
The four outfits and the fluctuations
of the simple exclusion process
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Outfit 1: Interacting particles

-
x

◦ ◦ • • • ◦ ◦•

-3 -2 -1 0 1 2 3 4

Bernoulli(̺) distribution

(particle, hole) pairs become

(hole, particle) pairs with rate 1.

That is: waiting times i∼ Exponential(1).

 Markov process.

Particles try to jump to the right, but block

each other.

The Bernoulli(̺) distribution is time-stationary

for any (0 ≤ ̺ ≤ 1). Any translation-invariant sta-

tionary distribution is a mixture of Bernoullis.
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Hydrodynamics (briefly)

Let T and X be some large-scale time and

space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the den-

sity at position x = X/ε. (Changes on the large

scale.)

 ̺(T , X) is the density of particles after a

long time t = T/ε at position x = X/ε. It

satisfies (asymptotically as ε → 0)

∂

∂T
̺ +

∂

∂X
[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + [1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := 1 − 2̺.

(̺ is constant along Ẋ(t) = C(̺).)

27



Hydrodynamics (briefly)

Let T and X be some large-scale time and

space parameters.

 Set initially ̺ = ̺(T = 0, X) to be the den-

sity at position x = X/ε. (Changes on the large

scale.)

 ̺(T , X) is the density of particles after a

long time t = T/ε at position x = X/ε. It

satisfies (asymptotically as ε → 0)

∂

∂T
̺ +

∂

∂X
[̺(1 − ̺)] = 0 (inviscid Burgers)

∂

∂T
̺ + [1 − 2̺] ·

∂

∂X
̺ = 0 (while smooth)

∂

∂T
̺ +

dX(T )

dT
·

∂

∂X
̺ =

d

dT
̺(T , X(T )) = 0

 The characteristic speed C(̺) := 1 − 2̺.

(̺ is constant along Ẋ(t) = C(̺).)
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Bernoulli(̺) distribution

hx(t) = height of the surface above x.

hx(t) − hx(0) = number of particles passed

above x.

hV t(t) = number of particles passed through

the moving window at V t (V ∈ R).
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Growth fluctuations

-

6

x
t = 0

h t

0

0

Ferrari - Fontes 1994:

lim
t→∞

Var(hV t(t))

t
= const · |V − C(̺)|

 Initial fluctuations are transported along the

characteristics.

 How about V = C(̺)?
Conjecture:

lim
t→∞

Var(hC(̺)t(t))

t2/3
= [sg. non trivial].
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Outfit 3: Equilibrium queues

-
x

◦ •
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Bernoulli(̺) distribution

 Pi’s have equilibrium Geometric(̺) length

M/M/1 queues. Except for P1, which deter-

ministicly has H0 as its customer. (He has just

arrived there.)

 Equilibrium system of queues as seen right

after H0’s jump.

 Burke’s Theorem (Kesten 1970): P0 and H0

jump as Poisson(1 − ̺) and Poisson(̺) pro-

cesses, respectively, and they are independent.
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to

m := (1 − ̺)2t and n := ̺2t.

Will present results on Gmn.
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P0 jumps according to a Poisson(1−̺) process,

governed by the right orange part

H0 jumps according to a Poisson(̺) process,

governed by the left orange part

independently of the i’s.

Therefore:

i∼ Exponential(1 − ̺)

i ∼ Exponential(̺)

i∼ Exponential(1)





independently
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occupied
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istarts ticking when both its west and south

neighbors become occupied

Gij = the occupation time of (i, j)

Gij = the maximum weight collected by a north

-east path from (0,0) to (i, j).
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On the characteristics

m := (1 − ̺)2t and n := ̺2t,

Theorem:

0 < lim inf
t→∞

Var(Gmn)

t2/3
≤ lim sup

t→∞

Var(Gmn)

t2/3
< ∞.

Johansson (2000) identifies the limiting distribution of

h̃V t(t)/t1/3 in terms of Tracy-Widom GUE distributions,

when iand i ∼ Exponential(1) (rarefaction fan).

P. L. Ferrari and H. Spohn (2005) identify the limit-

ing distribution of hx(s) − E[hC(̺)t(t)] when x and s are

off characteristics by t2/3 and t1/3, respectively. Their

method: RSK correspondence, random matrices.
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Zmn = 1

Zmn is the exit point of the longest path to

(m, n) = ((1 − ̺)2t, ̺2t).

Theorem:

For all large t and all a > 0,

P{Zmn ≥ at2/3} ≤ Ca−3.

Given ε > 0, there is a δ > 0 such that

P{1 ≤ Zmn ≤ δt2/3} ≤ ε

for all large t.
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independently

Rarefaction fan:

i< Exponential(1 − ̺)
i < Exponential(̺)

i∼ Exponential(1)





independently

Theorem:

For 0 < α < 1 and all t > 1,

P{|Gmn − t| > at1/3} ≤ Ca−3α/2.

Also transversal t2/3-deviations of the longest path.
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Equilibrium:

i∼ Exponential(1 − ̺)

i ∼ Exponential(̺)

i∼ Exponential(1)





independently

G-increments:

Iij : = Gij − G{i−1}j for i ≥ 1, j ≥ 0, and

Jij : = Gij − Gi{j−1} for i ≥ 0, j ≥ 1.

 Any fixed southeast path meets independent

increments

Iij ∼ Exponential(1 − ̺) and

Jij ∼ Exponential(̺).

Of course, this doesn’t help directly with Gmn.
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7. The competition interface
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·

(m,n)

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via

(0,1)?

The competition interface follows the same

rules as the second class particle of simple ex-

clusion.

If it passes left of (m, n), then Gmn is not sensi-

tive to decreasing the i weights on the j-axis.

If it passes below (m, n), then Gmn is not sen-

sitive to decreasing the iweights on the i-axis.
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P{Z̺ > u} ≤ P{Uλ
u − U̺

u ≤ Gλ − G̺}.

Step 2:

Optimize λ so that E(Uλ
u − Gλ) be maximal.

(The equilibrium makes it possible to compute the ex-

pectation.) This makes the estimate sharp.

Step 3:

Apply Chebyshev’s inequality on the right-hand

side. Var(Uu) is elementary.

Step 4:

Prove, by a perturbation argument, that

Var(G) is related to E(UZ+).

Step 5:

A large deviation estimate connects P{Z̺ > y}

and P{U
̺

Z̺+ > y}.

 P{U
̺
Z+ > y} ≤ C

(
t2

y4
· E(U

̺

Z̺+) +
t2

y3

)

Conclude

lim sup
t→∞

E(U
̺

Z̺+)

t2/3
< ∞, lim sup

t→∞

Var(G̺)

t2/3
< ∞.
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9. Time-reversal and the lower bound

(E. Cator and P. Groeneboom)
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10. Further directions

→ We only have deviation probability results

for the case of the rarefaction fan. How about

Var(G) in this case?

→ In the equilibrium case we have the scal-

ing of Var(G). Prove the same scaling for

Var(hC(̺)t(t)).

→ Generalize. These methods are more gen-

eral than the RSK and random matrices argu-

ments. The last-passage picture is specific to

the totally asymmetric simple exclusion. Say

something about the general simple exclusion.

→ Generalize even more: drop the last-passage
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Thank you.
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