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The bricklayers’ process (BL) (B. Tóth)

ωi = negative discrete gradient
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The bricklayers’ process (BL) (B. Tóth)

ωi = negative discrete gradient
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Assumptions:

• r(z) is increasing,

 the process (to be constructed) is attractive: the higher neighbors ⇒ the faster

column growth.

• r(z) · r(1 − z)=

{
0 for ZR,

1 for BL
∀z ∈ Z,

 Independent µθ-distributed ωi’s is (formally) the equilibrium of the process.

The parameter θ sets the mean of ωi’s, that is, the slope of the wall.
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• The construction was available for the case

r(z + 1) − r(z) ≤ K

Andjel 1982, Booth and Quant 2002.

• B. 2001 and 2004 finds nice distributions related to shocks in the

exponential BL process:

r(z) = A · eBz.

Unfortunately, the process is not constructed at that time.
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• Goal: construct the dynamics if we only have

r(z) ≤ eβz (β > 0),

+ the previous assumptions for attractivity and the µθ-equilibrium.

Estimates used by Andjel do not work.
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2. Construction materials: Equilibrium in finite volume

%

y

y y y y yx x x x x

x

$

ℓ r

PP
PP
PP
PP

PP
PP
PP
PP

y : with rate r(ζi)

x : with rate r(−ζi)
% : with rate E

µθr(ζi)

$ : with rate E
µθr(−ζi)

ζi = negative discrete gradient

 Independent µθ-distributed ζi’s (i = ℓ . . . r) is the equilibrium of the

process.

θ sets the mean of ζi’s, that is, the slope of the wall.
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2. Construction materials: The monotone process
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ωi = negative discrete gradient

 This process is far from equilibrium!!
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ω(0)

• Fix a state ω(0) ∈ Ω̃.

 Coupling 1: The column heights are monotone in ℓ and r.
⇒ We have a limit of the monotone processes. Is the limit finite?

• Start the ζ equilibrium process in distribution µθ2 on the left, µθ1 on the right.
⇒ With positive probability, each column of ζ is higher than that column of ω.

 Coupling 2: In this case, the height of a column of ω is bounded by the height
of that column of ζ for all later times.
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• Start the ζ equilibrium process in distribution µθ2 on the left, µθ1 on the right.
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of that column of ζ for all later times.
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For this conditional coupling, we need an appropriate state space:

Ω̃ = {ω :





lim sup
i→−∞

1

|i|
0∑

j=i+1

|ωj| <∞

lim sup
i→∞

1

i

i∑

j=1

|ωj| <∞
},

that is, the asymptotic slope of the wall is bounded.

 In this case we have a limiting process in infinite volume, for which

it is almost impossible to blow up.

 But what is this process?

62



For this conditional coupling, we need an appropriate state space:

Ω̃ = {ω :





lim sup
i→−∞

1

|i|
0∑

j=i+1

|ωj| <∞

lim sup
i→∞

1

i

i∑

j=1

|ωj| <∞
},

that is, the asymptotic slope of the wall is bounded.

 In this case we have a limiting process in infinite volume, for which

it is almost impossible to blow up.

 But what is this process?

63



For this conditional coupling, we need an appropriate state space:

Ω̃ = {ω :





lim sup
i→−∞

1

|i|
0∑

j=i+1

|ωj| <∞

lim sup
i→∞

1

i

i∑

j=1

|ωj| <∞
},

that is, the asymptotic slope of the wall is bounded.

 In this case we have a limiting process in infinite volume, for which

it is almost impossible to blow up.

 But what is this process?

64



For this conditional coupling, we need an appropriate state space:

Ω̃ = {ω :





lim sup
i→−∞

1

|i|
0∑

j=i+1

|ωj| <∞

lim sup
i→∞

1

i

i∑

j=1

|ωj| <∞
},

that is, the asymptotic slope of the wall is bounded.

 In this case we have a limiting process in infinite volume, for which

it is almost impossible to blow up.

 But what is this process?

65



3. Properties

a.) What we have is a right-continuous (in time) Markov process,

b.) The process (a.s.) stays in the state space Ω̃,

c.) True bricklayers are laying the bricks at each site (that is, the

Kolmogorov forward and backward equations hold with our favorite generator),

d.) The product measure µθ is stationary, and the process in this

distribution is ergodic.
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3a.) Right-continuity and the Markov property

Idea: the limit for the space-time box [a, b]× [0, t] is already achieved

in finite volume.

That is, a.s. there exist (random) ℓ and r, such that the heights h
[ℓ, r]
i (s)

of columns of the [ℓ, r] monotone process agree to the column heights

hi(s) of the limiting process for all a ≤ i ≤ b and s ∈ [0, t].

Right-continuity is OK, and a bit of extra work yields the Markov

property as well.
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3a.) Graphical construction for the Idea
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ri−1 ri ri+1

i− 1 i i+ 1

ri−1 ri ri+1

Abbreviation: ri(t) = r(ωi(t)) + r(−ωi+1(t)) is the rate of growth at site i.

⋆: independent rate 1 Poisson processes on the plane for each i.

Rule: a ⋆ under the curve gives rise to a new brick.
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3a.) Graphical construction for the Idea

Common Poisson points ⋆ for each of the monotone processes,

and a.s. finite rates ri

 finitely many ⋆’s govern each of the monotone processes in the

space-time box [a, b] × [0, t].

 The limit is already achieved in finite volume.
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3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,

b.) The process (a.s.) stays in the state space Ω̃,

c.) True bricklayers are laying the bricks at each site (that is, the

Kolmogorov forward and backward equations hold with our favorite generator),

d.) The product measure µθ is stationary, and the process in this

distribution is ergodic.
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3b.) State space: The slope of ω stays bounded

With the conditional coupling

it is enough to give a moment bound on the columns gi(t) (B-C).

First moment: d
dtE gi(t) = E [ri(t)] < const.

(where ri(t) = r(ζi(t)) + r(−ζi+1(t)) is the rate of growth at site i).
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3b.) State space

Second moment:

d

dt
E g2i (t) = 2E gi(t) · ri(t) + E ri(t)

≤ 2
√

E g2i (t) ·
√

E r2i (t) + E ri(t),

thus E g2i (t) ≤ y(t), where y(t) solves the equation

y′ ≤ 2
√
y ·
√

E r2i + E ri.

Similar procedure works for higher moments as well.
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3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,

b.) The process (a.s.) stays in the state space Ω̃,

c.) True bricklayers are laying the bricks at each site (that is, the

Kolmogorov forward and backward equations hold with our favorite generator),

d.) The product measure µθ is stationary, and the process in this

distribution is ergodic.
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3c.) Kolmogorov equation

Semigroup (on measurable functions ϕ):

S(t)ϕ(ω) := E[ϕ(ω(t)) |ω(0) = ω] = : E
ω[ϕ(ω(t))].

Formal generator (on cylinder functions ϕ):

Lϕ(ω) =
∑

i

ri(ω) · [ϕ(ω(i, i+1)) − ϕ(ω)],

where ω(i, i+1) = ω+ one brick = . . . , ωi−1, ωi − 1, ωi+1 + 1, ωi+2, . . .
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3c.) Kolmogorov forward equation

S(t)ϕ(ω) − ϕ(ω) =

t∫

0

S(s)Lϕ(ω) ds (ϕ is bounded and cylinder)

=

t∫

0

E
ω
∑

i

ri(ω(s))[ϕ(ω(i, i+1)(s)) − ϕ(ω(s))] ds

thus we need moments of ri(ω(s)) when started from a fixed state ω.

Exponential rates  we need exponential moments of ωi(s). Due

to the conditional coupling, we need exponential moments of the

columns gi of the equilibrium process.

The moment computation above does not work.
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3c.) Kolmogorov forward equation

Idea: Let’s look for non-growing columns.

By contradiction, assume that each column has grown by time t in a
large interval.

In the equilibrium process ζ, most of the ζi(t) values are not too large
and not too small, hence the growth rates are not too large either.

Hence most of these growing columns have grown while the growth
rates were moderate. The probability of this is very small.

 So: For small enough t

P{every column grew by time t in [0, i]} ≤ e−C·i.
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3c.) Kolmogorov forward equation

0 i

ζ(0)

g0(t) = gi(t) + ζ1(t) + ζ2(t) + · · · + ζi(t)

g0(0) = gi(0) + ζ1(0) + ζ2(0) + · · · + ζi(0)

g0(t) − g0(0) = ζ1(t) + ζ2(t) + · · · + ζi(t) − ζ1(0) − ζ2(0) − · · · − ζi(0)

Everyone on the right-hand side has exponential moments.
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3c.) Kolmogorov backward equation

S(t)ϕ(ω) − ϕ(ω) =

t∫

0

LS(s)ϕ(ω) ds (ϕ is bounded and cylinder)

=

t∫

0

∑

i

ri(ω)[Eω
(i, i+1)

ϕ(ω(s)) − E
ωϕ(ω(s))] ds

thus we need to see that the effect of a brick laid far enough at

(i, i+ 1) will most likely not reach close to the origin.

 Such an effect cannot cross a non-growing column (coupling).

 Up to some time T = Tω, we have the Kolmogorov forward and

backward equations (also in differential form).
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3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,

b.) The process (a.s.) stays in the state space Ω̃,

c.) True bricklayers are laying the bricks at each site (that is, the

Kolmogorov forward and backward equations hold with our favorite generator),

d.) The product measure µθ is stationary, and the process in this

distribution is ergodic.
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3d.) Equilibrium and ergodicity

Based on the equilibrium ζ process, it is natural, and not difficult

either, that the measure µθ is stationary.

Ergodicity is a bit more difficult. The ergodicity of such a non-

countable state space process is characterized by:
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3d.) Ergodicity

• Invariant functions are trivial: S(t)ϕ = ϕ a.s. ⇒ ϕ µθis a.s. constant.

(This is easy to attack.)

• For each ψ L2
θ function, ψ̂ := lim

t→∞
1
t

t∫

0
S(s)ψ ds = E(θ)[ψ]. (This is

why we like ergodicity: LLN for counting quantities.)

• The dynamical system (Path space, Time-shift, Path measure) is

ergodic.

• µθ is extremal: if µθ = α ·ν1+(1−α) ·ν2, and ν1, ν2 are translation-

invariant and stationary, then µθ = ν1 = ν2. (We also like this one: there

is no interesting translation-invariant equilibrium, other than µθ.)
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3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

175



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

176



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

177



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

178



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

179



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

180



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

ξ(t) = ω(t)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

181



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

ξ(t) = ω(t)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

182



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

ξ(t) = ω(t)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

183



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

ξ(t) = ω(t)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

184



3d.) Ergodicity

Start ξ with one extra brick compared to ω:

i i+ 1

ξ(0)

ω(0)

ξ(t) = ω(t)

i i+ 1

-with positive
probability

Thus ψ(ω(0)) = ψ(ω(t)) = ψ(ξ(t)) = ψ(ξ(0)).

 ψ is invariant for an extra brick

 ψ is finite permutation-invariant

 ψ is µθ-a.s. constant (Hewitt-Savage 0-1 Law).

185



3. Properties:

a.) What we have is a right-continuous (in time) Markov process,

b.) The process (a.s.) stays in the state space Ω̃,

c.) True bricklayers are laying the bricks at each site (that is, the

Kolmogorov forward and backward equations hold with our favorite generator),

d.) The product measure µθ is stationary, and the process in this

distribution is ergodic.
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4. We didn’t succeed in:

- Finding a nice function space where the semigroup S(t) acts. Ac-

cordingly, we can’t really say anything about functional analytic prop-

erties of the generator.

- Proving the validity of the Kolmogorov equations for all times, we

can only state these equations up to a time T = T(ω) > 0 that

depends on the initial state.

- Constructing the version in which bricklayers are also allowed to

remove bricks from columns (that is, particles are also allowed to

jump to the left (ZR)). We haven’t tried, but it didn’t seem easy.
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It exists.

Thank you.
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It exists.

Thank you.
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