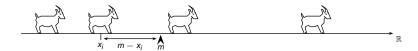
Modelling flocks and prices: jumping particles with an attractive interaction

Joint work with Miklós Zoltán Rácz and Bálint Tóth

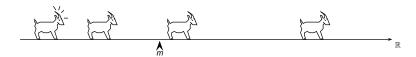
Márton Balázs

Budapest University of Technology and Economics

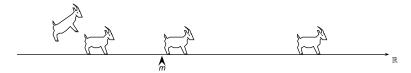
Madison-Wisconsin, February 24, 2011.



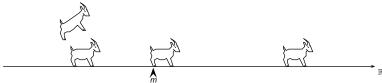
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



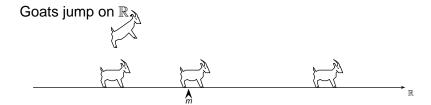
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

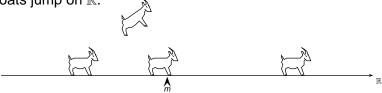


- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

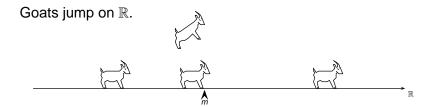


- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

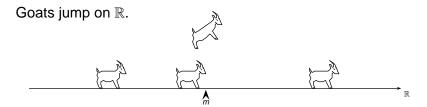
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



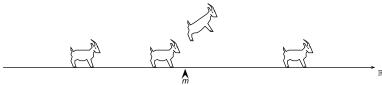
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



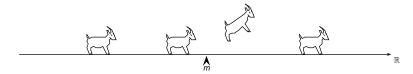
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



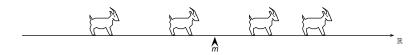
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



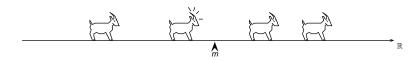
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



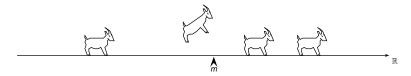
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



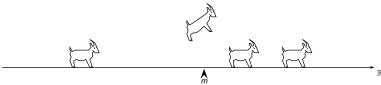
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



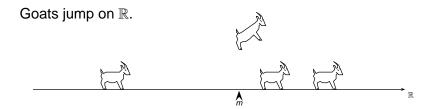
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



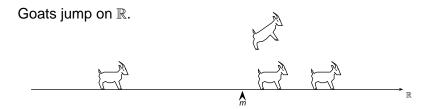
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

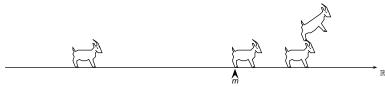


- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



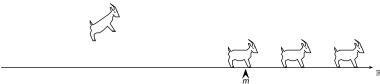
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

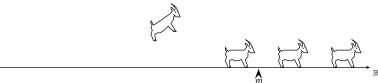
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

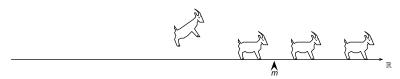
- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where w is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where w is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.



- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

- ▶ n goats jump on \mathbb{R} (state space is \mathbb{R}^n).
- ► Given a configuration $x_1, x_2, ..., x_n$ of goats the center of mass is $m = \frac{1}{n} \sum_{i=1}^{n} x_i$.
- ▶ Goat *i* jumps with rate $w(x_i m)$, where *w* is the jump rate function: $\mathbb{R} \to \mathbb{R}^+$, decreasing.
- ▶ Jumps are positive, random, independent of everything, and are of density φ , mean one.

Stationary distribution

Mean field equation

Exponential jumps
Extreme value statistics
Fourier methods

Fluid limit

Where do we live?
Tightness
The limit solves the mean field eq.
Uniqueness

Questions

The model

Can describe

motion of flocks, herds (as you have seen...),

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks, etc.

The model

Can describe

- motion of flocks, herds (as you have seen...),
- competing prices of goods (gyros / falafel / shawarma),
- prices of stocks, etc.

Found results of the types:

- rat race model (D. ben-Avraham, S.N. Majumdar, S. Redner 2007)
- interacting diffusions with linear drift (A. Greven et. al.),
- rank dependent drift of Brownian motions (S. Pal, J. Pitman 2008, S. Chatterjee, S. Pal 2009),
- relocation of random walking particles (A. Manita, V. Shcherbakov 2005),
- interacting jump processes (A. Greenberg, V.A. Malyshev, S.Yu. Popov 1995)
- multiplicative steps as well (I. Grigorescu, M. Kang 2010).

Stationary distribution

First question: what is the stationary distribution?

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n = 2 particles: just an exercise.

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n=2 particles: just an exercise. But I have never before seen a density like $\cosh^{-2}(z)$ appearing (case $\varphi \sim \text{Exp}(1)$ jumps, $w(x) = e^{-2x}$ jump rates).

Stationary distribution

First question: what is the stationary distribution? As seen from the center of mass m(t), of course.

n=2 particles: just an exercise. But I have never before seen a density like $\cosh^{-2}(z)$ appearing (case $\varphi \sim \text{Exp}(1)$ jumps, $w(x) = e^{-2x}$ jump rates).

n = 3 particles: already seems hopeless. The process is "very irreversible".

n = 3 particles, jump lengths are deterministically 1

$$(2,2,-4) \leftarrow \omega(0) - (3,0,-3) \cdot \omega(-2) - (4,-2,-2) \leftarrow \omega(0) - (1,1,-2) \cdot \omega(-1) - (2,-1,-1) \cdot \omega(-3) - (3,-3,0) \leftarrow \omega(-2) - (-2,4,-2) \leftarrow \omega(2) - (-1,2,-1) \leftarrow \omega(0) - (0,0,0) \leftarrow \omega(-2) - (1,-2,1) \leftarrow \omega(-4) - (2,-4,2) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(-1) - (-1,-1,2) \leftarrow \omega(-3) - (0,-3,3) \leftarrow \omega(0) - (-2,1,1) \leftarrow \omega(0) - (-3,0,3) \leftarrow \omega(0) - (-2,0,3) \leftarrow \omega(0)$$

Model Stati.Distr. Mean field Fluid limit Questions Exponential jumps Extreme val. stat. Fourier method

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$+ \int_{-\infty}^{x} w(y-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) dy,$$

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x} - m(t)) \cdot \varrho(\mathbf{x},t)$$

$$+ \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x} - \mathbf{y}) \, \mathrm{d}\mathbf{y},$$

Stati.Distr.

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = \begin{array}{c} \text{jump rate at } \mathbf{x} & \text{density at } \mathbf{x} \\ - \ w(\mathbf{x} - \mathbf{m}(t)) \ \cdot \ \ \varrho(\mathbf{x},t) \end{array}$$

$$+ \int_{-\infty}^{\mathbf{x}} \ w(\mathbf{y} - \mathbf{m}(t)) \ \cdot \ \ \varrho(\mathbf{y},t) \ \cdot \ \ \varphi(\mathbf{x} - \mathbf{y}) \ \ \mathrm{d}\mathbf{y},$$

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\begin{split} \frac{\partial \varrho(\mathbf{x},t)}{\partial t} &= \begin{array}{c} \text{jump rate at } \mathbf{x} & \text{density at } \mathbf{x} \\ & - w(\mathbf{x} - m(t)) \\ & \cdot & \varrho(\mathbf{x},t) \\ \text{jump rate at } \mathbf{y} \\ & + \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \\ & \cdot & \varrho(\mathbf{y},t) \\ & \cdot & \varphi(\mathbf{x} - \mathbf{y}) \\ \end{split}$$

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

limiting PDE for the density of particles.

Stati.Distr.

Take $n \to \infty$, do not rescale space, and first let us guess for a

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$\lim_{y \to \infty} \frac{\partial \varphi(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

Stati.Distr.

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x}-m(t)) \cdot \varrho(\mathbf{x},t)$$

$$= -w(\mathbf{x}-m(t)) \cdot \varrho(\mathbf{x},t)$$

$$= -\mathbf{y}$$

$$= -\mathbf$$

and

$$m(t) = \int_{-\infty}^{\infty} x \varrho(x, t) dx.$$

Stati.Distr.

Fluid limit: a mean field equation

Take $n \to \infty$, do not rescale space, and first let us guess for a limiting PDE for the density of particles.

$$\frac{\partial \varrho(x,t)}{\partial t} = -w(x-m(t)) \cdot \varrho(x,t)$$

$$= -w(x-m(t)) \cdot \varrho(x,t)$$

$$= -w(x-m(t)) \cdot \varrho(x,t)$$

$$= -w(x-m(t)) \cdot \varrho(y,t) \cdot \varphi(x-y) \quad \mathrm{d}y,$$

and

$$m(t) = \int_{-\infty}^{\infty} x \varrho(x, t) dx.$$

These equations conserve $1 = \int \varrho(x, t) dx$ and give $\dot{m}(t) = \int w(x - m(t)) \cdot \rho(x, t) dx$

We look for stationary solution of this equation as seen from the center of mass.

Idea: as $n \to \infty$, in a stationary distribution m(t) would stabilize. So assume

$$m(t) = ct$$
 and $\varrho(x, t) = \varrho(x - ct)$.

We look for stationary solution of this equation as seen from the center of mass.

Idea: as $n \to \infty$, in a stationary distribution m(t) would stabilize. So assume

$$m(t) = ct$$
 and $\varrho(x, t) = \varrho(x - ct)$.

Plug this in to get

Stati.Distr.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) dy.$$

Cases we can solve:

Stati.Distr.

▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$.

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\mathrm{const} \cdot \mathbf{x}),$$

 $G_{\underline{1}}$ is the generalized Gumbel density.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

Stati.Distr.

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$.

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\mathrm{const} \cdot \mathbf{x}),$$

- $G_{\frac{1}{2}}$ is the generalized Gumbel density.
- When w is a (down-)step function, ρ is the Laplace density.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$.

$$\varrho(\mathbf{x}) = \mathbf{G}_{\frac{1}{\beta}}(\mathrm{const} \cdot \mathbf{x}),$$

 $G_{\frac{1}{2}}$ is the generalized Gumbel density.

- ▶ When w is a (down-)step function, ρ is the Laplace density.
- When w is a (down-)step function, but with a linear decrease around 0, ρ is Laplace with a normal segment in the middle.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) dy.$$

Cases we can solve:

Stati.Distr.

- ▶ When the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
 - When $w(x) = e^{-\beta x}$,

$$\varrho(x) = G_{\frac{1}{\beta}}(\operatorname{const} \cdot x),$$

 $G_{\underline{1}}$ is the generalized Gumbel density.

- ▶ When w is a (down-)step function, ρ is the Laplace density.
- When w is a (down-)step function, but with a linear decrease around 0, ρ is Laplace with a normal segment in the middle.

When the jumps are Exp(1): $\varphi(x) = e^{-x}$, jump rate is exponential: $w(x) = e^{-x}$, $\varphi(x) = G(\text{const} \cdot x)$, standard Gumbel density. Why?

```
When the jumps are Exp(1): \varphi(x) = e^{-x}, jump rate is exponential: w(x) = e^{-x}, \Rightarrow \varrho(x) = G(\text{const} \cdot x), standard Gumbel density. Why?
```

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

When the jumps are Exp(1): $\varphi(x) = e^{-x}$, jump rate is exponential: $w(x) = e^{-x}$, $\varphi(x) = G(\text{const} \cdot x)$, standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

```
When the jumps are Exp(1): \varphi(x) = e^{-x},
jump rate is exponential: w(x) = e^{-x},
\rightsquigarrow \rho(x) = G(\text{const} \cdot x), standard Gumbel density. Why?
```

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time t, let we have $N(t) = e^{ct}/c$ of them. Define Y(t) as the maximum.

Stati.Distr.

Extreme value statistics (Attila Rákos)

When the jumps are Exp(1): $\varphi(x) = e^{-x}$, jump rate is exponential: $w(x) = e^{-x}$. $\rightsquigarrow \rho(x) = G(\text{const} \cdot x)$, standard Gumbel density. Why?

Fix a particle X(t). Probability it jumps between t and t + dt is approx. $e^{ct-X(t)} dt$. And when it jumps, it jumps Exp(1).

Take now more and more iid. Exp(1) variables. At time t, let we have $N(t) = e^{ct}/c$ of them. Define Y(t) as the maximum.

Between t and t + dt, $dN(t) = e^{ct} dt$ many new Exp(1) particles try to break the record. So the probability that Y(t) jumps is

$$1 - (1 - e^{-Y(t)})^{e^{ct} dt} \simeq e^{ct - Y(t)} dt$$
 (for large $Y(t)$).

And when it jumps, it jumps Exp(1). But we know that $Y(t) - ct + \log c$ converges to standard Gumbel.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) dy.$$

Cases we can solve:

▶ Seen: when the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.

Fluid limit: a mean field equation

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

Stati.Distr.

- ▶ Seen: when the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
- ▶ When $w(x) = e^{-\beta x}$ is exponential: take Fourier transform to get

$$\operatorname{\operatorname{\it ci}} au \widehat{\varrho}(au) = (\widehat{\varphi}(au) - 1) \cdot \widehat{\varrho}(au + i\beta).$$

Hope to solve the recurrence relation on the \mathfrak{Im} line, then analytic continuation gives a hint on the form of $\hat{\rho}$, to be verified.

$$-c\varrho'(x) = -w(x)\varrho(x) + \int_{-\infty}^{x} w(y)\varrho(y)\varphi(x-y) \, dy.$$

Cases we can solve:

- ▶ Seen: when the jumps are Exp(1): $\varphi(x) = e^{-x}$, the above becomes a linear second order ODE, easy to solve.
- ▶ When $w(x) = e^{-\beta x}$ is exponential: take Fourier transform to get

$$\operatorname{\operatorname{\it ci}} au \widehat{\varrho}(au) = (\widehat{\varphi}(au) - 1) \cdot \widehat{\varrho}(au + i\beta).$$

Hope to solve the recurrence relation on the \mathfrak{Im} line, then analytic continuation gives a hint on the form of $\hat{\rho}$, to be verified.

▶ Method tested when $\varphi(x) = e^{-x}$ (also seen before), hope to work with other φ 's too.

Recall the original mean field equation:

$$\frac{\partial \varrho(\mathbf{x},t)}{\partial t} = -w(\mathbf{x} - m(t)) \cdot \varrho(\mathbf{x},t) + \int_{-\infty}^{\mathbf{x}} w(\mathbf{y} - m(t)) \cdot \varrho(\mathbf{y},t) \cdot \varphi(\mathbf{x} - \mathbf{y}) \, d\mathbf{y},$$

or, for all *f* test functions:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Here \mathbf{E} refers to expectation of Z w.r.t. the jump length distribution.

Taking the fluid limit

Stati.Distr.

The mean field equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

$$egin{aligned} \langle f, \mu(t)
angle - \langle f, \mu(0)
angle \ &= \int_0^t \left\langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x-m(s)), \ \mu(s)
ight
angle \ \mathrm{d}s, \ m(s) &= \langle x, \ \mu(s)
angle. \end{aligned}$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

Taking the fluid limit

The mean field equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

$$= \int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$$

$$m(s) = \langle x, \mu(s) \rangle.$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.

Taking the fluid limit

The mean field equation:

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

$$= \int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$$

$$m(s) = \langle x, \mu(s) \rangle.$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.

 $\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$ $= \int_{\Omega}^{t} \langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x-m(s)), \, \mu(s) \rangle \, ds,$ $m(s) = \langle x, \mu(s) \rangle.$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- Uniqueness of solutions of the above equation.

$$\langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle$$

= $\int_0^t \langle \{ \mathbf{E}[f(x+Z)] - f(x) \} w(x - m(s)), \mu(s) \rangle ds,$
 $m(s) = \langle x, \mu(s) \rangle.$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- Uniqueness of solutions of the above equation.

Assumptions: the rate function w is bounded; third moment of the jump distribution φ .

$$\begin{split} \langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle \\ &= \int_0^t \left\langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x - m(s)), \, \mu(s) \right\rangle \, \mathrm{d}s, \\ m(s) &= \langle x, \, \mu(s) \rangle \quad !!! \end{split}$$

Define the *n*-particle empirical measure $\mu_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)}$. Goal:

- 1. Tightness of $\{\mu_n(\cdot)\}_{n\geq 1}$ in some path space of measures.
- 2. Weak limits convergence to a solution $\mu(\cdot)$ of the above equation.
- Uniqueness of solutions of the above equation.

Assumptions: the rate function w is bounded; third moment of the jump distribution φ .

Problem: bounded functions and "just measures" are not enough!

Where do we live?

Probability measures on $\mathbb R$ with finite first moment: $\mathcal P_1$.

Where do we live?

Probability measures on \mathbb{R} with finite first moment: \mathcal{P}_1 .

Wasserstein metric on \mathcal{P}_1 :

$$d_1(\mu, \nu) = \inf_{\pi: \text{ coupling meas.}} \int_{\mathbb{R} \times \mathbb{R}} |x - y| \, \pi(\,\mathrm{d} x, \,\,\mathrm{d} y).$$

Probability measures on \mathbb{R} with finite first moment: \mathcal{P}_1 .

Wasserstein metric on \mathcal{P}_1 :

$$d_1(\mu, \nu) = \inf_{\pi: \text{ coupling meas.}} \int_{\mathbb{R} \times \mathbb{R}} |x - y| \, \pi(\,\mathrm{d} x, \,\,\mathrm{d} y).$$

Test functions:

$$\{f: \mathsf{cont's}; |f| \leq 1\} \cup \{\mathsf{Id}\}.$$

Convergence in d_1 implies convergence of the integrals of such test functions.

Probability measures on \mathbb{R} with finite first moment: \mathcal{P}_1 .

Wasserstein metric on \mathcal{P}_1 :

$$d_1(\mu, \nu) = \inf_{\pi: \text{ coupling meas.}} \int_{\mathbb{R} \times \mathbb{R}} |x - y| \, \pi(\,\mathrm{d} x, \,\,\mathrm{d} y).$$

Test functions:

$$\{f : \text{cont's}; |f| \le 1\} \cup \{\text{Id}\}.$$

Convergence in d_1 implies convergence of the integrals of such test functions.

All these needed to be able to handle the center of mass

$$m(s) = \langle x, \mu(s) \rangle.$$

Where do we live?

Probability measures on \mathbb{R} with finite first moment: \mathcal{P}_1 .

Wasserstein metric on \mathcal{P}_1 :

$$d_1(\mu, \nu) = \inf_{\pi: \text{ coupling meas.}} \int_{\mathbb{D} \times \mathbb{D}} |x - y| \, \pi(\,\mathrm{d} x, \,\mathrm{d} y).$$

Test functions:

$$\{f : \text{cont's}; |f| \le 1\} \cup \{\text{Id}\}.$$

Convergence in d_1 implies convergence of the integrals of such test functions.

All these needed to be able to handle the center of mass

$$m(s) = \langle x, \mu(s) \rangle.$$

Goal: convergence of the *n*-particle empirical measures $\mu_n(t)$ in the Skohorod space $D([0, \infty), \mathcal{P}_1)$.

1. Tightness

▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)

- ▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)
 - Need uniform control of tails at time zero (just assume those),

- ▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)
 - Need uniform control of tails at time zero (just assume those),
 - uniform control of jumps (Billingsley's book).

- ▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)
 - Need uniform control of tails at time zero (just assume those),
 - uniform control of jumps (Billingsley's book).
- Step 2: Any limit point is a.s. continuous.

- ▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)
 - Need uniform control of tails at time zero (just assume those),
 - uniform control of jumps (Billingsley's book).
- Step 2: Any limit point is a.s. continuous.
 - Further conditions on jumps (Ethier and Tom's book).

1. Tightness

- ▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)
 - Need uniform control of tails at time zero (just assume those),
 - uniform control of jumps (Billingsley's book).
- Step 2: Any limit point is a.s. continuous.
 - Further conditions on jumps (Ethier and Tom's book).

C-relative compactness

1. Tightness

- ▶ Step 1: Tightness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$; f bounded, continuous. (Grigorescu-Kang 2010)
 - Need uniform control of tails at time zero (just assume those),
 - uniform control of jumps (Billingsley's book).
- Step 2: Any limit point is a.s. continuous.
 - ▶ Further conditions on jumps (Ethier and Tom's book).

C-relative compactness

Method for these bounds: introduce *ghost goats*: they jump with rate $\sup_{x} w(x)$, they have the same jump length distribution as their planetary counterparts. Couple such that ghost $goat_{i}$ can jump without $goat_{i}$, but not vice-versa. \leadsto increments of ghosts dominate increments of the planetary goats.

1. Tightness

▶ Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$.

- ▶ Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$.
 - ► Check compactness-type conditions for $\mu_n(t)$, uniformly in n and t,

- ▶ Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$.
 - Check compactness-type conditions for $\mu_n(t)$, uniformly in n and t,
 - ▶ C-relative compactness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$ from previous slide.

- ▶ Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$.
 - Check compactness-type conditions for $\mu_n(t)$, uniformly in n and t,
 - ▶ C-relative compactness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$ from previous slide.
 - Generalize Perkins' theorem (Perkins, St.-Flour notes, 1999).

1. Tightness

- ▶ Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$.
 - ► Check compactness-type conditions for $\mu_n(t)$, uniformly in n and t,
 - ▶ C-relative compactness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$ from previous slide.
 - Generalize Perkins' theorem (Perkins, St.-Flour notes, 1999).

For the compactness-type conditions, use again the ghost goats.

1. Tightness

- ▶ Step 3: C-relative compactness of $\mu_n(t)$ in $D([0, \infty], \mathcal{P}_1)$.
 - ► Check compactness-type conditions for $\mu_n(t)$, uniformly in n and t,
 - ▶ C-relative compactness of $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$ from previous slide.
 - Generalize Perkins' theorem (Perkins, St.-Flour notes, 1999).

For the compactness-type conditions, use again the ghost goats.

Perkins' theorem originally was about checking C-relative compactness in $D([0, \infty], \mathcal{M})$ by checking that of appropriate integrals $\langle f, \mu_n(t) \rangle$ in $D([0, \infty], \mathbb{R})$. Our job here was to slightly generalize from finite measures \mathcal{M} to measures with finite first moment \mathcal{P}_1 .

Let

$$\begin{aligned} \mathbf{A}_{t,f}(\mu) &:= \langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle \\ &- \int_0^t \left\langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x-m(s)), \, \mu(s) \right\rangle \, \mathrm{d}s \\ &= \langle f, \mu(t) \rangle - \langle f, \mu(0) \rangle - \int_0^t L \langle f, \mu(s) \rangle \, \, \mathrm{d}s, \\ m(s) &= \langle x, \, \mu(s) \rangle. \end{aligned}$$

Recall that the mean field equation was

$$A_{t,f}(\mu) = 0.$$

Step 1:

$$\sup_{0 \leq s \leq t} |A_{s,f}(\mu_n)| \xrightarrow[n \to \infty]{\mathbb{P}} 0$$

in probability.

Step 1:

$$\sup_{0 \le s \le t} |A_{s,f}(\mu_n)| \xrightarrow[n \to \infty]{\mathbb{P}} 0$$

in probability.

▶ Step 2: If $\mu_n \Rightarrow \mu$ in $D([0, \infty], \mathcal{P}_1)$, then

$$A_{s,f}(\mu_n) \Rightarrow A_{s,f}(\mu)$$

in \mathbb{R} .

Step 1:

$$\sup_{0\leq s\leq t}|A_{s,f}(\mu_n)|\xrightarrow[n\to\infty]{\mathbb{P}}0$$

in probability.

▶ Step 2: If $\mu_n \Rightarrow \mu$ in $D([0, \infty], \mathcal{P}_1)$, then

$$A_{s,f}(\mu_n) \Rightarrow A_{s,f}(\mu)$$

in \mathbb{R} .

For the first, notice $A_{s,f}(\mu_n)$ is a martingale in s. Use \mathcal{L}^2 Doob inequality and show that the \mathcal{L}^2 norm goes to zero as $n \to \infty$.

Step 1:

Stati.Distr.

$$\sup_{0 \le s \le t} |A_{s,f}(\mu_n)| \xrightarrow[n \to \infty]{\mathbb{P}} 0$$

in probability.

▶ Step 2: If $\mu_n \Rightarrow \mu$ in $D([0, \infty], \mathcal{P}_1)$, then

$$A_{s,f}(\mu_n) \Rightarrow A_{s,f}(\mu)$$

in \mathbb{R} .

For the first, notice $A_{s,f}(\mu_n)$ is a martingale in s. Use \mathcal{L}^2 Doob inequality and show that the \mathcal{L}^2 norm goes to zero as $n \to \infty$.

For the second, convergence in $D([0, \infty], \mathcal{P}_1)$ with the Wasserstein metric d_1 is just right for our test functions (including the center of mass!).

3. Uniqueness of solutions of the mean field eq.

Step 1: Look at the distance

$$d_{H}(\mu, \nu) := \sup_{f} |\langle f, \mu \rangle - \langle f, \nu \rangle|,$$

sup is over our test functions.

Stati.Distr.

3. Uniqueness of solutions of the mean field eq.

Step 1: Look at the distance

$$d_{H}(\mu, \nu) := \sup_{f} |\langle f, \mu \rangle - \langle f, \nu \rangle|,$$

sup is over our test functions.

▶ Step 2: Apply to solutions $\mu(t)$ and $\nu(t)$ of the mean field equation:

$$\langle f, \mu(t) \rangle = \langle f, \mu(0) \rangle$$

 $+ \int_0^t \langle \{ \mathbf{E}[f(\mathbf{x} + \mathbf{Z})] - f(\mathbf{x}) \} w(\mathbf{x} - m(\mathbf{s})), \mu(\mathbf{s}) \rangle d\mathbf{s}.$

Terms in the difference of integrals can be bounded in terms of $d_H(\mu(s), \nu(s))$.

3. Uniqueness of solutions of the mean field eq.

Step 1: Look at the distance

$$d_{H}(\mu, \nu) := \sup_{f} |\langle f, \mu \rangle - \langle f, \nu \rangle|,$$

sup is over our test functions.

▶ Step 2: Apply to solutions $\mu(t)$ and $\nu(t)$ of the mean field equation:

$$\langle f, \mu(t) \rangle = \langle f, \mu(0) \rangle$$

 $+ \int_0^t \langle \left\{ \mathbf{E}[f(x+Z)] - f(x) \right\} w(x - m(s)), \, \mu(s) \rangle \, \mathrm{d}s.$

Terms in the difference of integrals can be bounded in terms of $d_H(\mu(s), \nu(s))$.

 $ightharpoonup d_H(\mu(t), \nu(t)) \le d_H(\mu(0), \nu(0)) + c \int_0^t d_H(\mu(s), \nu(s)) ds$, apply Grönwall's inequality.

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

Miklós did some (small) simulations. It seems that:

• Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 < \alpha < 1.$

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- ► Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- ► Stepfunction jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- ► Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- ► Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 < \alpha < 1$.
- ► Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 < \alpha < 1$.
- Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1, \ 1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

- Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- ► Stepfunction jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 < \alpha < 1$.
- ► Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?
- And for the fluid limit, general rate functions / jump distributions?

Variance of the center of mass should scale:

$$\operatorname{Var}(m_n(t)) \sim \frac{t^{\gamma}}{n^{\alpha}}.$$

Miklós did some (small) simulations. It seems that:

- Exponential jump rates, exponential jumps: $\gamma \simeq \alpha \simeq 1$.
- Stepfunction jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 < \alpha < 1$.
- ► Stepfunction with linear segment jump rates, exponential jumps: $\gamma \simeq 1$, $1/2 \le \alpha \le 1$.
- In general, limit distribution theorems?
- Can we really not find the stationary distribution for three goats?
- And for the fluid limit, general rate functions / jump distributions?

Thank you.