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1. Deposition processes
and particle systems

Totally asymmetric simple exclusion:

ki i + 1
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Let’s generalize: deposition models (B. Tóth)

ωi = negative discrete gradient





ωk = −2

i i + 1 k

ωi∈Z

ω=(ωi)i∈Z

ωi = 2

ωi+1 = −1

(ωi, ωi+1) 99K (ωi − 1, ωi+1 + 1)

with rate r(ωi, ωi+1)

Attractivity: r(·, ·) is

non-decreasing in the first
non-increasing in the second

variable.

Higher neighbors  higher growth rates.
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Equilibrium

We need a well-behaved equilibrium distribu-

tion. The only case we can really handle is the

product measure, i.e. when ωi’s are iid.

Technical assumptions for the equilibrium

being product:

r(x, y) + r(y, z) + r(z, x)

= r(x, z) + r(z, y) + r(y, x)

and

r(x, y − 1) · r(y, z − 1) · r(z, x − 1)

= r(x, z − 1) · r(z, y − 1) · r(y, x − 1)

for any x, y, z ∈ Z.

 Then ωi’s being independent and µ(θ)-dist-

ributed is an equilibrium with some µ(θ) de-

pending on the form of the rates r(·, ·). The

parameter θ of µ sets E(ωi), i.e. the average

(negative) slope of the wall.
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2. Examples

Totally asymmetric simple exclusion (TASE):

}
ωk = 1

ki i + 1
• • • • -

Z

ωi∈{0,1}

r(ωi, ωi+1) =

{
1 if (ωi, ωi+1) = (1, 0)

0 else

Equilibrium:

Bernoulli measure with density ̺ (instead of θ).

Constructed e.g. in Liggett’s 1985 book.
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The zero range process (ZR):
}

ωk = 2

k i i + 1

•• •• •
•

-

Z

ωi∈Z+

r(ωi, ωi+1) = f(ωi) non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with

a parameter θ.

Special case:

When f(ωi) = ωi, the process is just the one of

independent random walkers, the equilibrium is

the product of Poisson-distributions.

Constructed by Andjel 1981 if f(z + 1) − f(z) ≤ K.
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The bricklayers’ process (BL):

i i + 1

ωi∈Z

r(ωi, ωi+1) = f(ωi) + f(−ωi+1)

with f non-decreasing, and f(z) · f(1− z) = 1.

Equilibrium:

Product of two-sided and modified Poisson-

distributions with a parameter θ.

Constructed if f(z + 1) − f(z) ≤ K.
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3. The second class particle

Two configurations only differ by one

at site Q.

�

�

�




Q

ω

ω′

With the smaller of the right rates

r(ωQ, ωQ+1),

columns on the right grow together.
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 This way the single discrepancy, or the sec-

ond class particle, is conserved.

Its position at time t is Q(t), a complicated

random process.

 Column growths above [i, i+1] differ in the

two processes when the second class particle

jumps above this edge.

 There can be more than one second class

particles, then the number of them is con-

served.

 In this case,

difference of column growths above [i, i + 1]

= algebraic number of second class particles

passed.
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4. Growth/current fluctuations

Let hi(t) be the height of the column above

[i, i + 1] at time t. Fix a velocity value V ∈ R.

Define

J(V )(t) := h⌊V t⌋(t) − h0(0).

 This is the growth in a slanted direction, or the par-

ticle current through the window moving with speed V .

Assume that ω is started from equilibrium with

parameter θ, and assume also the Law of Large

Numbers

Q(t)

t

L2
−→
t→∞

C(θ)

for the second class particle.

 I.e. the second class particle has a speed.
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Then for the whole class of models: (B. 2003)

LLN:

J(V )(t)

t

a.s.−→
t→∞

E
(θ)[r(ωi, ωi+1)] − V · E(θ)(ωi)

The right hand-side is what one can expect, this LLN.

is a consequence of ergodicity of the process.

Variance:

Var(θ)J(V )(t)

t
−→
t→∞

|V − C(θ)| ·Var
(θ)(ωi)

Normal fluctuations for V different from C(θ).

CLT:

J(V )(t) − E(θ)J(V )(t)√
t

D−→
t→∞

N ,

a normal random variable with the above vari-

ance.

Simple consequence of the variance formula; fluctua-

tions of the initial state are transported.

Ferrari - Fontes 1994 for SE.

66



Then for the whole class of models: (B. 2003)

LLN:

J(V )(t)

t

a.s.−→
t→∞

E
(θ)[r(ωi, ωi+1)] − V · E(θ)(ωi)

The right hand-side is what one can expect, this LLN.

is a consequence of ergodicity of the process.

Variance:

Var(θ)J(V )(t)

t
−→
t→∞

|V − C(θ)| ·Var
(θ)(ωi)

Normal fluctuations for V different from C(θ).

CLT:

J(V )(t) − E(θ)J(V )(t)√
t

D−→
t→∞

N ,

a normal random variable with the above vari-

ance.

Simple consequence of the variance formula; fluctua-

tions of the initial state are transported.

Ferrari - Fontes 1994 for SE.

67



Then for the whole class of models: (B. 2003)
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Remarks:

 The fluctuations are Gaussian (of order t1/2)
if V 6= C(θ). In this scale, basically fluctuations
coming from the initial state are observed. For
V = C(θ), these fluctuations disappear, and
only the dynamical noise remains. The latter
is expected to appear on the t1/3 time-scale for
most systems, this is one of the greatest open
questions in the field. T. Seppäläinen showed the

limit on the t1/4 scale for independent random walks,

and we are currently working on a similar result for the

so-called random average process.

 We need the LLN for the second class par-
ticle.
Known by Ferrari - Fontes 1992 for SE,

Rezakhanlou 1995 for ZR.

For ZR and BL: Assume the rate f(z) is con-
vex. Then

Q(t)

t

Ln
−→
t→∞

C(θ)

for any n. B. 2003.
C(θ) is the characteristic speed in hydrodynamics.
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5. The role of the second class
particle (B. Tóth)

How to start with VarJ(t)?

→ Separate martingales from J(t) and J2(t),

use the reversed process, that gives time-in-

tegrals of expectations.

→ Use the generator to introduce time-deriva-

tives in the integrands, which will cancel the

integrations.

→ The non-trivial term is

lim
t→∞

∞∑

n=1

n

t
Cov(ωn(t), ω0(0)).
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Q

ω

ω′

Trick:

ω′
n(t) = ωn(t) + 1{Q(t) = n}

E[ω′
n(t) |ω0(0) = z] = E[ωn(t) |ω0(0) = z]

+P[Q(t) = n |ω0(0) = z]

E[ω′
n(t) |ω′

0(0) = z + 1] = E[ωn(t) |ω0(0) = z]

+P[Q(t) = n |ω0(0) = z]

E[ωn(t) |ω0(0) = z + 1] = E[ωn(t) |ω0(0) = z]

+P[Q(t) = n |ω0(0) = z]

Compare the two sides, build the covariance

step by step.
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The argument and the LLN for the second

class particle shows that for V1 6= C(θ) 6= V2,

lim
t→∞

V2t∑

n=V1t

· n
t
· Cov(ωn(t), ω0(0))

= 1{V1<C(θ)<V2}·C(θ)·Cov(ω0(0), ω0(0)).
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 Covariance on the Gaussian time-scale is

transported by the second class particle. This

finishes the proof.

 We used that the second class particle has

the characteristic speed of the hydrodynamics.

→ We need to prove this, i.e. LLN for the sec-

ond class particle.

 Once it’s done, we see that the second class

particle transports disturbances both in the mi-

croscopic and the hydrodynamic picture.
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6. The speed of the second class
particle

ω

ω is in equilibrium (θ).

ω′
i = ωi+1{Q = i}, not in equilibrium,

one single second class particle ↑.

ζ is in equilibrium (θ̃) such that ζi≥ ωi,

a density of second class particles ↑.

 Initially, the ↑’s are product-distributed.

Not at later times, the stationary distribution for TASE

with second class particles was discovered by Derrida,

Janowsky, Lebowitz, Speer 1993.
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ω

ω′

↑

ζ

↑ ↑
↑

↑

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃).

 LLN for their columns’ growth, and thus

for the current of the ↑’s. (Current of second class

particles ∼ difference of columns’ growth.)

Initially, the ↑’s are product-distributed.

 We know much about the ↑’s. Let’s com-

pare the ↑’s with the single ↑.

It works fine.
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Until a point. when more ↑’s meet with ↑:

↑

↑
↑
↑
↑

3.

4.

5.

6.

x

y

⋆

Which one to couple ↑ to?

Let’s label the ↑’s in order. Then

3. has a (too) large rate to jump to the left,

6. has a (too) large rate to jump to the right.

Introduce the ⋆ particle. With probability 1/4,

it follows the ↑ to jump.

 its rate is only (too) large/4.

 If the rate function f(z) is convex, then ↑ is

comparable to ⋆: ↑is always to the left of ⋆.

This ⋆is nice enough to inherit LLN from the

↑’s.
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7. A few words on hydrodynamics

Let u(θ) := Eθ(ωi). This is a strictly increasing

function, its inverse is θ(u).

Define H(u) := Eθ(u)[r(ωi, ωi+1)].

Imagine a local equilibrium with θ depending

on some large-scale time and space parameters

t, x. Then on this large scale u = u(t, x), and

∂tu(t, x) + ∂xH(u(t, x)) = 0
(

conservation
law

)

Rezakhanlou 1991, Tóth and Valkó 2002

The easier and most natural case is when H(u)

is convex. It is convex for SE.

Is it convex for ZR or BL?
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The characteristic speed

∂tu + ∂xH(u) = 0

Until the solution is continuous:

∂tu + H ′(u)∂xu = 0

∂tu = −H ′(u)∂xu.

We look for x(t) s.t. u(t, x(t))=constant.

0 =
d

dt
u(t, x(t)) = ∂tu + ∂xu · ẋ(t)

= −H ′(u)∂xu + ∂xu · ẋ(t)
= [ẋ(t) − H ′(u)]∂xu.

So, ẋ(t) = H ′(u) is the characteristic speed.
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So, ẋ(t) = H ′(u) is the characteristic speed.

139



The characteristic speed

∂tu + ∂xH(u) = 0

Until the solution is continuous:

∂tu + H ′(u)∂xu = 0

∂tu = −H ′(u)∂xu.

We look for x(t) s.t. u(t, x(t))=constant.

0 =
d

dt
u(t, x(t)) = ∂tu + ∂xu · ẋ(t)
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It turns out that the characteristic speed

H ′(u) = H ′(u(θ)) agrees with the speed C(θ)

of the second class particle.

In general, the second class particle is following the char-

acteristics.

→ H(u) is convex, if H ′(u(θ)) = C(θ) is in-

creasing (in either u or θ).

The way to check this is comparing second

class particles.
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The way to check this is comparing second

class particles.
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It turns out that the characteristic speed

H ′(u) = H ′(u(θ)) agrees with the speed C(θ)

of the second class particle.

In general, the second class particle is following the char-

acteristics.

→ H(u) is convex, if H ′(u(θ)) =C(θ) is increas-

ing (in either u or θ).

The way to check this is comparing second

class particles.
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ω

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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ω

ζ

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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ω

ω′

↑

ζ

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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ω

ω′

↑

ζ

ζ ′

↑

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.

151



ω

ω′

↑

ζ

ζ ′

↑

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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ω

ω′

↑

ζ

ζ ′

↑

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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ω

ω′

↑

ζ

ζ ′

↑

ω is in equilibrium (θ).

ζ is in equilibrium (θ̃), with θ̃ > θ, ζi ≥ ωi.

 If the rate function f(z) is convex, then ↑
and ↑ can be coupled to each other: ↑ is always

to the left of ↑.

 C(θ̃) ≥ C(θ), so C(θ) is increasing, H(u) is

convex.

Strict convexity also follows by analytic arguments.
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Thank you.
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