Inclusion-exclusion principle

Márton Balázs* and Bálint Tóth*

October 13, 2014

This little write-up is part of important foundations of probability that were left out of the unit Probability 1 due to lack of time and prerequisites. Here we prove the general (probabilistic) version of the inclusion-exclusion principle. Many other elementary statements about probability have been included in Probability 1. Notice that the inclusion-exclusion principle has various formulations including those for counting in combinatorics.

We start with the version for two events:
Proposition 1 (inclusion-exclusion principle for two events) For any events $E, F \in \mathcal{F}$

$$
\mathbf{P}\{E \cup F\}=\mathbf{P}\{E\}+\mathbf{P}\{F\}-\mathbf{P}\{E \cap F\} .
$$

Proof. We make use of the simple observation that E and $F-E$ are exclusive events, and their union is $E \cup F$:

$$
\mathbf{P}\{E \cup F\}=\mathbf{P}\{E \cup(F-E)\}=\mathbf{P}\{E\}+\mathbf{P}\{F-E\} .
$$

On the other hand, $F-E$ and $F \cap E$ are also exclusive events with union equal to F :

$$
\mathbf{P}\{F\}=\mathbf{P}\{(F-E) \cup(F \cap E)\}=\mathbf{P}\{F-E\}+\mathbf{P}\{F \cap E\} .
$$

The difference of the two equations gives the proof of the statement.
Next, the general version for n events:
Theorem 2 (inclusion-exclusion principle) Let $E_{1}, E_{2}, \ldots, E_{n}$ be any events. Then

$$
\begin{aligned}
& \mathbf{P}\left\{E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right\} \\
= & \sum_{1 \leq i \leq n} \mathbf{P}\left\{E_{i}\right\}-\sum_{1 \leq i_{1}<i_{2} \leq n} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}}\right\}+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}\right\}-\cdots+(-1)^{n+1} \mathbf{P}\left\{E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right\} .
\end{aligned}
$$

Intuitively, summing the probabilities we double-count all the two-intersections. Those we subtract with the second sum. (Observe that every two-intersection is contained exactly once in $\left\{E_{i_{1}} \cap E_{i_{2}}: 1 \leq i_{1}<i_{2} \leq n\right\}$.) Unfortunately, with this move we have now counted all three-intersections three times, then subtracted them three times, hence we have to add them back once. But then we run into trouble with four-intersections, etc.

When our state space is countable then counting arguments give a direct proof of the formula. This can also be extended to the general case. Here we give a different proof.

Proof. We argue inductively. The proof for $n=2$ is seen above. Suppose that the formula is true for n, we show it for $n+1$. First apply the $n=2$ case, then distributivity of intersections:

$$
\begin{aligned}
\mathbf{P}\left\{E_{1} \cup E_{2} \cup\right. & \left.\cdots \cup E_{n} \cup E_{n+1}\right\} \\
& =\mathbf{P}\left\{\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) \cup E_{n+1}\right\} \\
& =\mathbf{P}\left\{E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right\}+\mathbf{P}\left\{E_{n+1}\right\}-\mathbf{P}\left\{\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right) \cap E_{n+1}\right\} \\
& =\mathbf{P}\left\{E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right\}+\mathbf{P}\left\{E_{n+1}\right\}-\mathbf{P}\left\{\left(E_{1} \cap E_{n+1}\right) \cup\left(E_{2} \cap E_{n+1}\right) \cup \cdots \cup\left(E_{n} \cap E_{n+1}\right)\right\} .
\end{aligned}
$$

[^0]The first and the last terms are n-unions, for which we assumed the formula to hold. Therefore

$$
\begin{align*}
\mathbf{P}\left\{E_{1} \cup E_{2} \cup \cdots \cup E_{n} \cup E_{n+1}\right\}= & \sum_{1 \leq i \leq n} \mathbf{P}\left\{E_{i}\right\} \tag{1}\\
& -\sum_{1 \leq i_{1}<i_{2} \leq n} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}}\right\} \tag{2}\\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}\right\} \tag{3}\\
& -\cdots+(-1)^{n+1} \mathbf{P}\left\{E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right\} \tag{4}\\
& +\mathbf{P}\left\{E_{n+1}\right\} \tag{5}\\
& -\sum_{1 \leq i \leq n} \mathbf{P}\left\{E_{i} \cap E_{n+1}\right\} \tag{6}\\
& +\sum_{1 \leq i_{1}<i_{2} \leq n} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}} \cap E_{n+1}\right\} \tag{7}\\
& -\cdots-(-1)^{n} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n-1} \leq n} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E i_{n-1} \cap E_{n+1}\right\} \tag{8}\\
& -(-1)^{n+1} \mathbf{P}\left\{E_{1} \cap E_{2} \cap \cdots \cap E_{n} \cap E_{n+1}\right\}
\end{align*}
$$

Here (1) and (5) account for all the probabilities of single events from 1 to $n+1$. (2) includes all the twointersection probabilities from 1 to n, and (6) all the two-intersection probabilities where the higher index equals $n+1$. These two sums thus account for all possible two-intersection probabilities from 1 to $n+1$. Similarly, (3) includes all three-intersection probabilities from 1 to n, and (7) those with highest index equal to $n+1$. Together they include all three-intersection probabilities from 1 to $n+1$. This continues until (4) and (8), which together give all n-intersection probabilities from 1 to $n+1$. Finally, we write down the last term, and

$$
\begin{aligned}
& \mathbf{P}\left\{E_{1} \cup E_{2} \cup \cdots \cup E_{n+1}\right\}= \\
&= \sum_{1 \leq i \leq n+1} \mathbf{P}\left\{E_{i}\right\}-\sum_{1 \leq i_{1}<i_{2} \leq n+1} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}}\right\}+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n+1} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}} \cap E_{i_{3}}\right\} \\
&-\cdots+(-1)^{n+1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq n+1} \mathbf{P}\left\{E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i_{n}}\right\}+(-1)^{n+2} \mathbf{P}\left\{E_{1} \cap E_{2} \cap \cdots \cap E_{n+1}\right\},
\end{aligned}
$$

which justifies the formula for $n+1$.

Corollary 3 The right hand-side of the inclusion-exclusion formula alternates in the sense that the first sum is greater than or equal to the probability of the union on the left hand-side. The difference of the first two sums is smaller than or equal to the left hand-side. The first three sums together with their signs are larger than or equal, etc.

Proof. This statement can be followed in an inductive fashion along the proof.

[^0]: *University of Bristol / Budapest University of Technology and Economics

