Joint moment generating functions

Márton Balázs* and Bálint Tóth*

October 19, 2014

This little write-up is part of important foundations of probability that were left out of the unit Probability 1 due to lack of time and prerequisites. We have seen in Probability 1 how moment generating functions work for a single random variable, here we define it for joint distributions.

Definition 1 Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables. Their joint moment generating function is

$$
M\left(t_{1}, t_{2}, \ldots, t_{n}\right):=\mathbf{E e}^{t_{1} X_{1}+t_{2} X_{2}+\cdots+t_{n} X_{n}}=\mathbf{E e}^{\underline{t^{T}} \cdot \underline{X}}
$$

(using a vector notation at the end).
The marginal moment generating functions are contained in a trivial manner:

$$
M_{X_{i}}\left(t_{i}\right)=\mathbf{E e}^{t_{i} X_{i}}=\mathbf{E e}^{0 X_{1}+0 X_{2}+\cdots+0 X_{i-1}+t_{i} X_{i}+0 X_{i+1}+\cdots+0 X_{n}}=M\left(0,0, \ldots, 0, t_{i}, 0, \ldots, 0\right) .
$$

Uniqueness as seen for a single variable holds here too: knowing the joint moment generating function on an open neighbourhood of $\underline{0}$ uniquely determines the joint distribution. As a consequence, we have

Proposition 2 The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if their joint moment generating function factorises around an open neighbourhood of zero:

$$
M\left(t_{1}, t_{2}, \ldots, t_{n}\right)=M_{X_{1}}\left(t_{1}\right) \cdot M_{X_{2}}\left(t_{2}\right) \cdots M_{X_{n}}\left(t_{n}\right)
$$

As an illustration we repeat an example from Probability 1 with moment generating functions.
Example 3 (marking of the Poisson distribution) Suppose that a Poisson (λ) number of people enter the post office in the first hour in the morning, and each person is, independently of everything, female with probability p and male with probability $1-p$. We show that the number of females in the first hour is $X \sim \operatorname{Poi}(\lambda p)$, the number of males is $Y \sim \operatorname{Poi}(\lambda(1-p))$ and these variables are independent.

Based on the information given, we know that $X+Y \sim \operatorname{Poi}(\lambda) ;(X \mid X+Y) \sim \operatorname{Binom}(X+Y, p)$. Therefore the joint moment generating function can be calculated via the tower rule:

$$
M(t, s)=\mathbf{E}\left(\mathrm{e}^{t X+s Y}\right)=\mathbf{E} \mathbf{E}\left(\mathrm{e}^{t X+s Y} \mid X+Y\right)=\mathbf{E} \mathbf{E}\left(\mathrm{e}^{s(X+Y)} \mathrm{e}^{(t-s) X} \mid X+Y\right)=\mathbf{E}\left[\mathrm{e}^{s(X+Y)} \mathbf{E}\left(\mathrm{e}^{(t-s) X} \mid X+Y\right)\right]
$$

since $X+Y$ is deterministic under conditioning on the value of $X+Y$. As the conditional distribution of X is Binomial, we substitute the Binomial moment generating function from Probability 1:

$$
\mathbf{E}\left(\mathrm{e}^{(t-s) X} \mid X+Y\right)=M_{\operatorname{Binom}(X+Y, p)}(t-s)=\left(\mathrm{e}^{t-s} p+1-p\right)^{X+Y}=\mathrm{e}^{\ln \left(\mathrm{e}^{t-s} p+1-p\right) \cdot(X+Y)}
$$

With this we have

$$
M(t, s)=\mathbf{E}\left[\mathrm{e}^{\left[s+\ln \left(\mathrm{e}^{t-s} p+1-p\right)\right] \cdot(X+Y)}\right] .
$$

Notice that this is just the moment generating function of $X+Y$ taken at $\left[s+\ln \left(\mathrm{e}^{t-s} p+1-p\right)\right]$. Now we use the fact that $X+Y \sim \operatorname{Poi}(\lambda)$ and the Poisson moment generating function from Probability 1:

$$
\begin{aligned}
M(t, s) & =M_{\operatorname{Poi}(\lambda)}\left(s+\ln \left(\mathrm{e}^{t-s} p+1-p\right)\right)=\exp \left(\lambda\left(\mathrm{e}^{s+\ln \left(\mathrm{e}^{t-s} p+1-p\right)}-1\right)\right)= \\
& =\mathrm{e}^{\lambda\left[\mathrm{e}^{s}\left(\mathrm{e}^{t-s} p+1-p\right)-1\right]}=\mathrm{e}^{\lambda p\left(\mathrm{e}^{t}-1\right)} \cdot \mathrm{e}^{\lambda(1-p)\left(\mathrm{e}^{s}-1\right)}=M_{\operatorname{Poi}(\lambda p)}(t) \cdot M_{\operatorname{Poi}(\lambda(1-p))}(s) .
\end{aligned}
$$

What we see here is the product of a $\operatorname{Poi}(\lambda p)$ and a $\operatorname{Poi}(\lambda(1-p))$ moment generating function. By the uniqueness of the joint moment generating functions this implies that the joint distribution of X and Y is independent $\operatorname{Poi}(\lambda p)$ and $\operatorname{Poi}(\lambda(1-p))$, respectively.

[^0]
[^0]: *University of Bristol / Budapest University of Technology and Economics

