The four outfits and the fluctuations of the simple exclusion process

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

Particles try to jump to the right, but block each other.

 $Bernoulli(\varrho)$ distribution

(particle, hole) pairs become
(hole, particle) pairs with rate 1.
That is: waiting times ♀ ~ Exponential(1).
→ Markov process.

Particles try to jump to the right, but block each other.

The Bernoulli(ϱ) distribution is time-stationary for any ($0 \le \varrho \le 1$). Any translation-invariant stationary distribution is a mixture of Bernoullis.

Let T and X be some large-scale time and space parameters.

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$.

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} \left[\varrho (1 - \varrho) \right] = 0 \quad \text{(inviscid Burgers)}$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} [\varrho (1 - \varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + [1 - 2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$

31

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} [\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + [1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\mathrm{d}}{\mathrm{d}T} \varrho(T, X(T)) = 0$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} [\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + [1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\partial}{\partial T} \varrho + \frac{\mathrm{d}X(T)}{\mathrm{d}T} \cdot \frac{\partial}{\partial X} \varrho = \frac{\mathrm{d}}{\mathrm{d}T} \varrho(T, X(T)) = 0$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} [\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + [1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\partial}{\partial T} \varrho + \frac{\mathrm{d}X(T)}{\mathrm{d}T} \cdot \frac{\partial}{\partial X} \varrho = \frac{\mathrm{d}}{\mathrm{d}T} \varrho(T, X(T)) = 0$

Let T and X be some large-scale time and space parameters.

→ Set initially $\varrho = \varrho(T = 0, X)$ to be the density at position $x = X/\varepsilon$. (Changes on the large scale.)

 $\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t = T/\varepsilon$ at position $x = X/\varepsilon$. It satisfies

 $\frac{\partial}{\partial T} \varrho + \frac{\partial}{\partial X} [\varrho(1-\varrho)] = 0 \quad \text{(inviscid Burgers)}$ $\frac{\partial}{\partial T} \varrho + [1-2\varrho] \cdot \frac{\partial}{\partial X} \varrho = 0 \quad \text{(while smooth)}$ $\frac{\partial}{\partial T} \varrho + \frac{\mathrm{d}X(T)}{\mathrm{d}T} \cdot \frac{\partial}{\partial X} \varrho = \frac{\mathrm{d}}{\mathrm{d}T} \varrho(T, X(T)) = 0$

→ The characteristic speed $C(\varrho) := 1 - 2\varrho$. (ϱ is constant along $\dot{X}(T) = C(\varrho)$.)

35

Outfit 2: Surface growth

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $h_x(t)$ = height of the surface above x.

 $h_x(t)$ = height of the surface above x.

 $h_x(t) - h_x(0) =$ number of particles passed above x.

 $h_{Vt}(t)$ = number of particles passed through the moving window at Vt ($V \in \mathbb{R}$).

Ferrari - Fontes 1994:

Ferrari - Fontes 1994:

$$\lim_{t \to \infty} \frac{\operatorname{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$$

→ Initial fluctuations are transported along the characteristics.

Ferrari - Fontes 1994:

 $\lim_{t\to\infty} \frac{\mathsf{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$

→ Initial fluctuations are transported along the characteristics.

 \rightsquigarrow How about $V = C(\varrho)$?

Ferrari - Fontes 1994:

 $\lim_{t \to \infty} \frac{\operatorname{Var}(h_{Vt}(t))}{t} = \operatorname{const} \cdot |V - C(\varrho)|$

 → Initial fluctuations are transported along the characteristics.

 \rightarrow How about $V = C(\varrho)$? Conjecture:

 $\lim_{t\to\infty} \frac{\operatorname{Var}(h_{C(\varrho)t}(t))}{t^{2/3}} = [\text{sg. non trivial}].$

$Bernoulli(\rho)$ distribution

 $Bernoulli(\rho)$ distribution

 $Bernoulli(\rho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\varrho)$ distribution

 $Bernoulli(\rho)$ distribution

 $Bernoulli(\rho)$ distribution

Customers			(OH_0	C	DH_1	OH ₂		
Servers	• P ₂		P_1		● P ₀		• P_1		
	<i>H</i> _1 0	<i>P</i> ₂ ●	P_1	H ₀ O	P_0	$\stackrel{H_1}{\circ}$	<i>P</i> _−1	<i>Н</i> 2 О	
	-3	-2	-1	0	1	2	3	4	

 $Bernoulli(\varrho)$ distribution

Bernoulli(ρ) distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\rho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

Customers	OH0	OH_1	OH_2		
Servers	• P ₂	$\stackrel{\bullet}{P_1}$	P_0	• P_1	
	$\begin{array}{cc} H_{-1} & P_2 \\ 0 & \bullet \end{array}$	$H_0 P_1$ $\circ \bullet$	$\begin{array}{cc} H_1 & P_0 \\ O & \bullet \end{array}$	$\begin{array}{cc} P_{-1} & H_2 \\ \bullet & O \end{array}$	
	-3 -2	-1 0	1 2	3 4 x	

Bernoulli(ρ) distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

Customers	OH_0		C	H_1			OH2		
Servers	• P ₂		\mathbf{P}_{1}		● P ₀		P_{-1}		
	<i>H</i> _1 0	<i>P</i> ₂ ●	H ₀ O	P_1	<i>Н</i> 1 О	P_0	<i>P</i> _{−1}	<i>H</i> ₂ 0	
	-3	-2	-1	0	1	2	3	4 <i>x</i>	

Bernoulli(ρ) distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\rho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\rho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\rho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

Customers	С	H_1			C	DH_2	OH3	
Servers	P_2		\mathbf{P}_{1}		P_0		• P_1	
	<i>H</i> _1 0	<i>Н</i> 0 О	P_2	<i>H</i> ₁ 0	P_1	P₀ ●	<i>H</i> ₂ 0	<i>P</i> _{−1}
	-3	-2	-1	0	1	2	3	4 x

 $Bernoulli(\varrho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

Customers	OH_1				(DH_2	OH3	
Servers	\mathbf{P}_2		\mathbf{P}_{1}		\mathbf{P}_{0}		• P_1	
	$\overset{H_{-1}}{\circ}$	<i>Н</i> 0 О	P_2	<i>H</i> ₁ 0	P_1	P₀ ●	<i>H</i> ₂ 0	<i>P</i> _{−1}
	-3	-2	-1	0	1	2	3	4 ^x

 $Bernoulli(\rho)$ distribution

 $\rightsquigarrow P_i$'s have equilibrium Geometric(ϱ) length M/M/1 queues. Except for P_1 , which deterministicly has H_0 as its customer. (He has just arrived there.)

 \rightsquigarrow Equilibrium system of queues as seen right after H_0 's jump.

→ Burke's Theorem (Kesten 1970): P_0 and H_0 jump as Poisson $(1 - \varrho)$ and Poisson (ϱ) processes, respectively, and they are independent.

104

105

Bernoulli(ρ) distribution

Bernoulli(ϱ) distribution

117

127

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$.

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$. The time when this happens =: G_{ij} .

Occupation of $(i, j) = \text{jump of } P_j \text{ over } H_i$. Occupation of $(2, 1) = \text{jump of } P_1 \text{ over } H_2$. The time when this happens $=: G_{ij}$. The characteristic speed $V = C(\varrho)$ translates to

$$m := (1-\varrho)^2 t$$
 and $n := \varrho^2 t$.

Will present results on G_{mn} .

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_0 jumps according to a Poisson (ϱ) process, governed by the left orange part

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_0 jumps according to a Poisson (ϱ) process, governed by the left orange part independently of the \odot 's.

 P_0 jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_0 jumps according to a Poisson (ϱ) process, governed by the left orange part independently of the \odot 's.

Therefore:

$$\left\{ \begin{array}{l} \circ & \mathsf{Exponential}(1-\varrho) \\ \circ & \mathsf{Exponential}(\varrho) \\ \circ & \mathsf{Exponential}(1) \end{array} \right\} \text{ independently}$$

Starts ticking when its west neighbor becomes occupied

 $\left\{ \begin{array}{c} \circ & \mathsf{Exponential}(1-\varrho) \\ \circ & \mathsf{Exponential}(\varrho) \\ \circ & \mathsf{Exponential}(1) \end{array} \right\} \text{ independently}$

Starts ticking when its west neighbor becomes occupied

Starts ticking when its south neighbor becomes occupied

 $\bigcirc \sim \text{Exponential}(1-\varrho) \\ \bigcirc \sim \text{Exponential}(\varrho) \\ \bigcirc \sim \text{Exponential}(1)$ independently

- Starts ticking when its west neighbor becomes occupied
- Starts ticking when its south neighbor becomes occupied
- starts ticking when both its west and south neighbors become occupied

- Starts ticking when its west neighbor becomes occupied
- Starts ticking when its south neighbor becomes occupied
- Starts ticking when both its west and south neighbors become occupied

- Starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- Starts ticking when both its west and south neighbors become occupied

 G_{ij} = the occupation time of (i, j)

- Starts ticking when its west neighbor becomes occupied
- starts ticking when its south neighbor becomes occupied
- Starts ticking when both its west and south neighbors become occupied
 - G_{ij} = the occupation time of (i, j)
 - G_{ij} = the maximum weight collected by a north -east path from (0,0) to (*i*, *j*).
The last passage model

$$_{\odot} \sim \text{Exponential}(1 - \varrho)$$

 $_{\odot} \sim \text{Exponential}(\varrho)$
 $_{\odot} \sim \text{Exponential}(1)$

hindependently

- Starts ticking when its west neighbor becomes occupied
- Starts ticking when its south neighbor becomes occupied
- Starts ticking when both its west and south neighbors become occupied
 - G_{ij} = the occupation time of (i, j)
 - G_{ij} = the maximum weight collected by a north -east path from (0,0) to (*i*, *j*).

The last passage model

$$_{\odot} \sim \text{Exponential}(1 - \varrho)$$

 $_{\odot} \sim \text{Exponential}(\varrho)$
 $_{\odot} \sim \text{Exponential}(1)$

independently

- Starts ticking when its west neighbor becomes occupied
- Starts ticking when its south neighbor becomes occupied
- Starts ticking when both its west and south neighbors become occupied
 - G_{ij} = the occupation time of (i, j)
 - G_{ij} = the maximum weight collected by a north -east path from (0,0) to (*i*, *j*).

On the characteristics

$$m := (1-\varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

$$0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} < \infty.$$

On the characteristics

$$m := (1-\varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

 $0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} < \infty.$ Johansson (2000) identifies the limiting distribution of $\widetilde{h}_{Vt}(t)/t^{1/3}$ in terms of Tracy-Widom GUE distributions, when 9 and $\odot \sim \operatorname{Exponential}(1)$ (rarefaction fan).

On the characteristics

$$m := (1-\varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

 $0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} < \infty.$

Johansson (2000) identifies the limiting distribution of $\tilde{h}_{Vt}(t)/t^{1/3}$ in terms of Tracy-Widom GUE distributions, when \bigcirc and $\odot \sim$ Exponential(1) (rarefaction fan).

P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_x(s) - \mathbf{E}[h_{C(\varrho)t}(t)]$ when x and s are off characteristics by $t^{2/3}$ and $t^{1/3}$, respectively.

On the characteristics

$$m := (1-\varrho)^2 t$$
 and $n := \varrho^2 t$,

Theorem:

 $0 < \liminf_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\operatorname{Var}(G_{mn})}{t^{2/3}} < \infty.$

Johansson (2000) identifies the limiting distribution of $\tilde{h}_{Vt}(t)/t^{1/3}$ in terms of Tracy-Widom GUE distributions, when \bigcirc and $\odot \sim$ Exponential(1) (rarefaction fan).

P. L. Ferrari and H. Spohn (2005) identify the limiting distribution of $h_x(s) - \mathbf{E}[h_{C(\varrho)t}(t)]$ when x and s are off characteristics by $t^{2/3}$ and $t^{1/3}$, respectively.

Their method: RSK correspondence, random matrices.

186

 Z_{mn} is the exit point of the longest path to $(m, n) = ((1 - \varrho)^2 t, \varrho^2 t).$

 Z_{mn} is the exit point of the longest path to $(m, n) = ((1 - \varrho)^2 t, \varrho^2 t).$

Theorem:

For all large t and all a > 0,

$$\mathbf{P}\{\mathbf{Z}_{mn} \ge at^{2/3}\} \le Ca^{-3}.$$

Given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\mathbf{P}\{1 \le \mathbf{Z}_{mn} \le \delta t^{2/3}\} \le \varepsilon$$

for all large t.

Equilibrium:

$$\begin{tabular}{l} &\sim \mathsf{Exponential}(1-\varrho) \\ & &\sim \mathsf{Exponential}(\varrho) \\ & & & & & \\ \end{tabular} \$$

Rarefaction fan:

$$\mathbf{P}\{|G_{mn} - t| > at^{1/3}\} \le Ca^{-3\alpha/2}.$$

Also transversal $t^{2/3}$ -deviations of the longest path.

192

6. Last passage equilibrium j

6. Last passage equilibrium j

G-increments:

$$\begin{split} I_{ij} &:= G_{ij} - G_{\{i-1\}j} & \text{for } i \geq 1, \ j \geq 0, \\ J_{ij} &:= G_{ij} - G_{i\{j-1\}} & \text{for } i \geq 0, \ j \geq 1. \end{split}$$

<u>6. Last passage equilibrium</u> j

Equilibrium:

$$\begin{array}{c} \odot \sim \mathsf{Exponential}(1-\varrho) \\ \odot \sim \mathsf{Exponential}(\varrho) \\ \odot \sim \mathsf{Exponential}(1) \end{array} \right\} \text{ independently}$$

G-increments:

$$\begin{split} I_{ij} &:= G_{ij} - G_{\{i-1\}j} & \text{for } i \geq 1, \ j \geq 0, \\ J_{ij} &:= G_{ij} - G_{i\{j-1\}} & \text{for } i \geq 0, \ j \geq 1. \end{split}$$

Any fixed southeast path meets *independent* increments

 $I_{ij} \sim \text{Exponential}(1 - \varrho)$ and $J_{ij} \sim \text{Exponential}(\varrho)$.

6. Last passage equilibrium

Equilibrium:

$$\begin{array}{c} & & & \\ &$$

G-increments:

$$\begin{split} I_{ij} &:= G_{ij} - G_{\{i-1\}j} & \text{for } i \geq 1, \ j \geq 0, \\ J_{ij} &:= G_{ij} - G_{i\{j-1\}} & \text{for } i \geq 0, \ j \geq 1. \end{split}$$

Any fixed southeast path meets *independent* increments

$$I_{ij} \sim \mathsf{Exponential}(1-\varrho)$$
 and $J_{ij} \sim \mathsf{Exponential}(\varrho).$

Of course, this doesn't help directly with G_{mn} .

196

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via (0,1)?

The competition interface follows the same rules as the *second class particle* of simple exclusion.

Ferrari, Martin, Pimentel (2005)

Which squares are infected via (1,0) and via (0,1)?

The competition interface follows the same rules as the *second class particle* of simple exclusion.

If it passes left of (m, n), then G_{mn} is not sensitive to decreasing the \odot weights on the *j*-axis. If it passes below (m, n), then G_{mn} is not sensitive to decreasing the \bigcirc weights on the *i*-axis.

- G^{ϱ} : weight collected by the longest path.
- Z^{ϱ} : exit point of the longest path.

- G^{ϱ} : weight collected by the longest path.
- Z^{ϱ} : exit point of the longest path.
- U_z^{ϱ} : weight collected on the axis until z.

- G^{ϱ} : weight collected by the longest path.
- Z^{ϱ} : exit point of the longest path.
- U_z^{ϱ} : weight collected on the axis until z.
- A_z : largest weight of a path from z to (m, n).

 G^{ϱ} : weight collected by the longest path.

 Z^{ϱ} : exit point of the longest path.

 U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n). Step 1:

 $U_z^{\lambda} + A_z \le G^{\lambda}$

for any z, any $0 < \lambda < 1$.

- G^{ϱ} : weight collected by the longest path.
- Z^{ϱ} : exit point of the longest path.
- U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n). Step 1:

 $U_z^{\lambda} + A_z \le G^{\lambda}$

for any z, any $0 < \lambda < 1$. Fix $u \ge 0$ and $\lambda \ge \varrho$,

 $\mathbf{P}\{\mathbf{Z}^{\boldsymbol{\varrho}} > u\} = \mathbf{P}\{\exists z > u : \mathbf{U}_{z}^{\boldsymbol{\varrho}} + A_{z}(t) = \mathbf{G}^{\boldsymbol{\varrho}}\}$

- G^{ϱ} : weight collected by the longest path.
- Z^{ϱ} : exit point of the longest path.
- U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n). Step 1:

 $U_z^{\lambda} + A_z \le G^{\lambda}$

for any z, any $0 < \lambda < 1$. Fix $u \ge 0$ and $\lambda \ge \varrho$,

$$P\{Z^{\varrho} > u\} = P\{\exists z > u : U_z^{\varrho} + A_z(t) = G^{\varrho}\}$$
$$\leq P\{\exists z > u : U_z^{\varrho} - U_z^{\lambda} + G^{\lambda} \geq G^{\varrho}\}$$

- G^{ϱ} : weight collected by the longest path.
- Z^{ϱ} : exit point of the longest path.
- U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n). Step 1:

 $U_z^{\lambda} + A_z \le G^{\lambda}$

for any z, any $0 < \lambda < 1$. Fix $u \ge 0$ and $\lambda \ge \varrho$,

$$P\{Z^{\varrho} > u\} = P\{\exists z > u : U_z^{\varrho} + A_z(t) = G^{\varrho}\}$$

$$\leq P\{\exists z > u : U_z^{\varrho} - U_z^{\lambda} + G^{\lambda} \ge G^{\varrho}\}$$

$$= P\{\exists z > u : U_z^{\lambda} - U_z^{\varrho} \le G^{\lambda} - G^{\varrho}\}$$

250

 G^{ϱ} : weight collected by the longest path.

- Z^{ϱ} : exit point of the longest path.
- U_z^{ϱ} : weight collected on the axis until z.

 A_z : largest weight of a path from z to (m, n). Step 1:

 $U_z^{\lambda} + A_z \le G^{\lambda}$

for any z, any $0 < \lambda < 1$. Fix $u \ge 0$ and $\lambda \ge \varrho$,

$$\begin{split} \mathbf{P}\{Z^{\varrho} > u\} &= \mathbf{P}\{\exists z > u : U_{z}^{\varrho} + A_{z}(t) = G^{\varrho}\}\\ &\leq \mathbf{P}\{\exists z > u : U_{z}^{\varrho} - U_{z}^{\lambda} + G^{\lambda} \geq G^{\varrho}\}\\ &= \mathbf{P}\{\exists z > u : U_{z}^{\lambda} - U_{z}^{\varrho} \leq G^{\lambda} - G^{\varrho}\}\\ &\leq \mathbf{P}\{U_{u}^{\lambda} - U_{u}^{\varrho} \leq G^{\lambda} - G^{\varrho}\}. \end{split}$$

251

$\mathbf{P}\{Z^{\varrho} > u\} \leq \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \leq G^{\lambda} - G^{\varrho}\}.$
$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$

Step 2:

Optimize λ so that $E(U_u^{\lambda} - G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $E(U_u^{\lambda} - G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp. Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $E(U_u^{\lambda} - G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp. Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

Step 4:

Prove, by a perturbation argument, that Var(G) is related to $E(U_{Z^+})$.

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $E(U_u^{\lambda} - G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp. Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

Step 4:

Prove, by a perturbation argument, that Var(G) is related to $E(U_{Z^+})$.

Step 5:

A large deviation estimate connects $P\{Z^{\varrho} > y\}$ and $P\{U_{Z^{\varrho+}}^{\varrho} > y\}$.

$$\rightsquigarrow \mathbf{P}\{U_{Z^+}^{\varrho} > y\} \leq C\left(\frac{t^2}{y^4} \cdot \mathbf{E}(U_{Z^{\varrho}^+}^{\varrho}) + \frac{t^2}{y^3}\right)$$

$$\mathbf{P}\{Z^{\varrho} > u\} \le \mathbf{P}\{U_u^{\lambda} - U_u^{\varrho} \le G^{\lambda} - G^{\varrho}\}.$$

Optimize λ so that $E(U_u^{\lambda} - G^{\lambda})$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp. Step 3:

Apply Chebyshev's inequality on the right-hand side. $Var(U_u)$ is elementary.

Step 4:

Prove, by a perturbation argument, that Var(G) is related to $E(U_{Z^+})$.

Step 5:

A large deviation estimate connects $P\{Z^{\varrho} > y\}$ and $P\{U_{Z^{\varrho+}}^{\varrho} > y\}$.

$$\rightsquigarrow \mathbf{P}\{\frac{U_{Z^+}^{\varrho}}{y^4} > y\} \le C\left(\frac{t^2}{y^4} \cdot \mathbf{E}(U_{Z^{\varrho}^+}^{\varrho}) + \frac{t^2}{y^3}\right)$$

Conclude

$$\limsup_{t\to\infty}\frac{\mathbf{E}(U_{Z^{\varrho+}}^{\varrho})}{t^{2/3}}<\infty,\quad \limsup_{t\to\infty}\frac{\mathsf{Var}(G^{\varrho})}{t^{2/3}}<\infty.$$

~> Z-probabilities are connected to competition interface-probabilities.

competition interface = longest path of the reversed model.

~> Z-probabilities are connected to competition interface-probabilities.

competition interface = longest path of the reversed model.

 \rightsquigarrow competition interface-probabilities are in fact Z-probabilities.

~> Z-probabilities are connected to competition interface-probabilities.

competition interface = longest path of the reversed model.

 \rightsquigarrow competition interface-probabilities are in fact Z-probabilities.

Conclude

$$\liminf_{t\to\infty}\frac{\mathbf{E}(U^{\varrho}_{Z^{\varrho}+})}{t^{2/3}}>0,\quad \liminf_{t\to\infty}\frac{\mathsf{Var}(G^{\varrho})}{t^{2/3}}>0.$$

274

 \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?

 \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?

→ In the equilibrium case we have the scaling of Var(G). Prove the same scaling for $Var(h_{C(\rho)t}(t))$.

 \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?

→ In the equilibrium case we have the scaling of Var(G). Prove the same scaling for $Var(h_{C(\rho)t}(t))$.

 \rightarrow Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.

 \rightarrow We only have deviation probability results for the case of the rarefaction fan. How about Var(G) in this case?

→ In the equilibrium case we have the scaling of Var(G). Prove the same scaling for $Var(h_{C(\rho)t}(t))$.

 \rightarrow Generalize. These methods are more general than the RSK and random matrices arguments. The last-passage picture is specific to the totally asymmetric simple exclusion. Say something about the general simple exclusion.

 \rightarrow Generalize even more: drop the last-passage picture. These methods have the potential to extend to other particle systems directly (zero range, bricklayers', ...?).

Thank you.

279