The four outfits and the fluctuations of the simple exclusion process

Márton Balázs
(University of Wisconsin - Madison)
Joint work with
Eric Cator
(Delft University of Technology) and
Timo Seppäläinen
(University of Wisconsin - Madison)
Ames, April 25
Outfit 1: Interacting particles
Outfit 2: Surface growth
Outfit 3: Equilibrium queues
Outfit 4: Last passage percolation
5. Results
6. Last passage equilibrium
7. The competition interface
8. Upper bound
9. Lower bound
10. Further directions

Outfit 1: Interacting particles

Bernoulli(@) distribution

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.

Outfit 1: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli ($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(() distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\oplus \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

Outfit 1: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

Outfit 1: Interacting particles

(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

The Bernoulli (ϱ) distribution is time-stationary for any ($0 \leq \varrho \leq 1$). Any translation-invariant stationary distribution is a mixture of Bernoullis.

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

Hydrodynamics (briefly)
Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$.

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)]=0 \quad \text { (inviscid Burgers) }
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\begin{aligned}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0 \\
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0
\end{aligned} \quad \text { (inviscid Burgers) }
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\begin{aligned}
& \frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)]=0 \text { (inviscid Burgers) } \\
& \frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho=0 \quad \text { (while smooth) } \\
& \frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{aligned}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0
\end{array} \quad \text { (inviscid Burgers) }\right)=\begin{array}{ll}
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0 \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0
\end{array} \quad \text { (inviscid Burgers) }\right)=\begin{array}{ll}
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0 \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho & =\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\begin{array}{rlrl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0 & \text { (inviscid Burgers) } \\
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0 & \text { (while smooth) } \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

\rightsquigarrow The characteristic speed $C(\varrho):=1-2 \varrho$. (ϱ is constant along $\dot{X}(T)=C(\varrho)$.)

Outfit 2: Surface growth

Bernoulli($($) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(@) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(ϱ) distribution

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x.

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x. $h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x. $h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x. $h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x. $h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x. $h_{x}(t)-h_{x}(0)=$ number of particles passed above x.

Outfit 2: Surface growth

Bernoulli(@) distribution
$h_{x}(t)=$ height of the surface above x. $h_{x}(t)-h_{x}(0)=$ number of particles passed above x.
$h_{V t}(t)=$ number of particles passed through the moving window at $V t(V \in \mathbb{R})$.

Growth fluctuations

Growth fluctuations

Growth fluctuations

Growth fluctuations

Ferrari - Fontes 1994:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=\mathrm{const} \cdot|V-C(\varrho)|
$$

Growth fluctuations

Ferrari - Fontes 1994:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=\mathrm{const} \cdot|V-C(\varrho)|
$$

\rightsquigarrow Initial fluctuations are transported along the characteristics.

Growth fluctuations

Ferrari - Fontes 1994:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=\mathrm{const} \cdot|V-C(\varrho)|
$$

\rightsquigarrow Initial fluctuations are transported along the characteristics.
\rightsquigarrow How about $V=C(\varrho)$?

Growth fluctuations

Ferrari - Fontes 1994:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=\mathrm{const} \cdot|V-C(\varrho)|
$$

\rightsquigarrow Initial fluctuations are transported along the characteristics.
\rightsquigarrow How about $V=C(\varrho)$?
Conjecture:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}=[\text { sg. non trivial }]
$$

Outfit 3: Equilibrium queues

Outfit 3: Equilibrium queues

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

Outfit 3: Equilibrium queues

H_{-1}	P_{2}	P_{1}	H_{0} 0	P_{0}	O_{1}	P_{-1}	$H_{0}^{H_{2}}$
-3	-2	-1	0	1	2	3	4

Bernoulli(@) distribution

Outfit 3: Equilibrium queues

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & -1 & 1 & 1 & 1 & 1 \\
\hline-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4
\end{array}
\end{aligned}
$$

Bernoulli($($) distribution

Outfit 3: Equilibrium queues

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Bernoulli($($) distribution

Outfit 3: Equilibrium queues

$\underset{\bigcirc}{\mathrm{H}_{-1}}$	P_{2}	P_{1}	$\underset{\mathrm{O}}{\mathrm{H}_{0}}$	$\underset{\bigcirc}{\mathrm{P}_{0}}$	$\underset{\mathrm{O}}{\mathrm{O}_{1}}$	P_{-1}	$\underset{\bigcirc}{\mathrm{H}_{2}}$
-3	-2	-1	0	1	2	3	4

Bernoulli(@) distribution

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

Outfit 3: Equilibrium queues

Customers		OH_{0}	OH_{1}	OH_{2}
Servers	$\stackrel{\ominus}{P_{2}}$	$\stackrel{\ominus}{P_{1}}$	$\stackrel{\bullet}{P}_{0}$	$\stackrel{\ominus}{P_{-1}}$
	$\underset{\mathrm{O}}{\mathrm{H}_{-1}} \quad \mathrm{P}_{2}$	$P_{1} \quad \underset{0}{H_{0}}$	$\underset{\bullet}{P_{0}} \quad \underset{0}{H_{1}}$	$\mathrm{P}_{-} \quad \mathrm{H}_{2}$
	$-3-2$	-1 0	12	$34 \xrightarrow{x}$

Bernoulli(ϱ) distribution

Outfit 3: Equilibrium queues

Customers			OH_{0}		OH_{1}		OH_{2}	
Servers	$\stackrel{\bullet}{P_{2}}$		$\stackrel{\ominus}{P_{1}}$		$\stackrel{\ominus}{P_{0}}$		$\stackrel{\ominus}{P_{-1}}$	
	$\underset{\bigcirc-1}{H_{-1}}$	$\stackrel{P_{2}}{\bullet}$	P_{1}	$\underset{\mathrm{O}}{\mathrm{H}_{0}}$	P_{0}	$\underset{\mathrm{O}}{\mathrm{H}_{1}}$	P_{-1}	$\underset{\mathrm{O}}{\mathrm{H}_{2}}$
	-3	-2	-1	0	1	2	3	4^{x}

Bernoulli($\varrho)$ distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)

Outfit 3: Equilibrium queues

Customers			OH_{0}		OH_{1}		OH_{2}	
Servers	$\stackrel{\bullet}{P_{2}}$		$\stackrel{\ominus}{P_{1}}$		$\stackrel{\ominus}{P_{0}}$		$\stackrel{\ominus}{P_{-1}}$	
	$\underset{\bigcirc-1}{H_{-1}}$	P_{2}	P_{1}	$\underset{\mathrm{O}}{\mathrm{H}_{0}}$	$\underset{\bullet}{P_{0}}$	$\underset{\mathrm{O}}{\mathrm{H}_{1}}$	P_{-1}	$\underset{\mathrm{O}}{\mathrm{H}_{2}}$
	-3	-2	-1	0	1	2	3	$4 \xrightarrow{x}$

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Customers	OH_{0}		OH_{1}				OH_{2}	
Servers		$\stackrel{\bullet}{P_{2}}$	$\stackrel{\bullet}{P_{1}}$		$\stackrel{\bullet}{P_{0}}$		$\stackrel{\ominus}{P_{-1}}$	
	$\underset{\bigcirc-1}{H_{-1}}$	P_{2}	$\underset{\mathrm{O}}{\mathrm{H}_{0}}$	$\underset{\bullet}{P_{1}}$	$\underset{\mathrm{O}}{\mathrm{H}_{1}}$	$\underset{\bullet}{P_{0}}$	P_{-1}	$\underset{\mathrm{O}}{\mathrm{H}_{2}}$
	-3	-2	-1	0	1	2	3	4^{x}

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

H_{-1}	P_{2}	H_{0}	H_{1}	P_{1}	P_{0}	P_{-1}	H_{0}
-3	-2	-1	0	1	2	3	4

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

OH_{1}				
Customers	OH_{0}			OH_{2}
Servers	$\stackrel{\ominus}{P_{2}}$	$\stackrel{\ominus}{P_{1}}$	$\stackrel{\ominus}{P_{0}}$	$\stackrel{\ominus}{P_{-1}}$

$H_{O}^{H_{-1}}$	P_{2}	H_{0} 0	H_{1} O_{1}	P_{1}	P_{0}	P_{-1}	$H_{0}^{H_{2}}$
-3	-2	-1	0	1	2	3	4

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(() distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Customers ${ }^{\mathrm{OH}} \mathrm{H}_{0} \quad \mathrm{OH}_{1}$

OH_{2} OH_{3}

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Customers	OH_{1}				OH_{2}		OH_{3}	
Servers	$\stackrel{\bullet}{P_{2}}$		$\stackrel{\bullet}{P_{1}}$		$\stackrel{\bullet}{P_{0}}$		$\stackrel{\ominus}{P_{-1}}$	
	$\underset{\bigcirc-1}{H_{-1}}$	$\underset{\mathrm{O}}{\mathrm{H}_{0}}$	P_{2}	$\underset{0}{H_{1}}$	${ }_{P}{ }_{1}$	P_{\bullet}	$\mathrm{O}_{\mathrm{O}}^{\mathrm{O}_{2}}$	P_{-1}
	-3	-2	-1	0	1	2	3	4^{x}

Bernoulli(@) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.

Outfit 3: Equilibrium queues

Bernoulli(ϱ) distribution

$\rightsquigarrow P_{i}$'s have equilibrium Geometric(@) length M/M/1 queues. Except for P_{1}, which deterministicly has H_{0} as its customer. (He has just arrived there.)
\rightsquigarrow Equilibrium system of queues as seen right after H_{0} 's jump.
\rightsquigarrow Burke's Theorem (Kesten 1970): P_{0} and H_{0} jump as Poisson $(1-\varrho)$ and Poisson (ϱ) processes, respectively, and they are independent.

Outfit 4: Last passage percolation

Outfit 4: Last passage percolation

Bernoulli(ϱ) distribution

Outfit 4: Last passage percolation

Bernoulli(ϱ) distribution

Outfit 4: Last passage percolation

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.
The characteristic speed $V=C(\varrho)$ translates to

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Will present results on $G_{m n}$.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(@) process, governed by the left orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(@) process, governed by the left orange part independently of the Θ^{\prime} 's.

Burke's Theorem:

P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part
H_{0} jumps according to a Poisson(@) process, governed by the left orange part
independently of the Q's.
Therefore:

The last passage model

The last passage model

The last passage model

The last passage model

$Q \sim$ Exponential $(1-\varrho)$
© ~ Exponential(@)
$\Theta_{0} \sim$ Exponential(1)
independently

The last passage model

Abstract

Q \sim Exponential $(1-\varrho)$) $\left.\begin{array}{l}\odot \sim \text { Exponential(} \varrho) \\ \odot\end{array}\right\}$ Exponential(1) \quad independently

The last passage model

$\left.\begin{array}{rl}\Theta & \sim \text { Exponential }(1-\varrho) \\ \odot & \sim \text { Exponential }(\varrho) \\ \Theta & \sim \text { Exponential }(1)\end{array}\right\}$ independently

Q starts ticking when its west neighbor becomes occupied

The last passage model

$\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ \odot & \sim \text { Exponential }(\varrho) \\ Q & \sim \text { Exponential }(1)\end{array}\right\}$ independently

Q starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied

The last passage model

\author{
Q \sim Exponential $(1-\varrho)$)
 $\left.\begin{array}{rl}Q & \sim \text { Exponential(} \varrho) \\ & \sim \text { Exponential(1) }\end{array}\right\}$ independently

}

Q starts ticking when its west neighbor becomes occupied
-starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
\otimes & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Q starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
\otimes \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

© starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)

The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
\oplus starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

5. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.

5. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{V t}(t) / t^{1 / 3}$ in terms of Tracy-Widom GUE distributions, when \otimes and $\because \sim$ Exponential(1) (rarefaction fan).

5. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{V t}(t) / t^{1 / 3}$ in terms of Tracy-Widom GUE distributions, when \otimes and $\odot \sim$ Exponential(1) (rarefaction fan).
P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_{x}(s)-\mathbf{E}\left[h_{C(o) t}(t)\right]$ when x and s are off characteristics by $t^{2 / 3}$ and $t^{1 / 3}$, respectively.

5. Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{V t}(t) / t^{1 / 3}$ in terms of Tracy-Widom GUE distributions, when \otimes and $\odot \sim$ Exponential(1) (rarefaction fan).
P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_{x}(s)-\mathbf{E}\left[h_{C(o) t}(t)\right]$ when x and s are off characteristics by $t^{2 / 3}$ and $t^{1 / 3}$, respectively.
Their method: RSK correspondence, random matrices.

$Z_{m n}$ is the exit point of the longest path to

$$
(m, n)=\left((1-\varrho)^{2} t, \varrho^{2} t\right)
$$

$Z_{m n}$ is the exit point of the longest path to

$$
(m, n)=\left((1-\varrho)^{2} t, \varrho^{2} t\right)
$$

Theorem:
For all large t and all $a>0$,

$$
\mathbf{P}\left\{Z_{m n} \geq a t^{2 / 3}\right\} \leq C a^{-3}
$$

Given $\varepsilon>0$, there is a $\delta>0$ such that

$$
\mathbf{P}\left\{1 \leq Z_{m n} \leq \delta t^{2 / 3}\right\} \leq \varepsilon
$$

for all large t.

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Rarefaction fan:

$$
\left.\begin{array}{rl}
Q & <\text { Exponential }(1-\varrho) \\
& <\text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Rarefaction fan:

$$
\left.\begin{array}{rl}
\Theta & <\text { Exponential }(1-\varrho) \\
\bullet & <\text { Exponential }(\varrho) \\
\otimes & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Theorem:
For $0<\alpha<1$ and all $t>1$,

$$
\mathbf{P}\left\{\left|G_{m n}-t\right|>a t^{1 / 3}\right\} \leq C a^{-3 \alpha / 2}
$$

Equilibrium:

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Rarefaction fan:

$$
\left.\begin{array}{rl}
Q & <\text { Exponential }(1-\varrho) \\
\bullet & <\text { Exponential }(\varrho) \\
\otimes & \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Theorem:
For $0<\alpha<1$ and all $t>1$,

$$
\mathbf{P}\left\{\left|G_{m n}-t\right|>a t^{1 / 3}\right\} \leq C a^{-3 \alpha / 2}
$$

Also transversal $t^{2 / 3}$-deviations of the longest path.
6. Last passage equilibrium

Equilibrium:

\author{
Q \sim Exponential $(1-\varrho)$)
 $\left.\begin{array}{l}\bullet \sim \text { Exponential (} \varrho \text {) } \\ \odot \sim \text { Exponential (1) }\end{array}\right\}$ independently

}
6. Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ \text { Q } & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1 .
\end{aligned}
$$

6. Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ \text { © } & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1
\end{aligned}
$$

\rightsquigarrow Any fixed southeast path meets independent increments

$$
\begin{aligned}
& I_{i j} \sim \text { Exponential }(1-\varrho) \quad \text { and } \\
& J_{i j} \sim \text { Exponential }(\varrho) .
\end{aligned}
$$

6. Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ Q & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1 .
\end{aligned}
$$

\rightsquigarrow Any fixed southeast path meets independent increments

$$
\begin{aligned}
& I_{i j} \sim \text { Exponential }(1-\varrho) \text { and } \\
& J_{i j} \sim \text { Exponential }(\varrho) .
\end{aligned}
$$

Of course, this doesn't help directly with $G_{m n}$.

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.

7. The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z. A_{z} : largest weight of a path from z to (m, n).

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$.

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\}=\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\}
$$

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{Z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{Z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\}
\end{aligned}
$$

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\} \\
& =\mathbf{P}\left\{\exists z>u: U_{z}^{\lambda}-U_{z}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
\end{aligned}
$$

8. Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\} \\
& =\mathbf{P}\left\{\exists z>u: U_{z}^{\lambda}-U_{Z}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
\end{aligned}
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.
Step 5:
A large deviation estimate connects $\mathbf{P}\left\{Z^{\varrho}>y\right\}$ and $\mathbf{P}\left\{U_{Z \varrho^{+}}^{\varrho}>y\right\}$.

$$
\rightsquigarrow \mathbf{P}\left\{U_{Z^{+}}^{\varrho}>y\right\} \leq C\left(\frac{t^{2}}{y^{4}} \cdot \mathbb{E}\left(U_{Z^{\varrho^{+}}}^{\varrho}\right)+\frac{t^{2}}{y^{3}}\right)
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.
Step 5:
A large deviation estimate connects $\mathbf{P}\left\{Z^{\varrho}>y\right\}$ and $\mathbf{P}\left\{U_{Z \varrho^{+}}^{\varrho}>y\right\}$.

$$
\rightsquigarrow \mathbf{P}\left\{U_{Z^{+}}^{\varrho}>y\right\} \leq C\left(\frac{t^{2}}{y^{4}} \cdot \mathrm{E}\left(U_{Z^{\varrho^{+}}}^{\varrho}\right)+\frac{t^{2}}{y^{3}}\right)
$$

Conclude

$$
\limsup _{t \rightarrow \infty} \frac{\mathrm{E}\left(U_{Z^{\varrho}+}^{\varrho}\right)}{t^{2 / 3}}<\infty, \quad \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G^{\varrho}\right)}{t^{2 / 3}}<\infty .
$$

9. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
10. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
11. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
12. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
13. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
14. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
15. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
16. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
17. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
18. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
19. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
20. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
21. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
22. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
23. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ Iongest path of the reversed model.
24. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ Iongest path of the reversed model.
\rightsquigarrow competition interface-probabilities are in fact Z-probabilities.
25. Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.
\rightsquigarrow competition interface-probabilities are in fact Z-probabilities.
Conclude

$$
\liminf _{t \rightarrow \infty} \frac{\mathbb{E}\left(U_{Z \varrho+}^{\varrho}\right)}{t^{2 / 3}}>0, \quad \liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G^{\varrho}\right)}{t^{2 / 3}}>0
$$

10. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?

10. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?
\rightarrow In the equilibrium case we have the scaling of $\operatorname{Var}(G)$. Prove the same scaling for $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$.

10. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?
\rightarrow In the equilibrium case we have the scaling of $\operatorname{Var}(G)$. Prove the same scaling for $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$.
\rightarrow Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.

10. Further directions

\rightarrow We only have deviation probability results for the case of the rarefaction fan. How about $\operatorname{Var}(G)$ in this case?
\rightarrow In the equilibrium case we have the scaling of $\operatorname{Var}(G)$. Prove the same scaling for $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$.
\rightarrow Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.
\rightarrow Generalize even more: drop the last-passage picture. These methods have the potential to extend to other particle systems directly (zero range, bricklayers', ...?).

Thank you.

