Construction of the zero range process and a deposition model with superlinear growth rates

```
Márton Balázs (MTA-BME Stochastics Research Group)
    Joint work with
    Firas Rassoul-Agha (University of Utah),
    Timo Seppäläinen (University of Wisconsin-Madison)
    and
    Sunder Sethuraman (Iowa State University)
```

 March 1., 2007
 1. The zero range process and the bricklayers' process
2. Construction materials and the construction
3. What have we constructed? Properties
4. What we didn't succeed in...
5. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right)$,

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

1. The zero range process (ZR):

$$
\omega_{i} \in \mathbb{Z}^{+}
$$

1. The zero range process (ZR):

2. The zero range process (zR):

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.
3. The zero range process (zR):

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.
4. The zero range process (zR):

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.
5. The zero range process (zR):

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.
6. The zero range process (zR):

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.
7. The zero range process (ZR):

with rate $r\left(\omega_{i}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1}$.

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\omega_{i} \in \mathbb{Z}
$$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

with rate $r\left(\omega_{i}\right)$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

with rate $r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right)$,

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\text { with rate } r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\text { with rate } r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\text { with rate } r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\text { with rate } r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\text { with rate } r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

The bricklayers' process (BL) (B. Tóth)
$\omega_{i}=$ negative discrete gradient

$$
\text { with rate } r\left(\omega_{i}\right)+r\left(-\omega_{i+1}\right), \quad\binom{\omega_{i}}{\omega_{i+1}} \longrightarrow\binom{\omega_{i}-1}{\omega_{i+1}+1} .
$$

Assumptions:

Assumptions:

- $r(z)$ is increasing,

Assumptions:

- $r(z)$ is increasing,
\rightsquigarrow the process (to be constructed) is attractive: the higher neighbors \Rightarrow the faster column growth.

Assumptions:

- $r(z)$ is increasing,
\rightsquigarrow the process (to be constructed) is attractive: the higher neighbors \Rightarrow the faster column growth.
- $r(z) \cdot r(1-z)=\left\{\begin{array}{l}0 \text { for } \mathrm{ZR}, \\ 1 \text { for } \mathrm{BL}\end{array} \quad \forall z \in \mathbb{Z}\right.$,

Assumptions:

- $r(z)$ is increasing,
\rightsquigarrow the process (to be constructed) is attractive: the higher neighbors \Rightarrow the faster column growth.
- $r(z) \cdot r(1-z)=\left\{\begin{array}{l}0 \text { for } \mathrm{ZR}, \\ 1 \text { for } \mathrm{BL}\end{array} \quad \forall z \in \mathbb{Z}\right.$,
\rightsquigarrow Independent μ^{θ}-distributed ω_{i} 's is (formally) the equilibrium of the process.
The parameter θ sets the mean of ω_{i} 's, that is, the slope of the wall.
- The construction was available for the case

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- The construction was available for the case

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

- The construction was available for the case

$$
r(z+1)-r(z) \leq K
$$

Andjel 1982, Booth and Quant 2002.

- B. 2001 and 2004 finds nice distributions related to shocks in the exponential BL process:

$$
r(z)=A \cdot \mathrm{e}^{B z}
$$

Unfortunately, the process is not constructed at that time.

- Goal: construct the dynamics if we only have

$$
r(z) \leq \mathrm{e}^{\beta z} \quad(\beta>0)
$$

- Goal: construct the dynamics if we only have

$$
r(z) \leq \mathrm{e}^{\beta z} \quad(\beta>0)
$$

+ the previous assumptions for attractivity and the μ^{θ}-equilibrium.
- Goal: construct the dynamics if we only have

$$
r(z) \leq \mathrm{e}^{\beta z} \quad(\beta>0)
$$

+ the previous assumptions for attractivity and the μ^{θ}-equilibrium. Estimates used by Andjel do not work.

2. Construction materials: Equilibrium in finite volume

$\zeta_{i}=$ negative discrete gradient
3. Construction materials: Equilibrium in finite volume

\rightsquigarrow Independent μ^{θ}-distributed ζ_{i} 's $(i=\ell \ldots \mathfrak{r})$ is the equilibrium of the process.
θ sets the mean of ζ_{i} 's, that is, the slope of the wall.
4. Construction materials: The monotone process

$\curvearrowright:$ with rate $r\left(\omega_{i}\right)$
$\curvearrowleft:$ with rate $r\left(-\omega_{i}\right)$

$$
\omega_{i}=\text { negative discrete gradient }
$$

2. Construction materials: The monotone process

\rightsquigarrow This process is far from equilibrium!!

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\leadsto Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}. \Rightarrow We have a limit of the monotone processes.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}. \Rightarrow We have a limit of the monotone processes. Is the limit finite?

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With pōsitive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\omega}$ is bounded by the height of that column of $\underline{\zeta}$ for all later times.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\omega}$ is bounded by the height of that column of $\underline{\xi}$ for all later times.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\leadsto Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\omega}$ is bounded by the height of that column of $\underline{\zeta}$ for all later times.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With positive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
 of that column of $\underline{\zeta}$ for all later times.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With pōsitive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\omega}$ is bounded by the height of that column of $\underline{\zeta}$ for all later times.

- Fix a state $\underline{\omega}(0) \in \widetilde{\Omega}$. Start a monotone process from this state.
\rightsquigarrow Coupling 1: The column heights are monotone in ℓ and \mathfrak{r}. \Rightarrow We have a limit of the monotone processes. Is the limit finite? Yes, it is.
- Start the $\underline{\zeta}$ equilibrium process in distribution $\mu^{\theta_{2}}$ on the left, $\mu^{\theta_{1}}$ on the right. \Rightarrow With pōsitive probability, each column of $\underline{\zeta}$ is higher than that column of $\underline{\omega}$.
\rightsquigarrow Coupling 2: In this case, the height of a column of $\underline{\omega}$ is bounded by the height of that column of $\underline{\zeta}$ for all later times.

For this conditional coupling, we need an appropriate state space:

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\}\right.
$$

For this conditional coupling, we need an appropriate state space:

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\},\right.
$$

that is, the asymptotic slope of the wall is bounded.

For this conditional coupling, we need an appropriate state space:

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\},\right.
$$

that is, the asymptotic slope of the wall is bounded.
\rightsquigarrow In this case we have a limiting process in infinite volume, for which it is almost impossible to blow up.

For this conditional coupling, we need an appropriate state space:

$$
\widetilde{\Omega}=\left\{\underline{\omega}:\left\{\begin{array}{l}
\limsup _{i \rightarrow-\infty} \frac{1}{|i|} \sum_{j=i+1}^{0}\left|\omega_{j}\right|<\infty \\
\limsup _{i \rightarrow \infty} \frac{1}{i} \sum_{j=1}^{i}\left|\omega_{j}\right|<\infty
\end{array}\right\},\right.
$$

that is, the asymptotic slope of the wall is bounded.
\rightsquigarrow In this case we have a limiting process in infinite volume, for which it is almost impossible to blow up.
\rightsquigarrow But what is this process?
3. Properties

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \uparrow

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site π°

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \uparrow

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \AA (that is, the Kolmogorov forward and backward equations hold with our favorite generator),

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \AA (that is, the Kolmogorov forward and backward equations hold with our favorite generator),
d.) The product measure $\underline{\mu}^{\theta}$ is stationary, and the process in this distribution is ergodic.

3a.) Right-continuity and the Markov property

Idea: the limit for the space-time box $[a, b] \times[0, t]$ is already achieved in finite volume.

That is, a.s. there exist (random) ℓ and \mathfrak{r}, such that the heights $h_{i}^{[\ell, r]}(s)$ of columns of the $[\ell, \mathfrak{r}]$ monotone process agree to the column heights $h_{i}(s)$ of the limiting process for all $a \leq i \leq b$ and $s \in[0, t]$.

3a.) Right-continuity and the Markov property

Idea: the limit for the space-time box $[a, b] \times[0, t]$ is already achieved in finite volume.

That is, a.s. there exist (random) ℓ and \mathfrak{r}, such that the heights $h_{i}^{[\ell, r]}(s)$ of columns of the $[\ell, \mathfrak{r}]$ monotone process agree to the column heights $h_{i}(s)$ of the limiting process for all $a \leq i \leq b$ and $s \in[0, t]$.

Right-continuity is OK, and a bit of extra work yields the Markov property as well.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $a \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: a \star under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Abbreviation: $r_{i}(t)=r\left(\omega_{i}(t)\right)+r\left(-\omega_{i+1}(t)\right)$ is the rate of growth at site i.
*: independent rate 1 Poisson processes on the plane for each i.

Rule: $\mathrm{a} \star$ under the curve gives rise to a new brick.

3a.) Graphical construction for the Idea

Common Poisson points \star for each of the monotone processes,

3a.) Graphical construction for the Idea

Common Poisson points \star for each of the monotone processes, and a.s. finite rates r_{i}

3a.) Graphical construction for the Idea

Common Poisson points \star for each of the monotone processes, and a.s. finite rates r_{i}
\rightsquigarrow finitely many \star 's govern each of the monotone processes in the space-time box $[a, b] \times[0, t]$.

3a.) Graphical construction for the Idea

Common Poisson points \star for each of the monotone processes, and a.s. finite rates r_{i}
\rightsquigarrow finitely many \star 's govern each of the monotone processes in the space-time box $[a, b] \times[0, t]$.
\rightsquigarrow The limit is already achieved in finite volume.

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \AA (that is, the Kolmogorov forward and backward equations hold with our favorite generator),
d.) The product measure $\underline{\mu}^{\theta}$ is stationary, and the process in this distribution is ergodic.

3b.) State space: The slope of $\underline{\omega}$ stays bounded

3b.) State space: The slope of $\underline{\omega}$ stays bounded

With the conditional coupling

3b.) State space: The slope of $\underline{\omega}$ stays bounded

With the conditional coupling
it is enough to give a moment bound on the columns $g_{i}(t)(\mathrm{B}-\mathrm{C})$.

3b.) State space: The slope of $\underline{\omega}$ stays bounded

With the conditional coupling

it is enough to give a moment bound on the columns $g_{i}(t)(\mathrm{B}-\mathrm{C})$.
First moment: $\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{E} g_{i}(t)=\mathbf{E}\left[r_{i}(t)\right]<$ const.
(where $r_{i}(t)=r\left(\zeta_{i}(t)\right)+r\left(-\zeta_{i+1}(t)\right)$ is the rate of growth at site i).

3b.) State space

Second moment:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} g_{i}^{2}(t)=2 \mathbf{E} g_{i}(t) \cdot r_{i}(t)+\mathbf{E} r_{i}(t)
$$

3b.) State space

Second moment:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} g_{i}^{2}(t) & =2 \mathbf{E} g_{i}(t) \cdot r_{i}(t)+\mathbf{E} r_{i}(t) \\
& \leq 2 \sqrt{\mathbf{E} g_{i}^{2}(t)} \cdot \sqrt{\mathbf{E} r_{i}^{2}(t)}+\mathbf{E} r_{i}(t)
\end{aligned}
$$

3b.) State space

Second moment:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} g_{i}^{2}(t) & =2 \mathbf{E} g_{i}(t) \cdot r_{i}(t)+\mathbf{E} r_{i}(t) \\
& \leq 2 \sqrt{\mathbf{E} g_{i}^{2}(t)} \cdot \sqrt{\mathbf{E} r_{i}^{2}(t)}+\mathbf{E} r_{i}(t)
\end{aligned}
$$

thus $\mathbf{E} g_{i}^{2}(t) \leq y(t)$, where $y(t)$ solves the equation

$$
y^{\prime} \leq 2 \sqrt{y} \cdot \sqrt{\mathbf{E} r_{i}^{2}}+\mathbf{E} r_{i}
$$

3b.) State space

Second moment:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{E} g_{i}^{2}(t) & =2 \mathbf{E} g_{i}(t) \cdot r_{i}(t)+\mathbf{E} r_{i}(t) \\
& \leq 2 \sqrt{\mathbf{E} g_{i}^{2}(t)} \cdot \sqrt{\mathbf{E} r_{i}^{2}(t)}+\mathbf{E} r_{i}(t)
\end{aligned}
$$

thus $\mathbf{E} g_{i}^{2}(t) \leq y(t)$, where $y(t)$ solves the equation

$$
y^{\prime} \leq 2 \sqrt{y} \cdot \sqrt{\mathbf{E} r_{i}^{2}}+\mathbf{E} r_{i}
$$

Similar procedure works for higher moments as well.

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \AA (that is, the Kolmogorov forward and backward equations hold with our favorite generator),
d.) The product measure $\underline{\mu}^{\theta}$ is stationary, and the process in this distribution is ergodic.

3c.) Kolmogorov equation

Semigroup (on measurable functions φ):

$$
S(t) \varphi(\underline{\omega}):=\mathrm{E}[\varphi(\underline{\omega}(t)) \mid \underline{\omega}(0)=\underline{\omega}]
$$

3c.) Kolmogorov equation

Semigroup (on measurable functions φ):

$$
S(t) \varphi(\underline{\omega}):=\mathbf{E}[\varphi(\underline{\omega}(t)) \mid \underline{\omega}(0)=\underline{\omega}]=: \mathbf{E}^{\underline{\omega}}[\varphi(\underline{\omega}(t))] .
$$

3c.) Kolmogorov equation

Semigroup (on measurable functions φ):

$$
S(t) \varphi(\underline{\omega}):=\mathbf{E}[\varphi(\underline{\omega}(t)) \mid \underline{\omega}(0)=\underline{\omega}]=: \mathbf{E} \underline{\underline{\omega}}[\varphi(\underline{\omega}(t))] .
$$

Formal generator (on cylinder functions φ):

$$
L \varphi(\underline{\omega})=\sum_{i} r_{i}(\underline{\omega}) \cdot\left[\varphi\left(\underline{\omega}^{(i, i+1)}\right)-\varphi(\underline{\omega})\right],
$$

where $\underline{\omega}^{(i, i+1)}=\underline{\omega}+$ one brick $=\ldots, \omega_{i-1}, \omega_{i}-1, \omega_{i+1}+1, \omega_{i+2}, \ldots$

3c.) Kolmogorov forward equation

$$
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega})=\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s \quad(\varphi \text { is bounded and cylinder })
$$

3c.) Kolmogorov forward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \quad(\varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \mathbf{E}^{\underline{\omega}} \sum_{i} r_{i}(\underline{\omega}(s))\left[\varphi\left(\underline{\omega}^{(i, i+1)}(s)\right)-\varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

3c.) Kolmogorov forward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \mathbf{E}^{\underline{\omega}} \sum_{i} r_{i}(\underline{\omega}(s))\left[\varphi\left(\underline{\omega}^{(i, i+1)}(s)\right)-\varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need moments of $r_{i}(\underline{\omega}(s))$ when started from a fixed state $\underline{\omega}$.

3c.) Kolmogorov forward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \mathbf{E}^{\underline{\omega}} \sum_{i} r_{i}(\underline{\omega}(s))\left[\varphi\left(\underline{\omega}^{(i, i+1)}(s)\right)-\varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need moments of $r_{i}(\underline{\omega}(s))$ when started from a fixed state $\underline{\omega}$.

Exponential rates \rightsquigarrow we need exponential moments of $\omega_{i}(s)$.

3c.) Kolmogorov forward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \quad(\varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \mathbf{E}^{\underline{\omega}} \sum_{i} r_{i}(\underline{\omega}(s))\left[\varphi\left(\underline{\omega}^{(i, i+1)}(s)\right)-\varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need moments of $r_{i}(\underline{\omega}(s))$ when started from a fixed state $\underline{\omega}$.

Exponential rates \rightsquigarrow we need exponential moments of $\omega_{i}(s)$. Due to the conditional coupling, we need exponential moments of the columns g_{i} of the equilibrium process.

3c.) Kolmogorov forward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} S(s) L \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \mathbf{E}^{\underline{\omega}} \sum_{i} r_{i}(\underline{\omega}(s))\left[\varphi\left(\underline{\omega}^{(i, i+1)}(s)\right)-\varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need moments of $r_{i}(\underline{\omega}(s))$ when started from a fixed state $\underline{\omega}$.

Exponential rates \rightsquigarrow we need exponential moments of $\omega_{i}(s)$. Due to the conditional coupling, we need exponential moments of the columns g_{i} of the equilibrium process.

The moment computation above does not work.

3c.) Kolmogorov forward equation
Idea: Let's look for non-growing columns.

3c.) Kolmogorov forward equation
Idea: Let's look for non-growing columns.
By contradiction, assume that each column has grown by time t in a large interval.

3c.) Kolmogorov forward equation
Idea: Let's look for non-growing columns.
By contradiction, assume that each column has grown by time t in a large interval.

In the equilibrium process $\underline{\zeta}$, most of the $\zeta_{i}(t)$ values are not too large and not too small, hence the growth rates are not too large either.

3c.) Kolmogorov forward equation
Idea: Let's look for non-growing columns.
By contradiction, assume that each column has grown by time t in a large interval.

In the equilibrium process $\underline{\zeta}$, most of the $\zeta_{i}(t)$ values are not too large and not too small, hence the growth rates are not too large either.

Hence most of these growing columns have grown while the growth rates were moderate. The probability of this is very small.

3c.) Kolmogorov forward equation

Idea: Let's look for non-growing columns.
By contradiction, assume that each column has grown by time t in a large interval.

In the equilibrium process $\underline{\zeta}$, most of the $\zeta_{i}(t)$ values are not too large and not too small, hence the growth rates are not too large either.

Hence most of these growing columns have grown while the growth rates were moderate. The probability of this is very small.
\rightsquigarrow So: For small enough t
$\mathbf{P}\{$ every column grew by time t in $[0, i]\} \leq \mathrm{e}^{-C \cdot i}$.

3c.) Kolmogorov forward equation

3c.) Kolmogorov forward equation

$$
g_{0}(t)=g_{i}(t)+\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t)
$$

3c.) Kolmogorov forward equation

$$
\begin{aligned}
g_{0}(t) & =g_{i}(t)+\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t) \\
g_{0}(0) & =g_{i}(0)+\zeta_{1}(0)+\zeta_{2}(0)+\cdots+\zeta_{i}(0)
\end{aligned}
$$

3c.) Kolmogorov forward equation

$$
\begin{aligned}
g_{0}(t) & =g_{i}(t)+\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t) \\
g_{0}(0) & =g_{i}(0)+\zeta_{1}(0)+\zeta_{2}(0)+\cdots+\zeta_{i}(0)
\end{aligned}
$$

3c.) Kolmogorov forward equation

$$
\begin{aligned}
g_{0}(t) & =g_{i}(t)+\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t) \\
g_{0}(0) & =g_{i}(0)+\zeta_{1}(0)+\zeta_{2}(0)+\cdots+\zeta_{i}(0) \\
g_{0}(t)-g_{0}(0) & =\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t)-\zeta_{1}(0)-\zeta_{2}(0)-\cdots-\zeta_{i}(0)
\end{aligned}
$$

3c.) Kolmogorov forward equation

$$
\begin{aligned}
g_{0}(t) & =g_{i}(t)+\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t) \\
g_{0}(0) & =g_{i}(0)+\zeta_{1}(0)+\zeta_{2}(0)+\cdots+\zeta_{i}(0) \\
g_{0}(t)-g_{0}(0) & =\zeta_{1}(t)+\zeta_{2}(t)+\cdots+\zeta_{i}(t)-\zeta_{1}(0)-\zeta_{2}(0)-\cdots-\zeta_{i}(0)
\end{aligned}
$$

Everyone on the right-hand side has exponential moments.

3c.) Kolmogorov backward equation

$$
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega})=\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s \quad(\varphi \text { is bounded and cylinder })
$$

3c.) Kolmogorov backward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \sum_{i} r_{i}(\underline{\omega})\left[\mathbf{E}^{\underline{\omega}^{(i, i+1)}} \varphi(\underline{\omega}(s))-\mathbf{E}^{\underline{\omega}} \varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

3c.) Kolmogorov backward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \sum_{i} r_{i}(\underline{\omega})\left[\mathbf{E}^{(i, i+1)} \varphi(\underline{\omega}(s))-\mathbf{E}^{\underline{\omega}} \varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need to see that the effect of a brick laid far enough at ($i, i+1$) will most likely not reach close to the origin.

3c.) Kolmogorov backward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \sum_{i} r_{i}(\underline{\omega})\left[\mathbf{E}^{\underline{\omega}^{(i, i+1)}} \varphi(\underline{\omega}(s))-\mathbf{E}^{\underline{\omega}} \varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need to see that the effect of a brick laid far enough at ($i, i+1$) will most likely not reach close to the origin.
\rightsquigarrow Such an effect cannot cross a non-growing column (coupling).

3c.) Kolmogorov backward equation

$$
\begin{aligned}
S(t) \varphi(\underline{\omega})-\varphi(\underline{\omega}) & =\int_{0}^{t} L S(s) \varphi(\underline{\omega}) \mathrm{d} s \quad \quad \text { (} \varphi \text { is bounded and cylinder) } \\
& =\int_{0}^{t} \sum_{i} r_{i}(\underline{\omega})\left[\mathbf{E}^{\underline{\omega}^{(i, i+1)}} \varphi(\underline{\omega}(s))-\mathbf{E}^{\underline{\omega}} \varphi(\underline{\omega}(s))\right] \mathrm{d} s
\end{aligned}
$$

thus we need to see that the effect of a brick laid far enough at ($i, i+1$) will most likely not reach close to the origin.
\rightsquigarrow Such an effect cannot cross a non-growing column (coupling).
\rightsquigarrow Up to some time $T=T^{\underline{\omega}}$, we have the Kolmogorov forward and backward equations (also in differential form).

3. Properties: We should see that

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \AA (that is, the Kolmogorov forward and backward equations hold with our favorite generator),
d.) The product measure $\underline{\mu}^{\theta}$ is stationary, and the process in this distribution is ergodic.

3d.) Equilibrium and ergodicity

Based on the equilibrium ζ process, it is natural, and not difficult either, that the measure $\underline{\mu}^{\theta}$ is stationary.

3d.) Equilibrium and ergodicity

Based on the equilibrium ζ process, it is natural, and not difficult either, that the measure $\underline{\mu}^{\theta}$ is stationary.

Ergodicity is a bit more difficult. The ergodicity of such a noncountable state space process is characterized by:

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant.

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant. (This is easy to attack.)

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant.
(This is easy to attack.)
- For each ψL_{θ}^{2} function, $\widehat{\psi}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(s) \psi \mathrm{d} s=\mathbf{E}^{(\theta)}[\psi]$.

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant. (This is easy to attack.)
- For each ψL_{θ}^{2} function, $\widehat{\psi}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(s) \psi \mathrm{d} s=\mathbf{E}^{(\theta)}[\psi]$. (This is why we like ergodicity: LLN for counting quantities.)

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant. (This is easy to attack.)
- For each ψL_{θ}^{2} function, $\hat{\psi}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(s) \psi \mathrm{d} s=\mathbf{E}^{(\theta)}[\psi]$. (This is why we like ergodicity: LLN for counting quantities.)
- The dynamical system (Path space, Time-shift, Path measure) is ergodic.

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant. (This is easy to attack.)
- For each ψL_{θ}^{2} function, $\hat{\psi}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(s) \psi \mathrm{d} s=\mathbf{E}^{(\theta)}[\psi]$. (This is why we like ergodicity: LLN for counting quantities.)
- The dynamical system (Path space, Time-shift, Path measure) is ergodic.
- $\underline{\mu}^{\theta}$ is extremal: if $\underline{\mu}^{\theta}=\alpha \cdot \underline{\nu}_{1}+(1-\alpha) \cdot \underline{\nu}_{2}$, and $\underline{\nu}_{1}, \underline{\nu}_{2}$ are translationinvariant and stationary, then $\underline{\mu}^{\theta}=\underline{\nu}_{1}=\underline{\nu}_{2}$.

3d.) Ergodicity

- Invariant functions are trivial: $S(t) \varphi=\varphi$ a.s. $\Rightarrow \varphi \underline{\mu}^{\theta}$ is a.s. constant. (This is easy to attack.)
- For each ψL_{θ}^{2} function, $\hat{\psi}:=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} S(s) \psi \mathrm{d} s=\mathbf{E}^{(\theta)}[\psi]$. (This is why we like ergodicity: LLN for counting quantities.)
- The dynamical system (Path space, Time-shift, Path measure) is ergodic.
- $\underline{\mu}^{\theta}$ is extremal: if $\underline{\mu}^{\theta}=\alpha \cdot \underline{\nu}_{1}+(1-\alpha) \cdot \underline{\nu}_{2}$, and $\underline{\nu}_{1}, \underline{\nu}_{2}$ are translationinvariant and stationary, then $\underline{\mu}^{\theta}=\underline{\nu}_{1}=\underline{\nu}_{2}$. (We also like this one: there is no interesting translation-invariant equilibrium, other than $\underline{\mu}^{\theta}$.)

3d.) Ergodicity
Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

Thus $\psi(\underline{\omega}(0))=\psi(\underline{\omega}(t))=\psi(\underline{\xi}(t))=\psi(\underline{\xi}(0))$.

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

Thus $\psi(\underline{\omega}(0))=\psi(\underline{\omega}(t))=\psi(\underline{\xi}(t))=\psi(\underline{\xi}(0))$.
$\rightsquigarrow \psi$ is invariant for an extra brick

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

Thus $\psi(\underline{\omega}(0))=\psi(\underline{\omega}(t))=\psi(\underline{\xi}(t))=\psi(\underline{\xi}(0))$.
$\rightsquigarrow \psi$ is invariant for an extra brick
$\rightsquigarrow \psi$ is finite permutation-invariant

3d.) Ergodicity

Start $\underline{\xi}$ with one extra brick compared to $\underline{\omega}$:

Thus $\psi(\underline{\omega}(0))=\psi(\underline{\omega}(t))=\psi(\underline{\xi}(t))=\psi(\underline{\xi}(0))$.
$\rightsquigarrow \psi$ is invariant for an extra brick
$\leadsto \psi$ is finite permutation-invariant
$\rightsquigarrow \psi$ is $\underline{\mu}^{\theta}$-a.s. constant (Hewitt-Savage 0-1 Law).

3. Properties:

a.) What we have is a right-continuous (in time) Markov process,
b.) The process (a.s.) stays in the state space $\widetilde{\Omega}$,
c.) True bricklayers are laying the bricks at each site \AA (that is, the Kolmogorov forward and backward equations hold with our favorite generator),
d.) The product measure $\underline{\mu}^{\theta}$ is stationary, and the process in this distribution is ergodic.

4. We didn't succeed in:

- Finding a nice function space where the semigroup $S(t)$ acts. Accordingly, we can't really say anything about functional analytic properties of the generator.

4. We didn't succeed in:

- Finding a nice function space where the semigroup $S(t)$ acts. Accordingly, we can't really say anything about functional analytic properties of the generator.
- Proving the validity of the Kolmogorov equations for all times, we can only state these equations up to a time $T=T(\underline{\omega})>0$ that depends on the initial state.

4. We didn't succeed in:

- Finding a nice function space where the semigroup $S(t)$ acts. Accordingly, we can't really say anything about functional analytic properties of the generator.
- Proving the validity of the Kolmogorov equations for all times, we can only state these equations up to a time $T=T(\underline{\omega})>0$ that depends on the initial state.
- Constructing the version in which bricklayers are also allowed to remove bricks from columns (that is, particles are also allowed to jump to the left (ZR)). We haven't tried, but it didn't seem easy.

It exists.

It exists.

Thank you.

