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Let’'s generalize: deposition models (B. Toth)

w; = negative discrete gradient
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(Wi, wig1) > (Wi — 1, wjp1+1)
with rate r(w;, wjt1)

Attractivity: r(-, -) is

non-decreasing in the first

. : : variable.
non-increasing in the second

Higher neighbors ~» higher growth rates.
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Equilibrium

We need a well-behaved equilibrium distribu-
tion. The only case we can really handle is the
product measure, i.e. when w;’s are iid.

Technical assumptions for the equilibrium
being product:

r(z, y) +r(y, z) +r(z, =)
=r(z, 2) +r(z, y) +r(y, x)
and
r(z,y—1) -r(y,z—1) -r(z,z — 1)
=r(z,z—1)-r(z,y—1) -r(y,z — 1)
for any x, y, z € Z.

~ Then w;'s being independent and u(?)-dist-
ributed is an equilibrium with some “(9) de-
pending on the form of the rates r(-, -). The
parameter 6 of u sets E(w;), i.e. the average
(negative) slope of the wall.
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2. Examples

Totally asymmetric simple exclusion (TASE):

w;€{0, 1}

}wk:1

r(wi, wit1) = {O ole

Equilibrium:
Bernoulli measure with density o (instead of ).

Constructed e.g. in Liggett's 1985 book.
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The zero range process (ZR):

}wkZQ

wi€Z+

r(wi, wi+1) = f(w;) non-decreasing.

Equilibrium:
Product of modified Poisson-distributions with
a parameter 6.

Special case:
When f(w;) = w;, the process is just the one of

independent random walkers, the equilibrium is
the product of Poisson-distributions.
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T he bricklayers’ process (BL):

w; EZL

t 1+ 1

r(wi, wiy1) = fw;) + f(—wit1)
with f non-decreasing, and f(z) - f(1—-2) = 1.

Equilibrium:

Product of two-sided and modified Poisson-
distributions with a parameter 6.
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~» This way the single discrepancy, or the sec-
ond class particle, is conserved.

Its position at time t is Q(¢t), a complicated
random process.
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~» This way the single discrepancy, or the sec-
ond class particle, is conserved.

Its position at time t is Q(¢t), a complicated
random process.

~» Column growths above [i, i+ 1] differ in the
two processes when the second class particle
jumps above this edge.

~ There can be more than one second class
particles, then the number of them is con-
served.

~~ In this case,

difference of column growths above [i, ¢ + 1]
— algebraic number of second class particles
passed.
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4. Growth/current fluctuations

Let h;(t) be the height of the column above

[7, i + 1] at time ¢. Fix a velocity value Ve R.
Define

JYI(@) 1= hyyy) () = ho(0).

~s This is the growth in a slanted direction, or the par-

ticle current through the window moving with speed V.
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4. Growth/current fluctuations

Let h;(t) be the height of the column above
[7, i + 1] at time ¢. Fix a velocity value Ve R.
Define

JYI(@) 1= hyyy) () = ho(0).

~s This is the growth in a slanted direction, or the par-

ticle current through the window moving with speed V.

Assume that w is started from equilibrium with
parameter 6, and assume also the Law of Large
Numbers

Q(1) 12 C(0)

t t—o0

for the second class particle.

~ l.e. the second class particle has a speed.
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T hen for the whole class of models: ( )

LLN:

TV (+ D s
. 2 — B[ (w;, wiy1)] = V- EO (w;)

The right hand-side is what one can expect, this LLN.
IS @ consequence of ergodicity of the process.
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T hen for the whole class of models: (B. 2003)

LLN:

JV)() as,

t t—o0

The right hand-side is what one can expect, this LLN.

E©) [r(wi, wi+1)] =V - E() (w;)

IS @ consequence of ergodicity of the process.

Variance:

var(® (V) (1)

t t
Normal fluctuations for V different from C(0).

|V — ()] - Var® (w;)

CLT:

JWV)@) —E@ gV)() 5 N
\/% t—o00 ’

a normal random variable with the above vari-
ance.
Simple consequence of the variance formula; fluctua-

tions of the initial state are transported.
Ferrari - Fontes 1994 for SE.
638



Remarks:

~~ The fluctuations are Gaussian (of order t1/2)
if V%= C(0). In this scale, basically fluctuations
coming from the initial state are observed. For
V = C(0), these fluctuations disappear, and
only the dynamical noise remains. The latter
is expected to appear on the t1/3 time-scale for
most systems, this is one of the greatest open
questions in the field.
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~~ The fluctuations are Gaussian (of order t1/2)
if V%= C(0). In this scale, basically fluctuations
coming from the initial state are observed. For
V = C(0), these fluctuations disappear, and
only the dynamical noise remains. The latter
is expected to appear on the t1/3 time-scale for
most systems, this is one of the greatest open
questions in the field. T. Seppaldinen showed the
limit on the t!/4 scale for independent random walks,
and we are currently working on a similar result for the
so-called random average process.

~ We need the LLN for the second class par-
ticle.

Known by Ferrari - Fontes 1992 for SE,

Rezakhanlou 1995 for ZR.

For ZR and BL: Assume the rate f(z) is con-
vex. T hen

Q(t) rn
t

t—00

C(0)

for any n. B. 2003.
C(0) is the characteristic speed in hydrodynamics.
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5. The role of the second class

particle

How to start with VarJ(¢)~?

(
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5. The role of the second class
particle ( )

How to start with VarJ(t)?

— Separate martingales from J(t) and J2(%),
use the reversed process, that gives time-in-
tegrals of expectations.

— Use the generator to introduce time-deriva-
tives in the integrands, which will cancel the
integrations.

— T he non-trivial term is

im S %Cov(wn(t), wo(0)).

t— 00 n—1
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Trick:
wp(t) = wn(t) + 1{Q(t) = n}

Elwy,(t) |wo(0) = z] = Elwn(t) |wo(0) = 2]
+P[Q(t) = n|wo(0) = ]

Elw,(t) |wo(0) = z + 1] = Efwn(t) |wo(0) = 2]
+P[Q(t) = n|wo(0) = 2]

Elwn(t) [wo(0) = z 4 1] = Elwn(?) |wo(0) = 2]

+P[Q(t) = n|wp(0) = 2]
Compare the two sides, build the covariance
step by step.
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The argument and the LLN for the second
class particle shows that for V3 = C(0) % V>,

Vot
im S 2. Cov(wn(t), wp(0))
t—o0 1

n=Vjt

= 1{V1<C(0)<Vr}-C(0)-CoVv(wg(0), wg(0)).

time |, Vﬁé/
/ 7 C(0)t
/
/ /
/ /
/ -
/ % - Vot
/ / P
/ -
/ / -
VA2 -
/ -
// -
/S s
S
[

space
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The argument and the LLN for the second
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~» Covariance on the Gaussian time-scale is
transported by the second class particle. This
finishes the proof.
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~» Covariance on the Gaussian time-scale is
transported by the second class particle. This
finishes the proof.

~~ We used that the second class particle has
the characteristic speed of the hydrodynamics.

— We need to prove this, i.e. LLN for the sec-
ond class particle.

~ Once it's done, we see that the second class
particle transports disturbances both in the mi-
croscopic and the hydrodynamic picture.
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6. The speed of the second class
particle

¢

S

IS

1

w is in equilibrium (6).

w, = w; + 1{Q =i}, not in equilibrium,
one single second class particle 7.

¢ is in equilibrium (#) such that ¢; > w;,

a density of second class particles 7.

~» Initially, the 1's are product-distributed.
Not at later times, the stationary distribution for TASE
with second class particles was discovered by Derrida,
Janowsky, Lebowitz, Speer 1993.
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w is in equilibrium (6).

¢ is in equilibrium (6).

~ LLN for their columns’ growth, and thus
for the current of the T's. (Current of second class

particles ~ difference of columns’ growth.)
Initially, the 7's are product-distributed.

~ We know much about the T's. Let's com-
pare the T's with the single T.

It works fine.
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With prob. 3/4
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Until a point when more T's meet with T:

Which one to couple T to?

Let’s label the |'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Introduce the + particle. With probability 1/4,
it follows the T to jump.

~
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Until a point when more T's meet with T:

Which one to couple T to?

Let’s label the |'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Introduce the + particle. With probability 1/4,
it follows the T to jump.

~

~ If the rate function f(z) is convex, then 7 is

comparable to #: T is always to the left of
This is nice enough to inherit LLN from the
1's.
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7. A few words on hydrodynamics

Let u(6) : = EY(w,). This is a strictly increasing
function, its inverse is 6(u).
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7. A few words on hydrodynamics

Let u(6) : = EY(w,). This is a strictly increasing
function, its inverse is 6(u).

Define H(u) : = E/[r(w;, wiy1)].

Imagine a local equilibrium with 6 depending
on some large-scale time and space parameters
t, x. Then on this large scale v = u(¢, =), and

Ouu(t, ) + 0 H(u(t, z)) = 0 ( )

The easier and most natural case is when H(u)
is convex. It is convex for SE.

Is it convex for ZR or BL7?
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T he characteristic speed

oru + O, H(u) =0

Until the solution is continuous:

Ou + H'(uw)Opu = 0
oru = —H,(U)axu-

We look for x(t) s.t. u(¢, z(¢t))=constant.

d
0= &u(t, x(t))
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Until the solution is continuous:

Ou + H'(uw)Opu = 0
Ou = —H'(u)Ozu.

We look for x(t) s.t. u(¢, z(¢t))=constant.
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T he characteristic speed

oru + O, H(u) =0

Until the solution is continuous:

Ou + H'(uw)Opu = 0
Ou = —H'(u)Ozu.

We look for x(t) s.t. u(¢, z(¢t))=constant.

0= %u(t, x(t)) = Oyu + Ozu - 2(t)
= —H'(w)0zu + 9ru - ©(t)
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T he characteristic speed

oru + O, H(u) =0

Until the solution is continuous:

Ou + H'(uw)Opu = 0
Ou = —H'(u)Ozu.

We look for x(t) s.t. u(¢, z(¢t))=constant.

0= %u(t, x(t)) = Oru + Ozu - (1)
= —H'(w)0zu + 9ru - ©(t)
= [2(t) — H'(uw)]0su.
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T he characteristic speed

oru + O, H(u) =0
Until the solution is continuous:
Ou + H'(u)0zu = 0
Ou = —H'(u)Ozu.
We look for x(t) s.t. u(¢, z(¢t))=constant.

0= %u(t, x(t)) = Oyu + Ozu - 2(t)

—H'(w)0zu + O - (t)
= [2(t) — H'(uw)]0su.

So, z(t) = H'(w) is the characteristic speed.
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It turns out that the characteristic speed
H'(uw) = H'(u(0)) agrees with the speed C(0)
of the second class particle.
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— H(uw) is convex, if H (u(0)) =C(0) is increas-
ing (in either uw or ).
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It turns out that the characteristic speed
H'(uw) = H'(u(0)) agrees with the speed C(0)
of the second class particle.

In general, the second class particle is following the char-

acteristics.

— H(uw) is convex, if H (u(0)) =C(0) is increas-
ing (in either uw or ).

The way to check this is comparing second
class particles.
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w is in equilibrium (6).

¢ is in equilibrium (6), with 6 > 6, ¢ > w,.

~» If the rate function f(z) is convex, then 1
and T can be coupled to each other: T is always
to the left of 7.
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w is in equilibrium (6).

¢ is in equilibrium (6), with 6 > 6, ¢ > w,.

~» If the rate function f(z) is convex, then 1
and T can be coupled to each other: T is always
to the left of 7.

~ C(0) > C(0), so C(0) is increasing, H(u) is
convex.
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IS

w is in equilibrium (6).

¢ is in equilibrium (6), with 6 > 6, ¢ > w,.

~» If the rate function f(z) is convex, then 1
and T can be coupled to each other: T is always
to the left of 7.

~ C(0) > C(0), so C(0) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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Thank you.
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