Fluctuations of asymmetric interacting systems in one dimension

Márton Balázs
UW-Madison
Work supervised by Bálint Tóth

Mathematical Biosciences Institute 2005

1. Deposition processes and particle systems
2. Examples
3. The second class particle
4. Growth/current fluctuations
5. The role of the second class particle
6. The speed of the second class particle
(7. A few words on hydrodynamics)

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

$$
\begin{aligned}
& \eta_{i} \in\{0,1\} \\
& \underline{\eta}=\left(\eta_{i}\right)_{i \in \mathbb{Z}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\eta_{i}, \eta_{i+1}\right) \rightarrow\left(\eta_{i}-1, \eta_{i+1}+1\right) \\
& \text { with rate } \eta_{i}\left(1-\eta_{i+1}\right) \quad \text { i.e. if possible }
\end{aligned}
$$

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

1. Deposition processes and particle systems

Totally asymmetric simple exclusion:

Let's generalize: deposition models (B. Tóth)

$\omega_{i}=$ negative discrete gradient

$$
\left(\omega_{i}, \omega_{i+1}\right) \rightarrow\left(\omega_{i}-1, \omega_{i+1}+1\right)
$$

with rate $r\left(\omega_{i}, \omega_{i+1}\right)$

Attractivity: $r(\cdot, \cdot)$ is
non-decreasing in the first non-increasing in the second
variable. Higher neighbors \rightsquigarrow higher growth rates.

Let's generalize: deposition models (B. Tóth)

$\omega_{i}=$ negative discrete gradient

$$
\begin{aligned}
& \left(\omega_{i}, \omega_{i+1}\right) \rightarrow\left(\omega_{i}-1, \omega_{i+1}+1\right) \\
& \text { with rate } r\left(\omega_{i}, \omega_{i+1}\right)
\end{aligned}
$$

Attractivity: $r(\cdot, \cdot)$ is
non-decreasing in the first non-increasing in the second
variable. Higher neighbors \rightsquigarrow higher growth rates.

Let's generalize: deposition models (B. Tóth)

$\omega_{i}=$ negative discrete gradient

$$
\begin{aligned}
& \omega_{i} \in \mathbb{Z} \\
& \underline{\omega}=\left(\omega_{i}\right)_{i \in \mathbb{Z}}
\end{aligned}
$$

$$
\left(\omega_{i}, \omega_{i+1}\right) \rightarrow\left(\omega_{i}-1, \omega_{i+1}+1\right)
$$

$$
\text { with rate } r\left(\omega_{i}, \omega_{i+1}\right)
$$

Attractivity: $r(\cdot, \cdot)$ is
non-decreasing in the first non-increasing in the second
variable. Higher neighbors \rightsquigarrow higher growth rates.

Let's generalize: deposition models (B. Tóth)

$\omega_{i}=$ negative discrete gradient

$$
\begin{aligned}
& \omega_{i} \in \mathbb{Z} \\
& \underline{\omega}=\left(\omega_{i}\right)_{i \in \mathbb{Z}}
\end{aligned}
$$

$$
\left(\omega_{i}, \omega_{i+1}\right) \rightarrow\left(\omega_{i}-1, \omega_{i+1}+1\right)
$$

$$
\text { with rate } r\left(\omega_{i}, \omega_{i+1}\right)
$$

Attractivity: $r(\cdot, \cdot)$ is
non-decreasing in the first non-increasing in the second
variable. Higher neighbors \rightsquigarrow higher growth rates.

Let's generalize: deposition models (B. Tóth)

$\omega_{i}=$ negative discrete gradient

$$
\begin{aligned}
& \omega_{i} \in \mathbb{Z} \\
& \underline{\omega}=\left(\omega_{i}\right)_{i \in \mathbb{Z}}
\end{aligned}
$$

$$
\left(\omega_{i}, \omega_{i+1}\right) \rightarrow\left(\omega_{i}-1, \omega_{i+1}+1\right)
$$

$$
\text { with rate } r\left(\omega_{i}, \omega_{i+1}\right)
$$

Attractivity: $r(\cdot, \cdot)$ is
non-decreasing in the first non-increasing in the second
variable. Higher neighbors \rightsquigarrow higher growth rates.

Let's generalize: deposition models (B. Tóth)

$\omega_{i}=$ negative discrete gradient

$$
\begin{aligned}
& \left(\omega_{i}, \omega_{i+1}\right) \rightarrow\left(\omega_{i}-1, \omega_{i+1}+1\right) \\
& \text { with rate } r\left(\omega_{i}, \omega_{i+1}\right)
\end{aligned}
$$

Attractivity: $r(\cdot, \cdot)$ is
non-decreasing in the first non-increasing in the second
variable. Higher neighbors \rightsquigarrow higher growth rates.

Equilibrium

We need a well-behaved equilibrium distribution. The only case we can really handle is the product measure, i.e. when ω_{i} 's are iid.

Technical assumptions for the equilibrium

 being product:$$
\begin{aligned}
& \quad r(x, y)+r(y, z)+r(z, x) \\
& =r(x, z)+r(z, y)+r(y, x) \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& r(x, y-1) \cdot r(y, z-1) \cdot r(z, x-1) \\
= & r(x, z-1) \cdot r(z, y-1) \cdot r(y, x-1)
\end{aligned}
$$

for any $x, y, z \in \mathbb{Z}$.
\rightsquigarrow Then ω_{i} 's being independent and $\mu^{(\theta)}$-distributed is an equilibrium with some $\mu^{(\theta)}$ depending on the form of the rates $r(\cdot, \cdot)$. The parameter θ of μ sets $\mathbf{E}\left(\omega_{i}\right)$, i.e. the average (negative) slope of the wall.

2. Examples

Totally asymmetric simple exclusion (TASE):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if }\left(\omega_{i}, \omega_{i+1}\right)=(1,0) \\
0 \text { else }
\end{array}\right.
$$

Equilibrium:

Bernoulli measure with density ϱ (instead of θ).
Constructed e.g. in Liggett's 1985 book.

2. Examples

Totally asymmetric simple exclusion (TASE):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if }\left(\omega_{i}, \omega_{i+1}\right)=(1,0) \\
0 \text { else }
\end{array}\right.
$$

Equilibrium:

Bernoulli measure with density ϱ (instead of θ).
Constructed e.g. in Liggett's 1985 book.

2. Examples

Totally asymmetric simple exclusion (TASE):

$$
\omega_{i} \in\{0,1\}
$$

$$
r\left(\omega_{i}, \omega_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if }\left(\omega_{i}, \omega_{i+1}\right)=(1,0) \\
0 \text { else }
\end{array}\right.
$$

Equilibrium:

Bernoulli measure with density ϱ (instead of θ).
Constructed e.g. in Liggett's 1985 book.

2. Examples

Totally asymmetric simple exclusion (TASE):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if }\left(\omega_{i}, \omega_{i+1}\right)=(1,0) \\
0 \text { else }
\end{array}\right.
$$

Equilibrium:

Bernoulli measure with density ϱ (instead of θ).

Constructed e.g. in Liggett's 1985 book.

2. Examples

Totally asymmetric simple exclusion (TASE):

$$
\omega_{i} \in\{0,1\}
$$

$$
r\left(\omega_{i}, \omega_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if }\left(\omega_{i}, \omega_{i+1}\right)=(1,0) \\
0 \text { else }
\end{array}\right.
$$

Equilibrium:

Bernoulli measure with density ϱ (instead of θ).
Constructed e.g. in Liggett's 1985 book.

2. Examples

Totally asymmetric simple exclusion (TASE):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=\left\{\begin{array}{l}
1 \text { if }\left(\omega_{i}, \omega_{i+1}\right)=(1,0) \\
0 \text { else }
\end{array}\right.
$$

Equilibrium:

Bernoulli measure with density ϱ (instead of θ).
Constructed e.g. in Liggett's 1985 book.

The zero range process (ZR):

Equilibrium:
Product of modified Poisson-distributions with a parameter θ.

Special case:
When $f\left(\omega_{i}\right)=\omega_{i}$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1)-f(z) \leq K$.

The zero range process (ZR):

Equilibrium:
Product of modified Poisson-distributions with a parameter θ.

Special case:
When $f\left(\omega_{i}\right)=\omega_{i}$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1)-f(z) \leq K$.

The zero range process (ZR):

Equilibrium:
Product of modified Poisson-distributions with a parameter θ.

Special case:
When $f\left(\omega_{i}\right)=\omega_{i}$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1)-f(z) \leq K$.

The zero range process (ZR):

Equilibrium:
Product of modified Poisson-distributions with a parameter θ.

Special case:
When $f\left(\omega_{i}\right)=\omega_{i}$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1)-f(z) \leq K$.

The zero range process (ZR):

Equilibrium:
Product of modified Poisson-distributions with a parameter θ.

Special case:
When $f\left(\omega_{i}\right)=\omega_{i}$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1)-f(z) \leq K$.

The zero range process (ZR):

Equilibrium:
Product of modified Poisson-distributions with a parameter θ.

Special case:
When $f\left(\omega_{i}\right)=\omega_{i}$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=f\left(\omega_{i}\right)+f\left(-\omega_{i+1}\right)
$$

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=f\left(\omega_{i}\right)+f\left(-\omega_{i+1}\right)
$$

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=f\left(\omega_{i}\right)+f\left(-\omega_{i+1}\right)
$$

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=f\left(\omega_{i}\right)+f\left(-\omega_{i+1}\right)
$$

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

The bricklayers' process (BL):

$$
r\left(\omega_{i}, \omega_{i+1}\right)=f\left(\omega_{i}\right)+f\left(-\omega_{i+1}\right)
$$

with f non-decreasing, and $f(z) \cdot f(1-z)=1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ.

Constructed if $f(z+1)-f(z) \leq K$.

3. The second class particle

Two configurations only differ by one at site Q.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the right rates

$$
r\left(\omega_{Q}, \omega_{Q+1}\right)
$$

columns on the right grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the right rates

$$
r\left(\omega_{Q}, \omega_{Q+1}\right)
$$

columns on the right grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the right rates

$$
r\left(\omega_{Q}, \omega_{Q+1}\right)
$$

columns on the right grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the right rates

$$
r\left(\omega_{Q}, \omega_{Q+1}\right)
$$

columns on the right grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the right rates

$$
r\left(\omega_{Q}, \omega_{Q+1}\right)
$$

columns on the right grow together.

3. The second class particle

Two configurations only differ by one at site Q.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the right rates

$$
r\left(\omega_{Q}^{\prime}, \omega_{Q+1}^{\prime}\right)-r\left(\omega_{Q}, \omega_{Q+1}\right),
$$

only column of $\underline{\omega}^{\prime}$ on the right grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the right rates

$$
r\left(\omega_{Q}^{\prime}, \omega_{Q+1}^{\prime}\right)-r\left(\omega_{Q}, \omega_{Q+1}\right),
$$

only column of $\underline{\omega}^{\prime}$ on the right grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the right rates

$$
r\left(\omega_{Q}^{\prime}, \omega_{Q+1}^{\prime}\right)-r\left(\omega_{Q}, \omega_{Q+1}\right),
$$

only column of $\underline{\omega}^{\prime}$ on the right grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the right rates

$$
r\left(\omega_{Q}^{\prime}, \omega_{Q+1}^{\prime}\right)-r\left(\omega_{Q}, \omega_{Q+1}\right),
$$

only column of $\underline{\omega}^{\prime}$ on the right grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the right rates

$$
r\left(\omega_{Q}^{\prime}, \omega_{Q+1}^{\prime}\right)-r\left(\omega_{Q}, \omega_{Q+1}\right),
$$

only column of $\underline{\omega}^{\prime}$ on the right grows.

3. The second class particle

Two configurations only differ by one at site Q.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the left rates

$$
r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

columns on the left grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the left rates

$$
r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

columns on the left grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the left rates

$$
r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

columns on the left grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the left rates

$$
r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

columns on the left grow together.

3. The second class particle

Two configurations only differ by one at site Q.

With the smaller of the left rates

$$
r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

columns on the left grow together.

3. The second class particle

Two configurations only differ by one at site Q.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the left rates

$$
r\left(\omega_{Q-1}, \omega_{Q}\right)-r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

only column of $\underline{\omega}$ on the left grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the left rates

$$
r\left(\omega_{Q-1}, \omega_{Q}\right)-r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

only column of $\underline{\omega}$ on the left grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the left rates

$$
r\left(\omega_{Q-1}, \omega_{Q}\right)-r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right)
$$

only column of $\underline{\omega}$ on the left grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the left rates

$$
r\left(\omega_{Q-1}, \omega_{Q}\right)-r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

only column of $\underline{\omega}$ on the left grows.

3. The second class particle

Two configurations only differ by one at site Q.

With the difference of the left rates

$$
r\left(\omega_{Q-1}, \omega_{Q}\right)-r\left(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}\right),
$$

only column of $\underline{\omega}$ on the left grows.
\rightsquigarrow This way the single discrepancy, or the second class particle, is conserved.
Its position at time t is $Q(t)$, a complicated random process.
\rightsquigarrow This way the single discrepancy, or the second class particle, is conserved.
Its position at time t is $Q(t)$, a complicated random process.
\rightsquigarrow Column growths above $[i, i+1]$ differ in the two processes when the second class particle jumps above this edge.
\rightsquigarrow This way the single discrepancy, or the second class particle, is conserved.
Its position at time t is $Q(t)$, a complicated random process.
\rightsquigarrow Column growths above $[i, i+1]$ differ in the two processes when the second class particle jumps above this edge.
\rightsquigarrow There can be more than one second class particles, then the number of them is conserved.
\rightsquigarrow This way the single discrepancy, or the second class particle, is conserved.
Its position at time t is $Q(t)$, a complicated random process.
\rightsquigarrow Column growths above $[i, i+1]$ differ in the two processes when the second class particle jumps above this edge.
\rightsquigarrow There can be more than one second class particles, then the number of them is conserved.
\rightsquigarrow In this case,
difference of column growths above $[i, i+1]$
$=$ algebraic number of second class particles passed.

4. Growth/current fluctuations

Let $h_{i}(t)$ be the height of the column above $[i, i+1]$ at time t. Fix a velocity value $V \in \mathbb{R}$. Define

$$
J^{(V)}(t):=h_{\lfloor V t\rfloor}(t)-h_{0}(0) .
$$

\rightsquigarrow This is the growth in a slanted direction, or the particle current through the window moving with speed V.

4. Growth/current fluctuations

Let $h_{i}(t)$ be the height of the column above $[i, i+1]$ at time t. Fix a velocity value $V \in \mathbb{R}$. Define

$$
J^{(V)}(t):=h_{\lfloor V t\rfloor}(t)-h_{0}(0) .
$$

\rightsquigarrow This is the growth in a slanted direction, or the particle current through the window moving with speed V.

Assume that $\underline{\omega}$ is started from equilibrium with parameter θ, and assume also the Law of Large Numbers

$$
\frac{Q(t)}{t} \underset{t \rightarrow \infty}{L^{2}} C(\theta)
$$

for the second class particle.
\rightsquigarrow I.e. the second class particle has a speed.

Then for the whole class of models: (B. 2003)

LLN:

$$
\frac{J^{(V)}(t)}{t} \underset{t \rightarrow \infty}{\text { a.s. }} \mathbf{E}^{(\theta)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]-V \cdot \mathbf{E}^{(\theta)}\left(\omega_{i}\right)
$$

The right hand-side is what one can expect, this LLN. is a consequence of ergodicity of the process.

Then for the whole class of models: (B. 2003)
LLN:

$$
\frac{J^{(V)}(t)}{t} \underset{t \rightarrow \infty}{\text { a.s. }} \mathbf{E}^{(\theta)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]-V \cdot \mathbf{E}^{(\theta)}\left(\omega_{i}\right)
$$

The right hand-side is what one can expect, this LLN. is a consequence of ergodicity of the process.

Variance:

$$
\frac{\operatorname{Var}^{(\theta)} J^{(V)}(t)}{t} \underset{t \rightarrow \infty}{\longrightarrow}|V-C(\theta)| \cdot \operatorname{Var}^{(\theta)}\left(\omega_{i}\right)
$$

Normal fluctuations for V different from $C(\theta)$.

Then for the whole class of models: (B. 2003)

LLN:

$$
\frac{J^{(V)}(t)}{t} \underset{t \rightarrow \infty}{\text { a.s. }} \mathbf{E}^{(\theta)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]-V \cdot \mathbf{E}^{(\theta)}\left(\omega_{i}\right)
$$

The right hand-side is what one can expect, this LLN. is a consequence of ergodicity of the process.

Variance:

$$
\frac{\operatorname{Var}^{(\theta)} J^{(V)}(t)}{t} \underset{t \rightarrow \infty}{\longrightarrow}|V-C(\theta)| \cdot \operatorname{Var}^{(\theta)}\left(\omega_{i}\right)
$$

Normal fluctuations for V different from $C(\theta)$.

CLT:

$$
\frac{J^{(V)}(t)-\mathbf{E}^{(\theta)} J^{(V)}(t)}{\sqrt{t}} \underset{t \rightarrow \infty}{\mathrm{D}} \mathcal{N},
$$

a normal random variable with the above variance.
Simple consequence of the variance formula; fluctuations of the initial state are transported.
Ferrari - Fontes 1994 for SE.

Remarks:

\rightsquigarrow The fluctuations are Gaussian (of order $t^{1 / 2}$) if $V \neq C(\theta)$. In this scale, basically fluctuations coming from the initial state are observed. For $V=C(\theta)$, these fluctuations disappear, and only the dynamical noise remains. The latter is expected to appear on the $t^{1 / 3}$ time-scale for most systems, this is one of the greatest open questions in the field. T. Seppäläinen showed the limit on the $t^{1 / 4}$ scale for independent random walks, and we are currently working on a similar result for the so-called random average process.

Remarks:

\rightsquigarrow The fluctuations are Gaussian (of order $t^{1 / 2}$) if $V \neq C(\theta)$. In this scale, basically fluctuations coming from the initial state are observed. For $V=C(\theta)$, these fluctuations disappear, and only the dynamical noise remains. The latter is expected to appear on the $t^{1 / 3}$ time-scale for most systems, this is one of the greatest open questions in the field. T. Seppäläinen showed the limit on the $t^{1 / 4}$ scale for independent random walks, and we are currently working on a similar result for the so-called random average process.
\rightsquigarrow We need the LLN for the second class particle.
Known by Ferrari - Fontes 1992 for SE,
Rezakhanlou 1995 for ZR.

Remarks:

\rightsquigarrow The fluctuations are Gaussian (of order $t^{1 / 2}$) if $V \neq C(\theta)$. In this scale, basically fluctuations coming from the initial state are observed. For $V=C(\theta)$, these fluctuations disappear, and only the dynamical noise remains. The latter is expected to appear on the $t^{1 / 3}$ time-scale for most systems, this is one of the greatest open questions in the field. T. Seppäläinen showed the limit on the $t^{1 / 4}$ scale for independent random walks, and we are currently working on a similar result for the so-called random average process.
\rightsquigarrow We need the LLN for the second class particle.
Known by Ferrari - Fontes 1992 for SE,
Rezakhanlou 1995 for ZR.
For $Z \mathrm{R}$ and BL: Assume the rate $f(z)$ is convex. Then

$$
\frac{Q(t)}{t} \underset{t \rightarrow \infty}{L^{n}} C(\theta)
$$

for any n. B. 2003.
$C(\theta)$ is the characteristic speed in hydrodynamics.

5. The role of the second class particle

How to start with $\operatorname{Var} J(t)$?

5. The role of the second class particle

How to start with $\operatorname{Var} J(t)$?
\rightarrow Separate martingales from $J(t)$ and $J^{2}(t)$, use the reversed process, that gives time-integrals of expectations.

5. The role of the second class particle

How to start with $\operatorname{Var} J(t)$?
\rightarrow Separate martingales from $J(t)$ and $J^{2}(t)$, use the reversed process, that gives time-integrals of expectations.
\rightarrow Use the generator to introduce time-derivatives in the integrands, which will cancel the integrations.

5. The role of the second class particle
 (B. Tóth)

How to start with $\operatorname{Var} J(t)$?
\rightarrow Separate martingales from $J(t)$ and $J^{2}(t)$, use the reversed process, that gives time-integrals of expectations.
\rightarrow Use the generator to introduce time-derivatives in the integrands, which will cancel the integrations.
\rightarrow The non-trivial term is

$$
\lim _{t \rightarrow \infty} \sum_{n=1}^{\infty} \frac{n}{t} \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) .
$$

Trick:

$$
\omega_{n}^{\prime}(t)=\omega_{n}(t)+1\{Q(t)=n\}
$$

Trick:

$$
\omega_{n}^{\prime}(t)=\omega_{n}(t)+1\{Q(t)=n\}
$$

$$
\begin{aligned}
\mathrm{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}(0)=\right. & z]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
& +\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{aligned}
$$

Trick:

$$
\omega_{n}^{\prime}(t)=\omega_{n}(t)+1\{Q(t)=n\}
$$

$$
\begin{aligned}
\mathrm{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}(0)=\right. & z]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
& +\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{aligned}
$$

$$
\begin{array}{r}
\mathbf{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}^{\prime}(0)=z+1\right]=\mathbf{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
+\mathbf{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{array}
$$

Trick:

$$
\omega_{n}^{\prime}(t)=\omega_{n}(t)+1\{Q(t)=n\}
$$

$$
\begin{aligned}
\mathrm{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}(0)=\right. & z]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
& +\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}^{\prime}(0)=z+1\right]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
+\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{array}
$$

$$
\begin{array}{r}
\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z+1\right]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
+\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{array}
$$

Trick:

$$
\omega_{n}^{\prime}(t)=\omega_{n}(t)+1\{Q(t)=n\}
$$

$$
\begin{aligned}
\mathrm{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}(0)=\right. & z]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
& +\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{aligned}
$$

$$
\begin{array}{r}
\mathbf{E}\left[\omega_{n}^{\prime}(t) \mid \omega_{0}^{\prime}(0)=z+1\right]=\mathbf{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
+\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{array}
$$

$$
\begin{array}{r}
\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z+1\right]=\mathrm{E}\left[\omega_{n}(t) \mid \omega_{0}(0)=z\right] \\
+\mathrm{P}\left[Q(t)=n \mid \omega_{0}(0)=z\right]
\end{array}
$$

Compare the two sides, build the covariance step by step.

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

The argument and the LLN for the second class particle shows that for $V_{1} \neq C(\theta) \neq V_{2}$,

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \sum_{n=V_{1} t}^{V_{2} t} \cdot \frac{n}{t} \cdot \operatorname{Cov}\left(\omega_{n}(t), \omega_{0}(0)\right) \\
=1\left\{V_{1}<C(\theta)<V_{2}\right\} \cdot C(\theta) \cdot \operatorname{Cov}\left(\omega_{0}(0), \omega_{0}(0)\right) .
\end{array}
$$

\rightsquigarrow Covariance on the Gaussian time-scale is transported by the second class particle. This finishes the proof.
\rightsquigarrow Covariance on the Gaussian time-scale is transported by the second class particle. This finishes the proof.
\rightsquigarrow We used that the second class particle has the characteristic speed of the hydrodynamics.
\rightarrow We need to prove this, i.e. LLN for the second class particle.
\rightsquigarrow Covariance on the Gaussian time-scale is transported by the second class particle. This finishes the proof.
\rightsquigarrow We used that the second class particle has the characteristic speed of the hydrodynamics.
\rightarrow We need to prove this, i.e. LLN for the second class particle.
\rightsquigarrow Once it's done, we see that the second class particle transports disturbances both in the microscopic and the hydrodynamic picture.

6. The speed of the second class particle

$\underline{\omega}$ is in equilibrium (θ).

6. The speed of the second class particle

$\underline{\omega}$ is in equilibrium (θ).
$\omega_{i}^{\prime}=\omega_{i}+1\{Q=i\}$, not in equilibrium, one single second class particle \uparrow.
6. The speed of the second class particle

$\underline{\omega}$ is in equilibrium (θ).
$\omega_{i}^{\prime}=\omega_{i}+1\{Q=i\}$, not in equilibrium, one single second class particle \uparrow.
ζ is in equilibrium ($\tilde{\theta}$) such that $\zeta_{i} \geq \omega_{i}$, a density of second class particles \uparrow.
6. The speed of the second class particle

$\underline{\omega}$ is in equilibrium (θ).
$\omega_{i}^{\prime}=\omega_{i}+1\{Q=i\}$, not in equilibrium, one single second class particle \uparrow.
$\underline{\zeta}$ is in equilibrium ($\widetilde{\theta}$) such that $\zeta_{i} \geq \omega_{i}$, a density of second class particles \uparrow.
\rightsquigarrow Initially, the \uparrow 's are product-distributed.
Not at later times, the stationary distribution for TASE with second class particles was discovered by Derrida, Janowsky, Lebowitz, Speer 1993.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$.
\rightsquigarrow LLN for their columns' growth, and thus for the current of the \uparrow 's. (Current of second class particles \sim difference of columns' growth.)

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$.
\rightsquigarrow LLN for their columns' growth, and thus for the current of the \uparrow 's. (Current of second class particles \sim difference of columns' growth.)

Initially, the \uparrow 's are product-distributed.
\rightsquigarrow We know much about the \uparrow 's. Let's compare the \uparrow 's with the single \uparrow.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$.
\rightsquigarrow LLN for their columns' growth, and thus for the current of the \uparrow 's. (Current of second class particles \sim difference of columns' growth.)

Initially, the \uparrow 's are product-distributed.
\rightsquigarrow We know much about the \uparrow 's. Let's compare the \uparrow 's with the single \uparrow.

It works fine.

Until a point.

Until a point when more \uparrow 's meet with \uparrow :

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left,

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 3/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 3/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 3/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 1/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 3/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 3/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

With prob. 3/4
Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left, 6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.
\rightsquigarrow its rate is only (too) large/4.

Until a point when more \uparrow 's meet with \uparrow :

Which one to couple \uparrow to?
Let's label the \uparrow 's in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability $1 / 4$, it follows the \uparrow to jump.
\rightsquigarrow its rate is only (too) large/4.
\rightsquigarrow If the rate function $f(z)$ is convex, then \uparrow is comparable to \star : \uparrow is always to the left of \star. This \star is nice enough to inherit LLN from the个's.

7. A few words on hydrodynamics

Let $u(\theta):=\mathbf{E}^{\theta}\left(\omega_{i}\right)$. This is a strictly increasing function, its inverse is $\theta(u)$.

7. A few words on hydrodynamics

Let $u(\theta):=\mathbf{E}^{\theta}\left(\omega_{i}\right)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define $H(u):=\mathbf{E}^{\theta(u)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]$.

7. A few words on hydrodynamics

Let $u(\theta):=\mathbf{E}^{\theta}\left(\omega_{i}\right)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define $H(u):=\mathrm{E}^{\theta(u)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]$.

Imagine a local equilibrium with θ depending on some large-scale time and space parameters t, x. Then on this large scale $u=u(t, x)$, and $\partial_{t} u(t, x)+\partial_{x} H(u(t, x))=0 \quad\binom{$ conservation }{ aw } Rezakhanlou 1991, Tóth and Valkó 2002

7. A few words on hydrodynamics

Let $u(\theta):=\mathbf{E}^{\theta}\left(\omega_{i}\right)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define $H(u):=\mathrm{E}^{\theta(u)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]$.

Imagine a local equilibrium with θ depending on some large-scale time and space parameters t, x. Then on this large scale $u=u(t, x)$, and $\partial_{t} u(t, x)+\partial_{x} H(u(t, x))=0 \quad\binom{$ conservation }{ law } Rezakhanlou 1991, Tóth and Valkó 2002

The easier and most natural case is when $H(u)$ is convex. It is convex for SE.

7. A few words on hydrodynamics

Let $u(\theta):=\mathbf{E}^{\theta}\left(\omega_{i}\right)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define $H(u):=\mathrm{E}^{\theta(u)}\left[r\left(\omega_{i}, \omega_{i+1}\right)\right]$.

Imagine a local equilibrium with θ depending on some large-scale time and space parameters t, x. Then on this large scale $u=u(t, x)$, and $\partial_{t} u(t, x)+\partial_{x} H(u(t, x))=0 \quad\binom{$ conservation }{ law } Rezakhanlou 1991, Tóth and Valkó 2002

The easier and most natural case is when $H(u)$ is convex. It is convex for SE.

Is it convex for ZR or BL ?

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

We look for $x(t)$ s.t. $u(t, x(t))=$ constant.

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

We look for $x(t)$ s.t. $u(t, x(t))=$ constant.

$$
0=\frac{d}{d t} u(t, x(t))
$$

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

We look for $x(t)$ s.t. $u(t, x(t))=$ constant.

$$
0=\frac{d}{d t} u(t, x(t))=\partial_{t} u+\partial_{x} u \cdot \dot{x}(t)
$$

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

We look for $x(t)$ s.t. $u(t, x(t))=$ constant.

$$
\begin{aligned}
0=\frac{d}{d t} u(t, x(t)) & =\partial_{t} u+\partial_{x} u \cdot \dot{x}(t) \\
& =-H^{\prime}(u) \partial_{x} u+\partial_{x} u \cdot \dot{x}(t)
\end{aligned}
$$

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

We look for $x(t)$ s.t. $u(t, x(t))=$ constant.

$$
\begin{aligned}
0=\frac{d}{d t} u(t, x(t)) & =\partial_{t} u+\partial_{x} u \cdot \dot{x}(t) \\
& =-H^{\prime}(u) \partial_{x} u+\partial_{x} u \cdot \dot{x}(t) \\
& =\left[\dot{x}(t)-H^{\prime}(u)\right] \partial_{x} u
\end{aligned}
$$

The characteristic speed

$$
\partial_{t} u+\partial_{x} H(u)=0
$$

Until the solution is continuous:

$$
\begin{aligned}
& \partial_{t} u+H^{\prime}(u) \partial_{x} u=0 \\
& \partial_{t} u=-H^{\prime}(u) \partial_{x} u
\end{aligned}
$$

We look for $x(t)$ s.t. $u(t, x(t))=$ constant.

$$
\begin{aligned}
0=\frac{d}{d t} u(t, x(t)) & =\partial_{t} u+\partial_{x} u \cdot \dot{x}(t) \\
& =-H^{\prime}(u) \partial_{x} u+\partial_{x} u \cdot \dot{x}(t) \\
& =\left[\dot{x}(t)-H^{\prime}(u)\right] \partial_{x} u
\end{aligned}
$$

So, $\dot{x}(t)=H^{\prime}(u)$ is the characteristic speed.

It turns out that the characteristic speed $H^{\prime}(u)=H^{\prime}(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

It turns out that the characteristic speed $H^{\prime}(u)=H^{\prime}(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

In general, the second class particle is following the characteristics.

It turns out that the characteristic speed $H^{\prime}(u)=H^{\prime}(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

In general, the second class particle is following the characteristics.
$\rightarrow H(u)$ is convex, if $H^{\prime}(u(\theta))=C(\theta)$ is increasing (in either u or θ).

It turns out that the characteristic speed $H^{\prime}(u)=H^{\prime}(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

In general, the second class particle is following the characteristics.
$\rightarrow H(u)$ is convex, if $H^{\prime}(u(\theta))=C(\theta)$ is increasing (in either u or θ).

The way to check this is comparing second class particles.

$\underline{\omega}$ is in equilibrium (θ).

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta}>\theta, \zeta_{i} \geq \omega_{i}$.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\tilde{\theta})$, with $\tilde{\theta}>\theta, \zeta_{i} \geq \omega_{i}$.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\tilde{\theta}>\theta, \zeta_{i} \geq \omega_{i}$.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\tilde{\theta})$, with $\tilde{\theta}>\theta, \zeta_{i} \geq \omega_{i}$.
\rightsquigarrow If the rate function $f(z)$ is convex, then \uparrow and \uparrow can be coupled to each other: \uparrow is always to the left of \uparrow.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\tilde{\theta})$, with $\tilde{\theta}>\theta, \zeta_{i} \geq \omega_{i}$.
\rightsquigarrow If the rate function $f(z)$ is convex, then \uparrow and \uparrow can be coupled to each other: \uparrow is always to the left of \uparrow.
$\rightsquigarrow C(\tilde{\theta}) \geq C(\theta)$, so $C(\theta)$ is increasing, $H(u)$ is convex.

$\underline{\omega}$ is in equilibrium (θ).
$\underline{\zeta}$ is in equilibrium $(\tilde{\theta})$, with $\tilde{\theta}>\theta, \zeta_{i} \geq \omega_{i}$.
\rightsquigarrow If the rate function $f(z)$ is convex, then \uparrow and \uparrow can be coupled to each other: \uparrow is always to the left of \uparrow.
$\rightsquigarrow C(\tilde{\theta}) \geq C(\theta)$, so $C(\theta)$ is increasing, $H(u)$ is convex.

Strict convexity also follows by analytic arguments.

Thank you.

