
Homework set 5

Convergence, Borel-Cantelli Lemmas, Law of Large Numbers

Further Topics in Probability, 2nd teaching block, 2018
School of Mathematics, University of Bristol

Problems with •’s are to be handed in. These are due in class or in the blue locker with my
name on the ground floor of the Main Maths Building before 16:00pm on Friday, 20th April.
Please show your work leading to the result, not only the result. Each problem worth the
number of •’s you see right next to it. Random variables are defined on a common probability
space unless otherwise stated.

5.1 •• (Shiryaev.) Let Ω be a countable set and F the collection of all its subsets. Put
µ(A) = 0 if A is finite and µ(A) = ∞ if A is infinite. Show that the set function µ is
finitely additive but not σ-additive.

5.2 Let the random variables X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, . . . , X and Y be defined on a

common probability space (Ω, F , P), and suppose Xn
P−→ X and Yn

P−→ Y . Prove

a) Xn + Yn
P−→ X + Y ,

b) Xn − Yn
P−→ X − Y .

5.3 ••• Let the random variables X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, . . . , X and Y be defined

on a common probability space (Ω, F , P), and suppose Xn
P−→ X and Yn

P−→ Y . Prove

a) XnYn
P−→ XY ,

b) if Yn 6= 0 and Y 6= 0 a.s., then Xn/Yn
P−→ X/Y .

5.4 LetX1, X2, . . . be independent. Prove that supn Xn < ∞ a.s. if and only if
∑

∞

n=1 P{Xn >
A} < ∞ for some positive finite A.

5.5 Prove that for any sequence X1, X2, . . . of random variables there exists a deterministic
sequence c1, c2, . . . of real numbers for which Xn

cn

a.s.−→ 0.

5.6 Formulate necessary and sufficient conditions for αi < βi such that independent (but not
identically distributed) Uniform(αi, βi) variables Xi converge to 0

a) in distribution;

b) almost surely.

5.7 •••• Formulate necessary and sufficient conditions for independent (but not identically
distributed) Exponential(λi) variables Xi to converge to 0

a) in distribution;

b) almost surely.

5.8 We perform infinitely many independent experiments. The nth one is successful with
probability n−α and fails with probability 1 − n−α, 0 < α. Let k ≥ 1. We are happy if
we see k consecutive successes infinitely often. What is the probability of this?
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5.9 (The longest run of heads, I.)
Let X1, X2, . . . be iid. random variables with P{Xk = 1} = p, P{Xk = 0} = q, where

p + q = 1. Fix a parameter λ > 1, and denote by A
(λ)
k the following events for k =

0, 1, 2, . . . :

A
(λ)
k : =

{

∃r ∈
[⌊

λk
⌋

,
⌊

λk+1
⌋

− k
]

∩ N : Xr = Xr+1 = · · · = Xr+k−1 = 1
}

.

In plain words: A
(λ)
k means that somewhere between

⌊

λk
⌋

and
⌊

λk+1
⌋

− 1 there is a
sequence of k consecutive 1’s. Prove that

a) If λ < p−1, then a.s. only finitely many of the events A
(λ)
k occur.

b) If λ > p−1, then a.s. infinitely many of the events A
(λ)
k occur.

c) What happens for λ = p−1?

5.10 (The longest run of heads, II.)
Let

Rn : = sup{k ≥ 0 : Xn = Xn+1 = · · · = Xn+k−1 = 1}.
That is: Rn is the length of the run of consecutive 1’s that starts at n. (If Xn = 0, then
set Rn = 0.) Prove that

P

{

lim sup
n→∞

Rn

log n
= | log p|−1

}

= 1.

HINT: For a fixed parameter α > 0, let

B(α)
n : = {Rn > α log n/| log p|}.

If α > 1, then by the first Borel-Cantelli Lemma and direct computation, only finitely

many of the B
(α)
n ’s occur a.s. If α ≤ 1, then from the previous exercise it follows that a.s.

infinitely many of the B
(α)
n ’s occur.

5.11 On the (simplified version of the) game Roulette, a player bets £ 1, and looses his bet
with probability 19/37, but is given his bet and an extra pound back with probability
18/37. Use the Weak Law of Large Numbers to find the probability that the casino looses
money with this game on the (very) long run. Explain your answer.

5.12 •• Rolling a die 200 times, denote the outcome of roll i by Xi. Estimate the probability

P

{

200
∏

i=1

Xi ≤ a200
}

for real 1 < a < 6.

5.13 ••• (The simplest form of the McMillan Theorem.)
Let p = (p1, p2, . . . , pr), where pi, i = 1, 2, . . . , r are positive numbers with p1+p2+· · ·+
pr = 1. That is: given is a probability distribution on the set {1, 2, . . . , r}. The entropy

of the distribution p is defined by H(p) : = −
∑r

j=1 pj log pj. Let X1, X2, . . . be iid.
random variables from this distribution p. Define the random variables Rn : =

∏n
k=1 pXk

:
this is the a priori probability of the observed sequence X1, X2, . . . , Xn of outcomes.
Prove that

P

{

lim
n→∞

n−1 logRn = −H(p)
}

= 1.
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5.14 ••• Let f : [0, 1] → R be continuous. Prove

lim
n→∞

1
∫

0

1
∫

0

· · ·
1

∫

0

f

(

x1 + x2 + · · ·+ xn

n

)

dx1 dx2 · · · dxn = f

(

1

2

)

.

lim
n→∞

1
∫

0

1
∫

0

· · ·
1

∫

0

f
(

(x1x2 · · · xn)
1/n

)

dx1 dx2 · · · dxn = f

(

1

e

)

.

5.15 Prove

lim
n→∞

1
∫

0

1
∫

0

· · ·
1

∫

0

x2
1 + x2

2 + · · ·+ x2
n

x1 + x2 + · · ·+ xn

dx1 dx2 · · · dxn =
2

3
.

5.16 Let Sn−1 : = {x ∈ R
n : |x| = 1} be the surface of the n-dimensional Euclidean unit

sphere. There is a unique probability measure ν(n−1) on Sn−1 that is invariant to or-
thogonal transformations of Rn: for any Borel-measurable A ⊂ Sn−1 and H orthogonal
transformation of Rn, ν(n−1)(HA) = ν(n−1)(A). (This measure is called the Haar measure

on Sn−1, it is actually the uniform measure on Sn−1.)

a) Let X = (X1, X2, . . . , Xn) be the vector of iid. Standard Normal components in R
n.

Prove that applying an arbitrary orthogonal transformation H on X, the resulting
vector Y : = HX again has iid. Standard Normal components Y1, Y2, . . . , Yn. From
this and the uniqueness of the Haar measure prove that X/|X| ∈ Sn−1 has the
uniform distribution ν(n−1) on the surface of the sphere. (That is, for any Borel
measurable A ⊂ Sn−1, we have P

(

X/|X| ∈ A
)

= ν(n−1)(A).)

b) Let X1, X2, . . . be iid. Standard Normal random variables, and

Rn :=
(

X2
1 +X2

2 + · · ·+X2
n

)1/2
.

Prove Rn/
√
n

P−→ 1 as n → ∞.

c) Pick now a uniform random point P on the surface Sn−1 of the unit sphere, and

denote its coordinates in R
n by (Y

(n)
1 , Y

(n)
2 , . . . , Y

(n)
n ). Use the above a) and b) to

prove the following limit theorems for P :

lim
n→∞

P

(√
nY

(n)
1 < y

)

= Φ(y) : =
1√
2π

y
∫

−∞

e−x2/2 dx,

lim
n→∞

P

(√
nY

(n)
1 < y1;

√
nY

(n)
2 < y2

)

= Φ(y1)Φ(y2).

HINT: P
(√

nY
(n)
1 < y

)

= P
(√

nX1/Rn < y
)

.
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