Fluctuations of asymmetric interacting systems in one dimension

Márton Balázs UW-Madison Work supervised by Bálint Tóth

Mathematical Biosciences Institute 2005

- 1. Deposition processes and particle systems
- 2. Examples
- 3. The second class particle
- 4. Growth/current fluctuations
- 5. The role of the second class particle
- 6. The speed of the second class particle
- (7. A few words on hydrodynamics)

Totally asymmetric simple exclusion:

 $\eta_i \in \{0, 1\}$ $\underline{\eta} = (\eta_i)_{i \in \mathbb{Z}}$

 $(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$ with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

$$(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$$

with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

 $(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$ with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

 $(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$ with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

 $(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$ with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

 $(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$ with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

 $(\eta_i, \eta_{i+1}) \dashrightarrow (\eta_i - 1, \eta_{i+1} + 1)$ with rate $\eta_i(1 - \eta_{i+1})$ i.e. if possible

 ω_i = negative discrete gradient

 $egin{aligned} & \omega_i \in \mathbb{Z} \ & \underline{\omega} = (\omega_i)_{i \in \mathbb{Z}} \end{aligned}$

 $(\omega_i, \omega_{i+1}) \dashrightarrow (\omega_i - 1, \omega_{i+1} + 1)$ with rate $r(\omega_i, \omega_{i+1})$

Attractivity: $r(\cdot, \cdot)$ is

non-decreasing in the first variable.

 ω_i = negative discrete gradient

 $egin{aligned} & \omega_i \in \mathbb{Z} \ & \underline{\omega} = (\omega_i)_{i \in \mathbb{Z}} \end{aligned}$

 $(\omega_i, \omega_{i+1}) \dashrightarrow (\omega_i - 1, \omega_{i+1} + 1)$ with rate $r(\omega_i, \omega_{i+1})$

Attractivity: $r(\cdot, \cdot)$ is

non-decreasing in the first variable.

 ω_i = negative discrete gradient

$$egin{array}{lll} \omega_i\in\mathbb{Z} \ \underline{\omega}{=}(\omega_i)_{i\in\mathbb{Z}} \end{array}$$

 $(\omega_i, \omega_{i+1}) \dashrightarrow (\omega_i - 1, \omega_{i+1} + 1)$ with rate $r(\omega_i, \omega_{i+1})$

Attractivity: $r(\cdot, \cdot)$ is

non-decreasing in the first variable.

 $\omega_i = \text{negative discrete gradient}$

$$egin{aligned} & \omega_i \in \mathbb{Z} \ & \underline{\omega} = (\omega_i)_{i \in \mathbb{Z}} \end{aligned}$$

 $(\omega_i, \omega_{i+1}) \dashrightarrow (\omega_i - 1, \omega_{i+1} + 1)$ with rate $r(\omega_i, \omega_{i+1})$

Attractivity: $r(\cdot, \cdot)$ is

non-decreasing in the first variable.

 ω_i = negative discrete gradient


```
egin{array}{lll} \omega_i\in\mathbb{Z} \ \underline{\omega}=(\omega_i)_{i\in\mathbb{Z}} \end{array}
```

 $(\omega_i, \omega_{i+1}) \dashrightarrow (\omega_i - 1, \omega_{i+1} + 1)$ with rate $r(\omega_i, \omega_{i+1})$

Attractivity: $r(\cdot, \cdot)$ is

non-decreasing in the first variable.

 ω_i = negative discrete gradient

 $\omega_i \in \mathbb{Z}$ $\underline{\omega} = (\omega_i)_{i \in \mathbb{Z}}$

 $(\omega_i, \omega_{i+1}) \dashrightarrow (\omega_i - 1, \omega_{i+1} + 1)$ with rate $r(\omega_i, \omega_{i+1})$

Attractivity: $r(\cdot, \cdot)$ is

non-decreasing in the first variable.

Equilibrium

We need a well-behaved equilibrium distribution. The only case we can really handle is the *product measure*, i.e. when ω_i 's are iid.

Technical assumptions for the equilibrium being product:

r(x, y) + r(y, z) + r(z, x) = r(x, z) + r(z, y) + r(y, x)

and

$$r(x, y - 1) \cdot r(y, z - 1) \cdot r(z, x - 1) = r(x, z - 1) \cdot r(z, y - 1) \cdot r(y, x - 1)$$

for any $x, y, z \in \mathbb{Z}$.

 \rightsquigarrow Then ω_i 's being independent and $\mu^{(\theta)}$ -distributed is an equilibrium with some $\mu^{(\theta)}$ depending on the form of the rates $r(\cdot, \cdot)$. The parameter θ of μ sets $\mathbf{E}(\omega_i)$, i.e. the average (negative) slope of the wall.

Totally asymmetric simple exclusion (TASE):

 $r(\omega_i, \omega_{i+1}) = \begin{cases} 1 \text{ if } (\omega_i, \omega_{i+1}) = (1, 0) \\ 0 \text{ else} \end{cases}$

Equilibrium: Bernoulli measure with density ρ (instead of θ).

Totally asymmetric simple exclusion (TASE):

 $r(\omega_i, \omega_{i+1}) = \begin{cases} 1 \text{ if } (\omega_i, \omega_{i+1}) = (1, 0) \\ 0 \text{ else} \end{cases}$

Equilibrium: Bernoulli measure with density ρ (instead of θ).

Totally asymmetric simple exclusion (TASE):

 $r(\omega_i, \omega_{i+1}) = \begin{cases} 1 \text{ if } (\omega_i, \omega_{i+1}) = (1, 0) \\ 0 \text{ else} \end{cases}$

Equilibrium: Bernoulli measure with density ρ (instead of θ).

Totally asymmetric simple exclusion (TASE):

 $r(\omega_i, \omega_{i+1}) = \begin{cases} 1 \text{ if } (\omega_i, \omega_{i+1}) = (1, 0) \\ 0 \text{ else} \end{cases}$

Equilibrium: Bernoulli measure with density ρ (instead of θ).

Totally asymmetric simple exclusion (TASE):

 $r(\omega_i, \omega_{i+1}) = \begin{cases} 1 \text{ if } (\omega_i, \omega_{i+1}) = (1, 0) \\ 0 \text{ else} \end{cases}$

Equilibrium: Bernoulli measure with density ρ (instead of θ).

Totally asymmetric simple exclusion (TASE):

 $r(\omega_i, \omega_{i+1}) = \begin{cases} 1 \text{ if } (\omega_i, \omega_{i+1}) = (1, 0) \\ 0 \text{ else} \end{cases}$

Equilibrium: Bernoulli measure with density ρ (instead of θ).

 $r(\omega_i, \omega_{i+1}) = f(\omega_i)$ non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with a parameter θ .

Special case:

When $f(\omega_i) = \omega_i$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1) - f(z) \le K$.

 $r(\omega_i, \omega_{i+1}) = f(\omega_i)$ non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with a parameter θ .

Special case:

When $f(\omega_i) = \omega_i$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1) - f(z) \le K$.

 $r(\omega_i, \omega_{i+1}) = f(\omega_i)$ non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with a parameter θ .

Special case:

When $f(\omega_i) = \omega_i$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1) - f(z) \le K$.

 $r(\omega_i, \omega_{i+1}) = f(\omega_i)$ non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with a parameter θ .

Special case:

When $f(\omega_i) = \omega_i$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1) - f(z) \le K$.

 $r(\omega_i, \omega_{i+1}) = f(\omega_i)$ non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with a parameter θ .

Special case:

When $f(\omega_i) = \omega_i$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1) - f(z) \leq K$.

 $r(\omega_i, \omega_{i+1}) = f(\omega_i)$ non-decreasing.

Equilibrium:

Product of modified Poisson-distributions with a parameter θ .

Special case:

When $f(\omega_i) = \omega_i$, the process is just the one of independent random walkers, the equilibrium is the product of Poisson-distributions.

Constructed by Andjel 1981 if $f(z+1) - f(z) \le K$.

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

$$r(\omega_i, \omega_{i+1}) = f(\omega_i) + f(-\omega_{i+1})$$

with f non-decreasing, and $f(z) \cdot f(1-z) = 1$.

Equilibrium:

Product of two-sided and modified Poissondistributions with a parameter θ .

3. The second class particle

Two configurations only differ by one at site Q.

Two configurations only differ by one at site Q.

With the smaller of the right rates

 $r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the smaller of the right rates

 $r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the smaller of the right rates

 $r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the smaller of the right rates

 $r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the smaller of the right rates

 $r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

Two configurations only differ by one at site Q.

With the difference of the right rates

 $r(\omega_Q', \omega_{Q+1}') - r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the difference of the right rates

 $r(\omega_Q', \omega_{Q+1}') - r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the difference of the right rates

 $r(\omega_Q', \omega_{Q+1}') - r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the difference of the right rates

 $r(\omega_Q', \omega_{Q+1}') - r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

With the difference of the right rates

 $r(\omega_Q', \omega_{Q+1}') - r(\omega_Q, \omega_{Q+1}),$

Two configurations only differ by one at site Q.

Two configurations only differ by one at site Q.

With the smaller of the left rates

 $r(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}),$

Two configurations only differ by one at site Q.

With the smaller of the left rates

 $r(\omega'_{Q-1}, \omega'_Q),$

Two configurations only differ by one at site Q.

With the smaller of the left rates

 $r(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}),$

Two configurations only differ by one at site Q.

With the smaller of the left rates

 $r(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}),$

Two configurations only differ by one at site Q.

With the smaller of the left rates

 $r(\omega_{Q-1}^{\prime}, \omega_{Q}^{\prime}),$

Two configurations only differ by one at site Q.

Two configurations only differ by one at site Q.

With the difference of the left rates

$$r(\omega_{Q-1}, \omega_Q) - r(\omega'_{Q-1}, \omega'_Q),$$

Two configurations only differ by one at site Q.

With the difference of the left rates

$$r(\omega_{Q-1}, \omega_Q) - r(\omega'_{Q-1}, \omega'_Q),$$

Two configurations only differ by one at site Q.

With the difference of the left rates

$$r(\omega_{Q-1}, \omega_Q) - r(\omega'_{Q-1}, \omega'_Q),$$

Two configurations only differ by one at site Q.

With the difference of the left rates

$$r(\omega_{Q-1}, \omega_Q) - r(\omega'_{Q-1}, \omega'_Q),$$

Two configurations only differ by one at site Q.

With the difference of the left rates

$$r(\omega_{Q-1}, \omega_Q) - r(\omega'_{Q-1}, \omega'_Q),$$

 \rightsquigarrow Column growths above [i, i+1] differ in the two processes when the second class particle jumps above this edge.

 \rightsquigarrow Column growths above [i, i+1] differ in the two processes when the second class particle jumps above this edge.

 \rightsquigarrow There can be more than one second class particles, then the number of them is conserved.

 \rightsquigarrow Column growths above [i, i+1] differ in the two processes when the second class particle jumps above this edge.

 \rightsquigarrow There can be more than one second class particles, then the number of them is conserved.

 \rightsquigarrow In this case,

difference of column growths above [i, i + 1]= algebraic number of second class particles passed.

4. Growth/current fluctuations

Let $h_i(t)$ be the height of the column above [i, i + 1] at time t. Fix a velocity value $V \in \mathbb{R}$. Define

$$J^{(V)}(t) := h_{\lfloor Vt \rfloor}(t) - h_0(0).$$

 \rightsquigarrow This is the growth in a slanted direction, or the particle current through the window moving with speed V.

4. Growth/current fluctuations

Let $h_i(t)$ be the height of the column above [i, i + 1] at time t. Fix a velocity value $V \in \mathbb{R}$. Define

$$J^{(V)}(t) := h_{\lfloor Vt \rfloor}(t) - h_0(0).$$

 \rightsquigarrow This is the growth in a slanted direction, or the particle current through the window moving with speed V.

Assume that $\underline{\omega}$ is started from equilibrium with parameter θ , and assume also the Law of Large Numbers

$$\frac{Q(t)}{t} \xrightarrow[t \to \infty]{L^2} C(\theta)$$

for the second class particle.

 \rightsquigarrow I.e. the second class particle has a speed.

Then for the whole class of models: (B. 2003)

LLN:

$$\frac{J^{(V)}(t)}{t} \xrightarrow[t \to \infty]{\text{a.s.}} \mathbf{E}^{(\theta)}[r(\omega_i, \omega_{i+1})] - V \cdot \mathbf{E}^{(\theta)}(\omega_i)$$

The right hand-side is what one can expect, this LLN. is a consequence of *ergodicity* of the process.

Then for the whole class of models: (B. 2003)

LLN:

$$\frac{J^{(V)}(t)}{t} \xrightarrow[t \to \infty]{a.s.} \mathbf{E}^{(\theta)}[r(\omega_i, \omega_{i+1})] - V \cdot \mathbf{E}^{(\theta)}(\omega_i)$$

The right hand-side is what one can expect, this LLN. is a consequence of *ergodicity* of the process.

Variance:

$$\frac{\operatorname{Var}^{(\theta)}J^{(V)}(t)}{t} \underset{t \to \infty}{\longrightarrow} |V - C(\theta)| \cdot \operatorname{Var}^{(\theta)}(\omega_i)$$

Normal fluctuations for V different from $C(\theta)$.

Then for the whole class of models: (B. 2003)

LLN:

$$\frac{J^{(V)}(t)}{t} \xrightarrow[t \to \infty]{\text{a.s.}} \mathbf{E}^{(\theta)}[r(\omega_i, \omega_{i+1})] - V \cdot \mathbf{E}^{(\theta)}(\omega_i)$$

The right hand-side is what one can expect, this LLN. is a consequence of *ergodicity* of the process.

Variance:

$$\frac{\operatorname{Var}^{(\theta)}J^{(V)}(t)}{t} \underset{t \to \infty}{\longrightarrow} |V - C(\theta)| \cdot \operatorname{Var}^{(\theta)}(\omega_i)$$

Normal fluctuations for V different from $C(\theta)$.

CLT:

$$\frac{J^{(V)}(t) - \mathbf{E}^{(\theta)}J^{(V)}(t)}{\sqrt{t}} \xrightarrow[t \to \infty]{\mathsf{D}} \mathcal{N},$$

a normal random variable with the above variance.

Simple consequence of the variance formula; fluctuations of the initial state are transported.

Ferrari - Fontes 1994 for SE.

Remarks:

→ The fluctuations are Gaussian (of order $t^{1/2}$) if $V \neq C(\theta)$. In this scale, basically fluctuations coming from the initial state are observed. For $V = C(\theta)$, these fluctuations disappear, and only the dynamical noise remains. The latter is expected to appear on the $t^{1/3}$ time-scale for most systems, this is one of the greatest open questions in the field. T. Seppäläinen showed the limit on the $t^{1/4}$ scale for independent random walks, and we are currently working on a similar result for the so-called random average process.

Remarks:

→ The fluctuations are Gaussian (of order $t^{1/2}$) if $V \neq C(\theta)$. In this scale, basically fluctuations coming from the initial state are observed. For $V = C(\theta)$, these fluctuations disappear, and only the dynamical noise remains. The latter is expected to appear on the $t^{1/3}$ time-scale for most systems, this is one of the greatest open questions in the field. T. Seppäläinen showed the limit on the $t^{1/4}$ scale for independent random walks, and we are currently working on a similar result for the so-called random average process.

\rightsquigarrow We need the LLN for the second class particle.

Known by Ferrari - Fontes 1992 for SE, Rezakhanlou 1995 for ZR.

Remarks:

→ The fluctuations are Gaussian (of order $t^{1/2}$) if $V \neq C(\theta)$. In this scale, basically fluctuations coming from the initial state are observed. For $V = C(\theta)$, these fluctuations disappear, and only the dynamical noise remains. The latter is expected to appear on the $t^{1/3}$ time-scale for most systems, this is one of the greatest open questions in the field. T. Seppäläinen showed the limit on the $t^{1/4}$ scale for independent random walks, and we are currently working on a similar result for the so-called random average process.

 \rightsquigarrow We need the LLN for the second class particle.

Known by Ferrari - Fontes 1992 for SE, Rezakhanlou 1995 for ZR.

For ZR and BL: Assume the rate f(z) is convex. Then

$$\frac{Q(t)}{t} \xrightarrow[t \to \infty]{L^n} C(\theta)$$

for any *n*. B. 2003.

 $C(\theta)$ is the *characteristic speed* in hydrodynamics.

71

<u>5. The role of the second class</u> particle (B. Tóth)

How to start with Var J(t)?
<u>5. The role of the second class</u> particle (B. Tóth)

How to start with Var J(t)?

 \rightarrow Separate martingales from J(t) and $J^2(t)$, use the reversed process, that gives time-in-tegrals of expectations.

5. The role of the second classparticle(B. Tóth)

How to start with Var J(t)?

 \rightarrow Separate martingales from J(t) and $J^2(t)$, use the reversed process, that gives time-in-tegrals of expectations.

 \rightarrow Use the generator to introduce time-derivatives in the integrands, which will cancel the integrations.

<u>5. The role of the second class</u> particle (B. Tóth)

How to start with Var J(t)?

 \rightarrow Separate martingales from J(t) and $J^2(t)$, use the reversed process, that gives time-in-tegrals of expectations.

 \rightarrow Use the generator to introduce time-derivatives in the integrands, which will cancel the integrations.

 \rightarrow The non-trivial term is

$$\lim_{t\to\infty}\sum_{n=1}^{\infty}\frac{n}{t}\mathbf{Cov}(\omega_n(t),\,\omega_0(0)).$$

 $\omega'_n(t) = \omega_n(t) + \mathbf{1}\{Q(t) = n\}$

 $\omega'_n(t) = \omega_n(t) + \mathbf{1}\{Q(t) = n\}$

$$E[\omega'_{n}(t) | \omega_{0}(0) = z] = E[\omega_{n}(t) | \omega_{0}(0) = z] + P[Q(t) = n | \omega_{0}(0) = z]$$

 $\omega'_n(t) = \omega_n(t) + \mathbf{1}\{Q(t) = n\}$

$$E[\omega'_{n}(t) | \omega_{0}(0) = z] = E[\omega_{n}(t) | \omega_{0}(0) = z] + P[Q(t) = n | \omega_{0}(0) = z]$$

 $E[\omega'_{n}(t) | \omega'_{0}(0) = z + 1] = E[\omega_{n}(t) | \omega_{0}(0) = z] + P[Q(t) = n | \omega_{0}(0) = z]$

 $\omega'_n(t) = \omega_n(t) + \mathbf{1}\{Q(t) = n\}$

$$E[\omega'_{n}(t) | \omega_{0}(0) = z] = E[\omega_{n}(t) | \omega_{0}(0) = z] + P[Q(t) = n | \omega_{0}(0) = z]$$

 $E[\omega'_{n}(t) | \omega'_{0}(0) = z + 1] = E[\omega_{n}(t) | \omega_{0}(0) = z] + P[Q(t) = n | \omega_{0}(0) = z]$

$$E[\omega_n(t) | \omega_0(0) = z + 1] = E[\omega_n(t) | \omega_0(0) = z] + P[Q(t) = n | \omega_0(0) = z]$$

 $\omega'_n(t) = \omega_n(t) + \mathbf{1}\{Q(t) = n\}$

$$\mathbf{E}[\omega_n'(t) | \omega_0(0) = z] = \mathbf{E}[\omega_n(t) | \omega_0(0) = z]$$
$$+ \mathbf{P}[Q(t) = n | \omega_0(0) = z]$$

 $\mathbf{E}[\omega'_{n}(t) | \omega'_{0}(0) = z + 1] = \mathbf{E}[\omega_{n}(t) | \omega_{0}(0) = z]$ + P[Q(t) = n | \omega_{0}(0) = z]

$$E[\omega_n(t) | \omega_0(0) = z + 1] = E[\omega_n(t) | \omega_0(0) = z] + P[Q(t) = n | \omega_0(0) = z]$$

Compare the two sides, build the covariance step by step.

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

81

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

82

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

84

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$

= 1{V_1 < C(\theta) < V_2} · C(\theta) · Cov(\omega_0(0), \omega_0(0)).

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$

= 1{V_1 < C(\theta) < V_2} · C(\theta) · Cov(\omega_0(0), \omega_0(0)).

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$
$$= \mathbf{1}\{V_1 < C(\theta) < V_2\} \cdot C(\theta) \cdot \operatorname{Cov}(\omega_0(0), \omega_0(0)).$$

90

$$\lim_{t \to \infty} \sum_{n=V_1 t}^{V_2 t} \cdot \frac{n}{t} \cdot \operatorname{Cov}(\omega_n(t), \omega_0(0))$$

= 1{V_1 < C(\theta) < V_2} · C(\theta) · Cov(\omega_0(0), \omega_0(0)).

 \rightsquigarrow Covariance on the Gaussian time-scale is transported by the second class particle. This finishes the proof.

↔ Covariance on the Gaussian time-scale is transported by the second class particle. This finishes the proof.

→ We used that the second class particle has the characteristic speed of the hydrodynamics.

 \rightarrow We need to prove this, i.e. LLN for the second class particle.

↔ Covariance on the Gaussian time-scale is transported by the second class particle. This

→ We used that the second class particle has the characteristic speed of the hydrodynamics.

finishes the proof.

 \rightarrow We need to prove this, i.e. LLN for the second class particle.

 → Once it's done, we see that the second class particle transports disturbances both in the microscopic and the hydrodynamic picture.

 $\underline{\omega}$ is in equilibrium (θ).

95

 $\underline{\omega}$ is in equilibrium (θ).

 $\omega'_i = \omega_i + 1\{Q = i\}$, not in equilibrium, one single second class particle \uparrow .

 $\underline{\omega}$ is in equilibrium (θ).

 $\omega'_i = \omega_i + 1\{Q = i\}$, not in equilibrium, one single second class particle \uparrow .

 $\underline{\zeta}$ is in equilibrium ($\widetilde{\theta}$) such that $\zeta_i \geq \omega_i$, a density of second class particles \uparrow .

 $\underline{\omega}$ is in equilibrium (θ).

 $\omega'_i = \omega_i + 1\{Q = i\}$, not in equilibrium, one single second class particle \uparrow .

 $\underline{\zeta}$ is in equilibrium ($\tilde{\theta}$) such that $\zeta_i \ge \omega_i$, a density of second class particles \uparrow .

✓ *Initially*, the ↑'s are product-distributed.
 Not at later times, the stationary distribution for TASE with second class particles was discovered by Derrida, Janowsky, Lebowitz, Speer 1993.

 $\underline{\omega}$ is in equilibrium (θ).

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$.

 \rightsquigarrow LLN for their columns' growth, and thus for the current of the \uparrow 's. (Current of second class particles \sim difference of columns' growth.)

 $\underline{\omega}$ is in equilibrium (θ).

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$.

 \rightsquigarrow LLN for their columns' growth, and thus for the current of the \uparrow 's. (Current of second class particles \sim difference of columns' growth.)

Initially, the \uparrow 's are product-distributed.

 \rightarrow We know much about the ↑'s. Let's compare the \uparrow 's with the single \uparrow .

 $\underline{\omega}$ is in equilibrium (θ).

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$.

 \rightsquigarrow LLN for their columns' growth, and thus for the current of the \uparrow 's. (Current of second class particles \sim difference of columns' growth.)

Initially, the \uparrow 's are product-distributed.

→ We know much about the \uparrow 's. Let's compare the \uparrow 's with the single \uparrow .

It works fine.

Until a point.

Which one to couple \uparrow to?

↑
↑6.
↑5.
↑4.
↑3.

Which one to couple \uparrow to?

Let's label the \uparrow 's in order.

105

Which one to couple \uparrow to?

Let's label the \uparrow 's in order. Then 3. has a (too) large rate to jump to the left,

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Introduce the \neq particle. With probability 1/4, it follows the \uparrow to jump.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

↑

With prob. 1/4

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

With prob. 1/4

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

With prob. 1/4

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

With prob. 1/4

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

With prob. 1/4

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

With prob. 1/4

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \(\) to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Introduce the \bigstar particle. With probability 1/4, it follows the \uparrow to jump. \rightsquigarrow its rate is only (too) large/4.

Which one to couple \uparrow to?

Let's label the ↑'s in order. Then
3. has a (too) large rate to jump to the left,
6. has a (too) large rate to jump to the right.

Introduce the \star particle. With probability 1/4, it follows the \uparrow to jump. \rightsquigarrow its rate is only (too) large/4.

~→ If the rate function f(z) is convex, then \uparrow is comparable to \bigstar : \uparrow is always to the left of \bigstar . This \bigstar is nice enough to inherit LLN from the \uparrow 's.

Let $u(\theta) := \mathbf{E}^{\theta}(\omega_i)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Let $u(\theta) := \mathbf{E}^{\theta}(\omega_i)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define $H(u) := \mathbf{E}^{\theta(u)}[r(\omega_i, \omega_{i+1})].$

Let $u(\theta) := \mathbf{E}^{\theta}(\omega_i)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define
$$H(u) := \mathbf{E}^{\theta(u)}[r(\omega_i, \omega_{i+1})].$$

Imagine a local equilibrium with θ depending on some large-scale time and space parameters t, x. Then on this large scale u = u(t, x), and $\partial_t u(t, x) + \partial_x H(u(t, x)) = 0$ $\begin{pmatrix} \text{conservation} \\ \text{law} \end{pmatrix}$ Rezakhanlou 1991, Tóth and Valkó 2002

Let $u(\theta) := \mathbf{E}^{\theta}(\omega_i)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define
$$H(u) := \mathbf{E}^{\theta(u)}[r(\omega_i, \omega_{i+1})].$$

Imagine a local equilibrium with θ depending on some large-scale time and space parameters t, x. Then on this large scale u = u(t, x), and $\partial_t u(t, x) + \partial_x H(u(t, x)) = 0$ (conservation law) Rezakhanlou 1991, Tóth and Valkó 2002

The easier and most natural case is when H(u) is *convex*. It is convex for SE.

Let $u(\theta) := \mathbf{E}^{\theta}(\omega_i)$. This is a strictly increasing function, its inverse is $\theta(u)$.

Define
$$H(u) := \mathbf{E}^{\theta(u)}[r(\omega_i, \omega_{i+1})].$$

Imagine a local equilibrium with θ depending on some large-scale time and space parameters t, x. Then on this large scale u = u(t, x), and $\partial_t u(t, x) + \partial_x H(u(t, x)) = 0$ $\begin{pmatrix} \text{conservation} \\ \text{law} \end{pmatrix}$ Rezakhanlou 1991, Tóth and Valkó 2002

The easier and most natural case is when H(u) is *convex*. It is convex for SE.

Is it convex for ZR or BL?

 $\partial_t u + \partial_x H(u) = 0$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

$$0 = \frac{d}{dt}u(t, x(t))$$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

$$0 = \frac{d}{dt}u(t, x(t)) = \partial_t u + \partial_x u \cdot \dot{x}(t)$$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

$$0 = \frac{d}{dt}u(t, x(t)) = \partial_t u + \partial_x u \cdot \dot{x}(t)$$
$$= -H'(u)\partial_x u + \partial_x u \cdot \dot{x}(t)$$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

$$0 = \frac{d}{dt}u(t, x(t)) = \partial_t u + \partial_x u \cdot \dot{x}(t)$$
$$= -H'(u)\partial_x u + \partial_x u \cdot \dot{x}(t)$$
$$= [\dot{x}(t) - H'(u)]\partial_x u.$$

 $\partial_t u + \partial_x H(u) = 0$

Until the solution is continuous:

 $\partial_t u + H'(u)\partial_x u = 0$ $\partial_t u = -H'(u)\partial_x u.$

We look for x(t) s.t. u(t, x(t))=constant.

$$0 = \frac{d}{dt}u(t, x(t)) = \partial_t u + \partial_x u \cdot \dot{x}(t)$$

= $-H'(u)\partial_x u + \partial_x u \cdot \dot{x}(t)$
= $[\dot{x}(t) - H'(u)]\partial_x u.$

So, $\dot{x}(t) = H'(u)$ is the characteristic speed.

143

It turns out that the characteristic speed $H'(u) = H'(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.
It turns out that the characteristic speed $H'(u) = H'(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

In general, the second class particle is following the characteristics. It turns out that the characteristic speed $H'(u) = H'(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

In general, the second class particle is following the characteristics.

 $\rightarrow H(u)$ is convex, if $H'(u(\theta)) = C(\theta)$ is increasing (in either u or θ).

It turns out that the characteristic speed $H'(u) = H'(u(\theta))$ agrees with the speed $C(\theta)$ of the second class particle.

In general, the second class particle is following the characteristics.

 $\rightarrow H(u)$ is convex, if $H'(u(\theta)) = C(\theta)$ is increasing (in either u or θ).

The way to check this is comparing second class particles.

 $\underline{\omega}$ is in equilibrium (θ).

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta} > \theta$, $\zeta_i \ge \omega_i$.

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta} > \theta$, $\zeta_i \ge \omega_i$.

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta} > \theta$, $\zeta_i \ge \omega_i$.

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta} > \theta$, $\zeta_i \ge \omega_i$.

→ If the rate function f(z) is convex, then \uparrow and \uparrow can be coupled to each other: \uparrow is always to the left of \uparrow .

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta} > \theta$, $\zeta_i \ge \omega_i$.

→ If the rate function f(z) is convex, then \uparrow and \uparrow can be coupled to each other: \uparrow is always to the left of \uparrow .

 $\rightsquigarrow C(\tilde{\theta}) \ge C(\theta)$, so $C(\theta)$ is increasing, H(u) is convex.

 $\underline{\zeta}$ is in equilibrium $(\widetilde{\theta})$, with $\widetilde{\theta} > \theta$, $\zeta_i \ge \omega_i$.

→ If the rate function f(z) is convex, then \uparrow and \uparrow can be coupled to each other: \uparrow is always to the left of \uparrow .

 $\rightsquigarrow C(\tilde{\theta}) \ge C(\theta)$, so $C(\theta)$ is increasing, H(u) is convex. Strict convexity also follows by analytic arguments. Thank you.