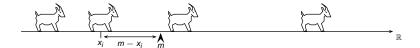
Modelling flocks and prices: jumping particles with an attractive interaction

Joint work in progress with Miklós Zoltán Rácz

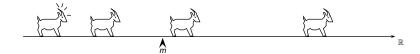
Márton Balázs

Budapest University of Technology and Economics

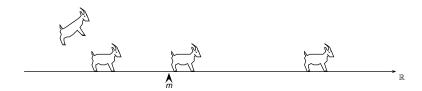
Large Scale Stochastic Dynamics Oberwolfach, November 11, 2010.



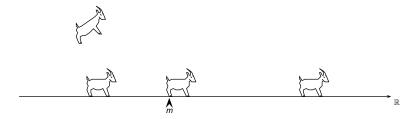
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



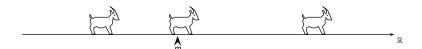
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



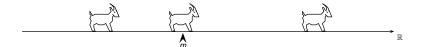
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

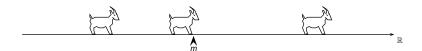


- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

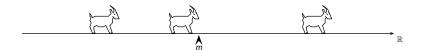


- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



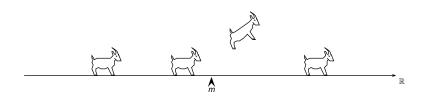
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



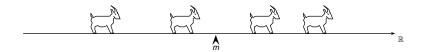
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



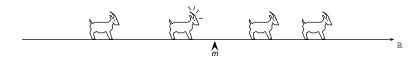
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



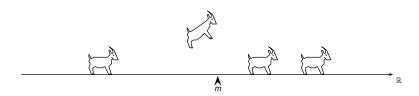
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



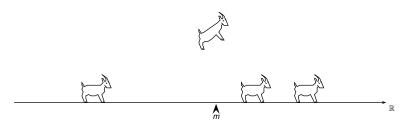
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



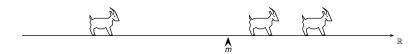
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



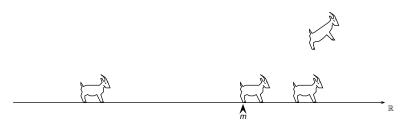
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

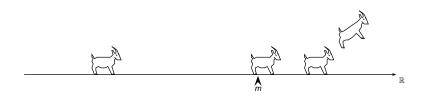
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



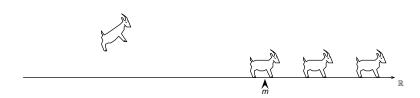
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

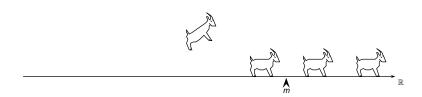
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

Model Stati.Distr. Mean field Fluid limit Questions

The model

Stationary distribution

Mean field equation

Exponential jumps

Extreme value statistics

Fourier methods

Fluid limit

Questions

The model

Can describe

motion of flocks, herds (as you have seen...),

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks,

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks,
- etc.

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks,
- etc.

Found results of the types:

- interacting diffusions with linear drift (A. Greven et. al.),
- rank dependent drift of Brownian motions (S. Chatterjee, S. Pal 2007, S. Pal, J. Pitman 2007),
- relocation of random walking particles (A. Manita, V. Shcherbakov 2005),
- reordering and steps by a joint Gaussian (A. Ruzmaikina, M. Aizenman 2005, L.P. Arguin 2008, L.P. Arguin, M. Aizenman 2009),
- multiplicative steps as well (I. Grigorescu, M. Kang 2009).

Stationary distribution

First question: what is the stationary distribution?

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n = 2 particles: just an exercise.

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n=2 particles: just an exercise. But I have never before seen a density like $\cosh^{-2}(z)$ appearing (case $\varphi \sim \text{Exp}(1)$ jumps, $w(x) = e^{-2x}$ jump rates).

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n=2 particles: just an exercise. But I have never before seen a density like $\cosh^{-2}(z)$ appearing (case $\varphi \sim \text{Exp}(1)$ jumps, $w(x) = e^{-2x}$ jump rates).

n = 3 particles: already seems hopeless. The process is "very irreversible".

n = 3 particles, jump lengths are deterministically 1

$$(2,2,-4) \leftarrow \omega(0) - (3,0,-3) \cdot \omega(-2) - (4,-2,-2) \leftarrow \omega(0) - (1,1,-2) \cdot \omega(-1) - (2,-1,-1) \cdot \omega(-3) - (3,-3,0) \leftarrow \omega(-2) - (-2,4,-2) \leftarrow \omega(2) - (-1,2,-1) \leftarrow \omega(0) - (0,0,0) \leftarrow \omega(-2) - (1,-2,1) \leftarrow \omega(-4) - (2,-4,2) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(-1) - (-1,-1,2) \leftarrow \omega(-3) - (0,-3,3) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(0) - (-3,0,3) \leftarrow \omega(0) - (-2,0,3) \leftarrow \omega(0)$$

Model Stati.Distr. Mean field Fluid limit Questions Exponential jumps Extreme val. stat. Fourier method

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$+ \int_{-\infty}^{x} w(y-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) dy,$$

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x} - m(t)) \cdot \varrho(\mathbf{x},t)$$

$$+ \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x} - \mathbf{y}) \, \mathrm{d}\mathbf{y},$$

Stati.Distr.

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = \begin{array}{c} \text{jump rate at } \mathbf{x} & \text{density at } \mathbf{x} \\ - \ w(\mathbf{x} - \mathbf{m}(t)) \ \cdot \ \ \varrho(\mathbf{x},t) \end{array}$$

$$+ \int_{-\infty}^{\mathbf{x}} \ w(\mathbf{y} - \mathbf{m}(t)) \ \cdot \ \ \varrho(\mathbf{y},t) \ \cdot \ \ \varphi(\mathbf{x} - \mathbf{y}) \ \ \mathrm{d}\mathbf{y},$$

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{split} \frac{\partial \varrho(\mathbf{x},t)}{\partial t} &= \begin{array}{c} \text{jump rate at } \mathbf{x} & \text{density at } \mathbf{x} \\ & - w(\mathbf{x} - m(t)) \\ & \cdot & \varrho(\mathbf{x},t) \\ \text{jump rate at } \mathbf{y} \\ & + \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \\ & \cdot & \varrho(\mathbf{y},t) \\ & \cdot & \varphi(\mathbf{x} - \mathbf{y}) \\ \end{split}$$

Stati.Distr.

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

limiting PDE for the density of particles.

Stati.Distr.

Take $n \to \infty$, do not rescale space, and first let us guess for a

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

Stati.Distr.

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x}-m(t)) \cdot \varrho(\mathbf{x},t)$$

$$= -w(\mathbf{x}-m(t)) \cdot \varrho(\mathbf{x},t)$$

$$= -\mathbf{y}$$

$$= -\mathbf$$

and

$$m(t) = \int_{-\infty}^{\infty} x \varrho(x, t) dx.$$

Stati.Distr.

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$= -w(x-m(t)) \cdot \varrho(x,t)$$

$$= -w(x-m(t)) \cdot \varrho(x,t)$$

$$= -w(x-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) \quad \mathrm{d}y,$$

and

$$m(t) = \int_{-\infty}^{\infty} x \varrho(x, t) dx.$$

These equations conserve $1 = \int \varrho(x, t) dx$ and give $\dot{m}(t) = \int w(x - m(t)) \cdot \rho(x, t) dx$

We look for stationary solution of this equation as seen from the center of mass.

Idea: as $n \to \infty$, in a stationary distribution m(t) would stabilize. So assume

$$m(t) = ct$$
 and $\varrho(x, t) = \varrho(x - ct)$.

We look for stationary solution of this equation as seen from the center of mass.

Idea: as $n \to \infty$, in a stationary distribution m(t) would stabilize. So assume

$$m(t) = ct$$
 and $\varrho(x, t) = \varrho(x - ct)$.

Plug this in to get

Stati.Distr.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) dy.$$

Cases we can solve:

Stati.Distr.

▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$.

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\mathrm{const} \cdot \mathbf{x}),$$

 $G_{\underline{1}}$ is the generalized Gumbel density.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

Stati.Distr.

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$.

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\mathrm{const} \cdot \mathbf{x}),$$

- $G_{\frac{1}{2}}$ is the generalized Gumbel density.
- When w is a (down-)step function, ρ is the Laplace density.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$.

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\mathrm{const} \cdot \mathbf{x}),$$

 $G_{\frac{1}{2}}$ is the generalized Gumbel density.

- ▶ When w is a (down-)step function, ρ is the Laplace density.
- When w is a (down-)step function, but with a linear decrease around 0, ρ is Laplace with a normal segment in the middle.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) dy.$$

Cases we can solve:

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$,

$$\varrho(x) = G_{\frac{1}{\beta}}(\operatorname{const} \cdot x),$$

 $G_{\underline{1}}$ is the generalized Gumbel density.

- ▶ When w is a (down-)step function, ρ is the Laplace density.
- When w is a (down-)step function, but with a linear decrease around 0, ρ is Laplace with a normal segment in the middle.

When the jumps are Exp(1): $\varphi(x) = e^{-x}$, jump rate is exponential: $w(x) = e^{-x}$, $\varphi(x) = G(\text{const} \cdot x)$, standard Gumbel density. Why?

```
When the jumps are Exp(1): \varphi(x) = e^{-x}, jump rate is exponential: w(x) = e^{-x}, \Rightarrow \varrho(x) = G(\text{const} \cdot x), standard Gumbel density. Why?
```

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

When the jumps are Exp(1): $\varphi(x) = e^{-x}$, jump rate is exponential: $w(x) = e^{-x}$, $\varphi(x) = G(\text{const} \cdot x)$, standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

```
When the jumps are Exp(1): \varphi(x) = e^{-x},
jump rate is exponential: w(x) = e^{-x},
\rightsquigarrow \rho(x) = G(\text{const} \cdot x), standard Gumbel density. Why?
```

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time t, let we have $N(t) = e^{ct}/c$ of them. Define Y(t) as the maximum.

Stati.Distr.

Extreme value statistics (Attila Rákos)

When the jumps are Exp(1): $\varphi(x) = e^{-x}$, jump rate is exponential: $w(x) = e^{-x}$. $\rightsquigarrow \rho(x) = G(\text{const} \cdot x)$, standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time t, let we have $N(t) = e^{ct}/c$ of them. Define Y(t) as the maximum.

Between t and t + dt, $dN(t) = e^{ct} dt$ many new Exp(1) particles try to break the record. So the probability that Y(t) jumps is

$$1 - (1 - e^{-Y(t)})^{e^{ct} dt} \simeq e^{ct - Y(t)} dt$$
 (for large $Y(t)$).

And when it jumps, it jumps Exp(1). But we know that $Y(t) - ct + \log c$ converges to standard Gumbel.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) dy.$$

Cases we can solve:

▶ Seen: when the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.

Fluid limit: a mean field equation

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

Stati.Distr.

- ▶ Seen: when the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
- ▶ When $w(x) = e^{-\beta x}$ is exponential: take Fourier transform to get

$$\operatorname{\operatorname{\it ci}} au \widehat{\varrho}(au) = (\widehat{\varphi}(au) - 1) \cdot \widehat{\varrho}(au + i\beta).$$

Hope to solve the recurrence relation on the \mathfrak{Im} line, then analytic continuation gives a hint on the form of $\hat{\rho}$, to be verified.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

- ▶ Seen: when the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
- ▶ When $w(x) = e^{-\beta x}$ is exponential: take Fourier transform to get

$$\operatorname{\operatorname{\it ci}} au \widehat{\varrho}(au) = (\widehat{\varphi}(au) - 1) \cdot \widehat{\varrho}(au + i\beta).$$

Hope to solve the recurrence relation on the \mathfrak{Im} line, then analytic continuation gives a hint on the form of $\hat{\rho}$, to be verified.

▶ Method tested when $\varphi(x) = e^{-x}$ (also seen before), hope to work with other φ 's too.

Recall the original fluid equation:

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x} - m(t)) \cdot \varrho(\mathbf{x},t) + \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x} - \mathbf{y}) \, d\mathbf{y},$$

or, for all *f* testfunctions:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Here **E** refers to expectation of Z w.r.t. density φ .

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

$$= \int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$$

$$m(s) = \langle x, \mu(s) \rangle.$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- 3. Uniqueness of solutions of the above equation.

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- 3. Uniqueness of solutions of the above equation.

Assumptions: the rate function $\it w$ is bounded; third moment of the jump distribution $\it \varphi$.

The fluid equation:

$$\begin{split} \langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle \\ &= \int_0^t \left\langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x - m(s)), \, \mu(s) \right\rangle \, \mathrm{d}s, \\ m(s) &= \langle x, \, \mu(s) \rangle \quad !!! \end{split}$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- 3. Uniqueness of solutions of the above equation.

Assumptions: the rate function w is bounded; third moment of the jump distribution φ .

Problem: bounded functions and "just measures" are not enough!

The fluid equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

$$= \int_0^t \langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x - m(s)), \, \mu(s) \rangle \, \mathrm{d}s,$$

$$m(s) = \langle \mathbf{x}, \, \mu(s) \rangle \quad !!!$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- 3. Uniqueness of solutions of the above equation.

Assumptions: the rate function w is bounded; third moment of the jump distribution φ .

Dealing with the space of probability measures having first moments, and the Wasserstein 1 metric seems to work. Model Stati. Distr. Mean field Fluid limit Questions

Questions

Complete the fluid limit.

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

Miklós did some (small) simulations. It seems that:

• Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- ▶ Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$
- Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1$.

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- ▶ Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$
- Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$
- Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- ► Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$
- Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?
- And for the fluid limit, general rate functions / jump distributions?

- Complete the fluid limit.
- Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

Miklós did some (small) simulations. It seems that:

- ▶ Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1.$
- ► Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?
- And for the fluid limit, general rate functions / jump distributions?

Thank you.