal transformations of \mathbb{R}^{n} : for any Borel-measurable $A \subset S^{n-1}$ and H orthogonal transformation of $\mathbb{R}^{n}, \nu^{(n-1)}(H A)=\nu^{(n-1)}(A)$. (This measure is called the Haar measure on S^{n-1}, it is actually the uniform measure on S^{n-1}.)
a) Let $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the vector of iid. Standard Normal components in \mathbb{R}^{n}. Prove that applying an arbitrary orthogonal transformation H on \mathbf{X}, the resulting vector $\mathbf{Y}:=H \mathbf{X}$ again has iid. Standard Normal components $Y_{1}, Y_{2}, \ldots, Y_{n}$. From this and the uniqueness of the Haar measure prove that $\mathbf{X} /|\mathbf{X}| \in S^{n-1}$ has the uniform distribution $\nu^{(n-1)}$ on the surface of the sphere. (That is, for any Borel measurable $A \subset S^{n-1}$, we have $\mathbf{P}(\mathbf{X} /|\mathbf{X}| \in A)=\nu^{(n-1)}(A)$.)
b) Let X_{1}, X_{2}, \ldots be iid. Standard Normal random variables, and

$$
R_{n}:=\left(X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}\right)^{1 / 2}
$$

Prove $R_{n} / \sqrt{n} \xrightarrow{\mathbf{P}} 1$ as $n \rightarrow \infty$.
c) Pick now a uniform random point P on the surface S^{n-1} of the unit sphere, and denote its coordinates in \mathbb{R}^{n} by $\left(Y_{1}^{(n)}, Y_{2}^{(n)}, \ldots, Y_{n}^{(n)}\right)$. Use the above a) and b) to prove the following limit theorems for P :

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbf{P}\left(\sqrt{n} Y_{1}^{(n)}<y\right)=\Phi(y):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x \\
& \lim _{n \rightarrow \infty} \mathbf{P}\left(\sqrt{n} Y_{1}^{(n)}<y_{1} ; \sqrt{n} Y_{2}^{(n)}<y_{2}\right)=\Phi\left(y_{1}\right) \Phi\left(y_{2}\right) \\
& \text { HINT: } \mathbf{P}\left(\sqrt{n} Y_{1}^{(n)}<y\right)=\mathbf{P}\left(\sqrt{n} X_{1} / R_{n}<y\right) .
\end{aligned}
$$

