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Márton Balázs

Budapest University of Technology and Economics

Oberwolfach, August 2007



Models Current 2nd class Proof

The model
ASEP
Zero range
Bricklayers

Current variance
Space-time correlations

The second class particle
The main theorem
Hydrodynamics
Consequences

Proof
The difficulty



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.



Models Current 2nd class Proof ASEP AZRP ABLP

Asymmetric simple exclusion

-3 -2 -1 0 1 2 3 4 i

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • •

Bernoulli(̺) distribution; ωi = 0 or 1.

Particles try to jump

to the right with rate p,
to the left with rate q = 1 − p < p.

The jump is suppressed if the destination site is occupied by
another particle.

The Bernoulli(̺) distribution is time-stationary for any
(0 ≤ ̺ ≤ 1). Any translation-invariant stationary distribution is a
mixture of Bernoullis.
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→

(
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)
with rate p(ωi , ωi+1),

(
ωi

ωi+1

)
→

(
ωi + 1

ωi+1 − 1

)
with rate q(ωi , ωi+1), where

◮ p and q are such that they keep the state space (SEP, ZRP),
◮ p is non-decreasing in the first, non-increasing in the

second variable, and q vice-versa (attractivity),
◮ they satisfy some algebraic conditions to get a product

stationary distribution for the process,
◮ they satisfy some regularity conditions to make sure the

dynamics exists.
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Integrated particle current

i
t=0

t

h t

0

0

hVt (t)

Vt

hVt(t) = height as seen by a moving observer of velocity V .

= net number of particles passing the window s 7→ Vs.

(Remember: particle current=change in height.)
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For any V ∈ R and t > 0 under the time-stationary evolution,

Var(hVt(t)) =
∞∑

i=−∞

|Vt − i | · Cov(ωi(t), ω0(0)),

t · Cov(p(ω0, ω1) − q(ω0, ω1), (ω0 + ω1))

=
∞∑

i=−∞

i · Cov(ωi(t), ω0(0)).

◮ Both statements are already exact for finite times t .
◮ Formulas of similar flavor for the ASEP have been derived

by Prähofer and Spohn in 2001.



Models Current 2nd class Proof Correlations

Space-time correlations
Theorem (Ideas originating from B. Tóth; proof coming later)
For any V ∈ R and t > 0 under the time-stationary evolution,

Var(hVt(t)) =
∞∑

i=−∞

|Vt − i | · Cov(ωi(t), ω0(0)),

t · Cov(p(ω0, ω1) − q(ω0, ω1), (ω0 + ω1))

=
∞∑

i=−∞

i · Cov(ωi(t), ω0(0)).

◮ Both statements are already exact for finite times t .
◮ Formulas of similar flavor for the ASEP have been derived

by Prähofer and Spohn in 2001.
◮ To understand these formulas better, we need to introduce

the second class particle.
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The second class particle
States ω and ω only differ at one site.

Growth on the left:
rate≥rate
with rate-rate:

i

• ••
•• •• ••

••

A single discrepancy , the second class particle, is conserved.
Its position at time t is Q(t). So, ωi(t) = ωi(t) + 1{Q(t) = i}.
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A way to use the second class particle

Set Q(0) = 0, that is, ωi(0) = ωi(0) + δi0.

ωi(t) = ωi(t) + 1{Q(t) = i}

E[ωi(t) |ω0(0) = z] = E[ωi(t) |ω0(0) = z]

+ P[Q(t) = i |ω0(0) = z]

E[ωi(t) |ω0(0) = z + 1] = E[ωi(t) |ω0(0) = z]

+ P[Q(t) = i |ω0(0) = z]

E[ωi(t) |ω0(0) = z + 1] = E[ωi(t) |ω0(0) = z]

+ P[Q(t) = i |ω0(0) = z]

Ã Build up the space-time covariance Cov(ωi(t), ω0(0)) of the
stationary evolution.
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A way to use the second class particle
Let µ denote the marginals of which the product is the
stationary distribution. Expectations of the stationary process
are denoted by E. Define the distribution

µ̂(z) : =
Cov(ω, 1{ω > z})

Var(ω)
.

Start a process in product distribution of marginals
{

µ̂ for ω0(0),

µ for ωi(0), i 6= 0.

Start also a second class particle from the origin: Q(0) = 0.

Example
For the ASEP, µ is the Bernoulli-distribution, and µ̂ gives
probability one on {ω0(0) = 0}.
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A way to use the second class particle
Theorem

Cov(ωi(t), ω0(0))

Var(ω)
= P̂{Q(t) = i}.

So, the previous theorem now reads

Var(hVt(t))
Var(ω)

= Ê|Q(t) − Vt |,

t ·
Cov(p(ω0, ω1) − q(ω0, ω1), (ω0 + ω1))

Var(ω)
= Ê(Q(t)).

◮ Both statements are already exact for finite times t .
◮ Formulas of similar flavor for the ASEP have been derived

by Prähofer and Spohn in 2001.
◮ To understand these formulas even better, let’s take a look

at the hydrodynamics.
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Hydrodynamics (very briefly)

The density u : = E(ω) and the hydrodynamic flux
H : = E[p(ωi , ωi+1) − q(ωi , ωi+1)] both depend on a parameter
of the stationary distribution.

◮ H(u) is the hydrodynamic flux function.
◮ If the process is locally in equilibrium, but changes over

some large scale (variables X = εi and T = εt), then

∂T u(T , X ) + ∂xH(u(T , X )) = 0 (conservation law).

◮ The characteristics is a path X (T ) where u(T , X (T )) is
constant.
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Characteristics (very briefly)

∂T u + ∂X H(u) = 0

∂T u + H ′(u) · ∂X u = 0 (while smooth)

∂T u + Ẋ (T ) · ∂X u =
d

dT
u(T , X (T )) = 0

So, Ẋ (T ) = H ′(u) = : C is the characteristic speed. A bit of
computation shows

C =
Cov(p(ω0, ω1) − q(ω0, ω1), (ω0 + ω1))

Var(ω)
.

Thus, here is the final form of our theorem:

Var(hVt(t))
Var(ω)

= Ê|Q(t) − Vt |, t · C = Ê(Q(t)).
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Consequence 1: normal fluctuations

Var(hVt(t))
Var(ω)

= Ê|Q(t) − Vt |, t · C = Ê(Q(t)).

Combine this, if available, with a (Weak) Law of Large

Numbers for the second class particle: Q(t)
t

d
→ C:

lim
t→∞

Var(hVt(t))
t

= Var(ω) · |C − V |.

Notice the vanishing right hand-side at V = C, from which the
Central Limit Theorem also follows for all other cases:

lim
t→∞

P
{ hVt(t) − E(hVt(t))√

t · Var(ω) · |C − V |
≤ x

}
= Φ(x).

ASEP: Ferrari and Fontes 1994
LLN for ASEP: Ferrari and Fontes 1992, concave rate TAZRP:
Rezakhanlou 1995, convex rate TABLP: B. 2003.
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Consequence 1: normal fluctuations

i
t=0

t

h t

0

0

hVt (t)

VtCt

lim
t→∞

Var(hVt(t))
t

= Var(ω) · |C − V |

Initial fluctuations are transported along the characteristics on
this scale.
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Var(hVt(t))
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= Ê|Q(t) − Vt |, t · C = Ê(Q(t)).
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plugging in a LLN for Q, perform a more delicate analysis on
how deviations of hi(t) and Q(t) are connected; check out
Timo’s talk later on.
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Var(ω)

= Ê|Q(t) − Vt |, t · C = Ê(Q(t)).

We are now interested in the case V = C. Rather than directly
plugging in a LLN for Q, perform a more delicate analysis on
how deviations of hi(t) and Q(t) are connected; check out
Timo’s talk later on. The result:

Theorem (B. - Seppäläinen)
For the stationary ASEP evolution,

0 < lim inf
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Var(hCt(t))
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Var(hCt(t))
t2/3

< ∞.



Models Current 2nd class Proof Theorem Hydrodynamics Consequences

Consequence 2: t2/3 scaling

Var(hVt(t))
Var(ω)

= Ê|Q(t) − Vt |, t · C = Ê(Q(t)).

We are now interested in the case V = C. Rather than directly
plugging in a LLN for Q, perform a more delicate analysis on
how deviations of hi(t) and Q(t) are connected; check out
Timo’s talk later on. The result:

Theorem (B. - Seppäläinen)
For the stationary ASEP evolution,

0 < lim inf
t→∞

Var(hCt(t))
t2/3

≤ lim sup
t→∞

Var(hCt(t))
t2/3

< ∞.

Important preliminaries were Cator and Groeneboom 2006, B.,
Cator and Seppäläinen 2006.
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strictly concave. It is expected that the above t1/3 fluctuations
come in for models with H(u)′′ 6= 0.
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Other results
The hydrodynamic flux H(u) of the ASEP is

H(u) = (p − q) · u(1 − u),

strictly concave. It is expected that the above t1/3 fluctuations
come in for models with H(u)′′ 6= 0.
There are asymmetric models with linear hydrodynamics:

◮ The random average process (RAP),
◮ The AZRP with linear rates r(ωi) = independent random

walkers.
In their cases, we have

lim
t→∞

Var(hCt(t))
t1/2

= . . . ,

even convergence of the finite-dimensional distributions of the
hCt(t) process to Gaussian limits is known (Seppäläinen 2005,
Ferrari and Fontes 1998, B., Rassoul-Agha and Seppäläinen
2006).
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Other results

As a contrary, t1/3 scalings come with Tracy-Widom type limits
of

hi(t)
t1/3

for i around the characteristics. Among distributional results are
Baik, Deift and Johansson 1999, Johansson 2000, Prähofer
and Spohn 2001, Ferrari and Spohn 2006. Their methods are
completely different, relying on combinatorial tricks and
asymptotic analysis of certain determinants.
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◮ Separate a martingale, and then a conditional variance

martingale from h0(t) and, of course, reverse time. This
leads to nontrivial terms like

∫ t

0

∫ s

0
Cov (r(v), r∗(0)) dv ds

in Var(h0(t)); r∗ is the rate of the reversed process.
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A few words on the proof (Ideas originating from B. Tóth)
◮ Separate a martingale, and then a conditional variance

martingale from h0(t) and, of course, reverse time. This
leads to nontrivial terms like

∫ t

0

∫ s

0
Cov (r(v), r∗(0)) dv ds

in Var(h0(t)); r∗ is the rate of the reversed process.
◮ Use a spatial telescopic-type trick to introduce a function ϕ

for which r − E(r) = Lϕ. Then the expectation becomes a
time-derivative:

E ([r(v) − E(r)] · r∗(0)) = E (Lϕ(v) · r∗(0))

=
d

dv
E (ϕ(v) · r∗(0)) ,

and the integrals can be computed.
◮ Repeat similar tricks for hi(t).
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The difficulty in generalizing
◮ The theorem we have seen is quite general in a large

class, the difficulty is in applications.
◮ For normal fluctuations, we needed the LLN for Q(t), for

t1/3 fluctuations, we need to connect hi(t) and Q(t) in a
more delicate way.

◮ Method: compare the single second class particle at
position Q(t) with a crowd of second class particles that
are defined between two coupled stationary processes of
different densities.

◮ For the TASEP, this is trivial.
◮ For the ASEP, one can use the construction of Ferrari,

Kipnis and Saada 1991.
◮ For the AZRP and ABLP processes with convex rates, LLN

for Q(t) could still be worked out with some coupling tricks
(Rezakhanlou 1995, B. 2003). Not clear how to refine this
for t1/3 fluctuations.
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Thank you.
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