Fluctuation estimates
 for last-passage percolation

Márton Balázs
(Budapest University of Technology and Economics Back then University of Wisconsin - Madison)
Joint work with
Eric Cator
(Delft University of Technology)
and
Timo Seppäläinen
(University of Wisconsin - Madison)
Oberwolfach, October 12, 2007

TASEP: Interacting particles
TASEP: Surface growth
TASEP: Last passage percolation Results
Last passage equilibrium The competition interface Upper bound
Lower bound
Further directions

TASEP: Interacting particles

Bernoulli(@) distribution

TASEP: Interacting particles

\circ	0	\bullet	\bullet	\bullet	0	\bullet	0
-3	-2	-1	0	1	2	3	4

Bernoulli(@) distribution

(particle, hole) pairs become (hole, particle) pairs with rate 1.

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli (@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli (@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli (@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(ϱ) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli($($) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1).

TASEP: Interacting particles

Bernoulli(@) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\otimes \sim$ Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

TASEP: Interacting particles

Bernoulli(e) distribution
(particle, hole) pairs become (hole, particle) pairs with rate 1.
That is: waiting times $\oplus \sim$ Exponential(1). \rightsquigarrow Markov process.

Particles try to jump to the right, but block each other.

The Bernoulli(ϱ) distribution is time-stationary for any ($0 \leq \varrho \leq 1$). Any translation-invariant stationary distribution is a mixture of Bernoullis.

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.

Hydrodynamics (briefly)
Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$.

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)]=0 \quad \text { (inviscid Burgers) }
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\begin{aligned}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0 \\
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0
\end{aligned} \quad \text { (inviscid Burgers) }
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\begin{aligned}
& \frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)]=0 \text { (inviscid Burgers) } \\
& \frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho=0 \quad \text { (while smooth) } \\
& \frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{aligned}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0
\end{array} \quad \text { (inviscid Burgers) }\right)=\begin{array}{ll}
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0 \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0
\end{array} \quad \text { (inviscid Burgers) }\right)=\begin{array}{ll}
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0 \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho & =\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies

$$
\begin{array}{rlrl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X}[\varrho(1-\varrho)] & =0 & \text { (inviscid Burgers) } \\
\frac{\partial}{\partial T} \varrho+[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0 & \text { (while smooth) } \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

\rightsquigarrow The characteristic speed $C(\varrho):=1-2 \varrho$. (ϱ is constant along $\dot{X}(T)=C(\varrho)$.)

TASEP: Surface growth

Bernoulli($($) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Surface growth

Bernoulli(@) distribution

TASEP: Surface growth

Bernoulli(ϱ) distribution

TASEP: Last passage percolation

TASEP: Last passage percolation

Bernoulli(ϱ) distribution

TASEP: Last passage percolation

Bernoulli(ϱ) distribution

TASEP: Last passage percolation

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}.
Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.

Occupation of $(i, j)=$ jump of P_{j} over H_{i}. Occupation of $(2,1)=$ jump of P_{1} over H_{2}.
The time when this happens $=: G_{i j}$.
The characteristic speed $V=C(\varrho)$ translates to

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Will present results on $G_{m n}$.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(@) process, governed by the left orange part

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part H_{0} jumps according to a Poisson(@) process, governed by the left orange part independently of the Θ^{\prime} 's.

Burke's Theorem:
P_{0} jumps according to a Poisson $(1-\varrho)$ process, governed by the right orange part
H_{0} jumps according to a Poisson(@) process,
governed by the left orange part
independently of the ©'s.
Therefore:

121

The last passage model

The last passage model

The last passage model

The last passage model

$Q \sim$ Exponential $(1-\varrho)$
© ~ Exponential(@)
$\Theta_{0} \sim$ Exponential(1)
independently

The last passage model

Abstract

Q \sim Exponential $(1-\varrho)$) @ ~Exponential(@) independently © \sim Exponential(1)

The last passage model

$\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ \odot & \sim \text { Exponential }(\varrho) \\ Q & \sim \text { Exponential }(1)\end{array}\right\}$ independently

Q starts ticking when its west neighbor becomes occupied

The last passage model

$\left.\begin{array}{rl}\Theta & \sim \text { Exponential }(1-\varrho) \\ \sim & \sim \text { Exponential }(\varrho) \\ \Theta & \sim \text { Exponential }(1)\end{array}\right\}$ independently

Q starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied

The last passage model

\author{
Q \sim Exponential $(1-\varrho)$)
 $\left.\begin{array}{rl}Q & \sim \text { Exponential(} \varrho) \\ & \sim \text { Exponential(1) }\end{array}\right\}$ independently

}

Q starts ticking when its west neighbor becomes occupied
-starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Q starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied

The last passage model

M. Prähofer and H. Spohn 2002

$$
\left.\begin{array}{rl}
Q & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
\otimes \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Q starts ticking when its west neighbor becomes occupied
ostarts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)

The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
\oplus starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
©starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

The last passage model

M. Prähofer and H. Spohn 2002

starts ticking when its west neighbor becomes occupied
\oplus starts ticking when its south neighbor becomes occupied
Q starts ticking when both its west and south neighbors become occupied
$G_{i j}=$ the occupation time of (i, j)
$G_{i j}=$ the maximum weight collected by a north -east path from $(0,0)$ to (i, j).

Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:
$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.

Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:

$$
0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty
$$

Johansson (2000) identifies the limiting distribution of $G_{m n}$ in terms of Tracy-Widom GUE distributions, when Q and $\bullet \sim$ Exponential(1).

Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:

$0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty$.
Johansson (2000) identifies the limiting distribution of $G_{m n}$ in terms of Tracy-Widom GUE distributions, when and $\odot \sim$ Exponential(1).
P. L. Ferrari and H. Spohn (2005) identify the limiting distribution off the characteristics by $t^{1 / 3}$.

Results

On the characteristics

$$
m:=(1-\varrho)^{2} t \text { and } n:=\varrho^{2} t
$$

Theorem:

$$
0<\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}} \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G_{m n}\right)}{t^{2 / 3}}<\infty
$$

Johansson (2000) identifies the limiting distribution of $G_{m n}$ in terms of Tracy-Widom GUE distributions, when and \sim Exponential(1).
P. L. Ferrari and H. Spohn (2005) identify the limiting distribution off the characteristics by $t^{1 / 3}$.
Their method: RSK correspondence, random matrices.

$Z_{m n}$ is the exit point of the longest path to

$$
(m, n)=\left((1-\varrho)^{2} t, \varrho^{2} t\right)
$$

$Z_{m n}$ is the exit point of the longest path to

$$
(m, n)=\left((1-\varrho)^{2} t, \varrho^{2} t\right)
$$

Theorem:
For all large t and all $a>0$,

$$
\mathbf{P}\left\{Z_{m n} \geq a t^{2 / 3}\right\} \leq C a^{-3}
$$

Given $\varepsilon>0$, there is a $\delta>0$ such that

$$
\mathbf{P}\left\{1 \leq Z_{m n} \leq \delta t^{2 / 3}\right\} \leq \varepsilon
$$

for all large t.

Last passage equilibrium

Equilibrium:

$$
\left.\begin{array}{rl}
\otimes & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1 .
\end{aligned}
$$

Last passage equilibrium

Equilibrium:

> $\left.\begin{array}{rl}Q & \sim \text { Exponential }(1-\varrho) \\ & \sim \text { Exponential }(\varrho) \\ \text { © } & \sim \text { Exponential }(1)\end{array}\right\}$ independently

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1
\end{aligned}
$$

\rightsquigarrow Any fixed southeast path meets independent increments

$$
\begin{aligned}
& I_{i j} \sim \text { Exponential }(1-\varrho) \quad \text { and } \\
& J_{i j} \sim \text { Exponential }(\varrho) .
\end{aligned}
$$

Last passage equilibrium

Equilibrium:

$$
\left.\begin{array}{rl}
\Theta & \sim \text { Exponential }(1-\varrho) \\
& \sim \text { Exponential }(\varrho) \\
& \sim \text { Exponential }(1)
\end{array}\right\} \text { independently }
$$

G-increments:

$$
\begin{aligned}
& I_{i j}:=G_{i j}-G_{\{i-1\} j} \quad \text { for } i \geq 1, j \geq 0, \quad \text { and } \\
& J_{i j}:=G_{i j}-G_{i\{j-1\}} \quad \text { for } i \geq 0, j \geq 1
\end{aligned}
$$

\rightsquigarrow Any fixed southeast path meets independent increments

$$
\begin{aligned}
& I_{i j} \sim \text { Exponential }(1-\varrho) \quad \text { and } \\
& J_{i j} \sim \text { Exponential }(\varrho) .
\end{aligned}
$$

Of course, this doesn't help directly with $G_{m n}$.

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via (1,0) and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.

The competition interface

Ferrari, Martin, Pimentel (2005)
Which squares are infected via $(1,0)$ and via (0,1)?
The competition interface follows the same rules as the second class particle of simple exclusion.
If it passes left of (m, n), then $G_{m n}$ is not sensitive to decreasing the weights on the j-axis. If it passes below (m, n), then $G_{m n}$ is not sensitive to decreasing the \otimes weights on the i-axis.

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$.

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\}=\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\}
$$

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\}
\end{aligned}
$$

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\} \\
& =\mathbf{P}\left\{\exists z>u: U_{z}^{\lambda}-U_{z}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
\end{aligned}
$$

Upper bound (E. Cator and P. Groeneboom)

G^{ϱ} : weight collected by the longest path.
Z^{ϱ} : exit point of the longest path.
U_{z}^{ϱ} : weight collected on the axis until z.
A_{z} : largest weight of a path from z to (m, n).
Step 1:

$$
U_{z}^{\lambda}+A_{z} \leq G^{\lambda}
$$

for any z, any $0<\lambda<1$. Fix $u \geq 0$ and $\lambda \geq \varrho$,

$$
\begin{aligned}
\mathbf{P}\left\{Z^{\varrho}>u\right\} & =\mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}+A_{z}(t)=G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{\exists z>u: U_{z}^{\varrho}-U_{z}^{\lambda}+G^{\lambda} \geq G^{\varrho}\right\} \\
& =\mathbf{P}\left\{\exists z>u: U_{z}^{\lambda}-U_{z}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} \\
& \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
\end{aligned}
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\}
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.
Step 5:
A large deviation estimate connects $\mathbf{P}\left\{Z^{\varrho}>y\right\}$ and $\mathbf{P}\left\{U_{Z \varrho^{+}}^{\varrho}>y\right\}$.

$$
\rightsquigarrow \mathbf{P}\left\{U_{Z^{+}}^{\varrho}>y\right\} \leq C\left(\frac{t^{2}}{y^{4}} \cdot \mathbb{E}\left(U_{Z^{\varrho^{+}}}^{\varrho}\right)+\frac{t^{2}}{y^{3}}\right)
$$

$$
\mathbf{P}\left\{Z^{\varrho}>u\right\} \leq \mathbf{P}\left\{U_{u}^{\lambda}-U_{u}^{\varrho} \leq G^{\lambda}-G^{\varrho}\right\} .
$$

Step 2:
Optimize λ so that $\mathbf{E}\left(U_{u}^{\lambda}-G^{\lambda}\right)$ be maximal. (The equilibrium makes it possible to compute the expectation.) This makes the estimate sharp.
Step 3:
Apply Chebyshev's inequality on the right-hand side. $\operatorname{Var}\left(U_{u}\right)$ is elementary.
Step 4:
Prove, by a perturbation argument, that $\operatorname{Var}(G)$ is related to $\mathrm{E}\left(U_{Z^{+}}\right)$.
Step 5:
A large deviation estimate connects $\mathbf{P}\left\{Z^{\varrho}>y\right\}$ and $\mathbf{P}\left\{U_{Z \varrho^{+}}^{\varrho}>y\right\}$.

$$
\rightsquigarrow \mathbf{P}\left\{U_{Z^{+}}^{\varrho}>y\right\} \leq C\left(\frac{t^{2}}{y^{4}} \cdot \mathrm{E}\left(U_{Z^{\varrho^{+}}}^{\varrho}\right)+\frac{t^{2}}{y^{3}}\right)
$$

Conclude

$$
\limsup _{t \rightarrow \infty} \frac{\mathrm{E}\left(U_{Z^{\varrho}+}^{\varrho}\right)}{t^{2 / 3}}<\infty, \quad \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G^{\varrho}\right)}{t^{2 / 3}}<\infty .
$$

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound
(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.
\rightsquigarrow competition interface-probabilities are in fact Z-probabilities.

Time-reversal and the lower bound

(E. Cator and P. Groeneboom)

\rightsquigarrow Z-probabilities are connected to competition interface-probabilities.
competition interface $=$ longest path of the reversed model.
\rightsquigarrow competition interface-probabilities are in fact Z-probabilities.
Conclude

$$
\liminf _{t \rightarrow \infty} \frac{\mathbb{E}\left(U_{Z \varrho+}^{\varrho}\right)}{t^{2 / 3}}>0, \quad \liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(G^{\varrho}\right)}{t^{2 / 3}}>0
$$

Further directions

We managed to drop the last passage picture and repeat these arguments directly in the asymmetric simple exclusion process.

Further directions

We managed to drop the last passage picture and repeat these arguments directly in the asymmetric simple exclusion process.

Thank you.

