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Hybrid Zones

A hybrid zone is a narrow geographic
region where two genetically distinct
populations are found close together
and hybridise to produce offspring of
mixed ancestry.

They are maintained by a balance be-
tween selection and dispersal.

With thanks to Nick Barton and his group



A mathematical model

Individuals carry two copies of a gene that occurs as a or A.

Hardy-Weinberg proportions: w̄ = proportion of a-alleles,

aa aA AA

w̄2 2w̄(1− w̄) (1− w̄)2

Relative fitnesses:
aa aA AA

1 1− s 1



Reproduction

◮ Each heterozygote produces (1− s) times as many germ cells
(cells of same genotype) as a homozygote;

◮ Germ cells split into effectively infinite pool of gametes
(containing just one copy of gene), with proportion of type a

w̄2 + w̄(1− w̄)(1− s)

1− 2sw̄(1− w̄)
= (1− s)w̄ + s(3w̄2 − 2w̄3) +O(s2)

= w̄ + sw̄(1− w̄)(2w̄ − 1) +O(s2).

In an infinite population, if s = α
N (where N is large), measuring

time in units of N generations,

dw̄

dt
= αw̄(1− w̄)(2w̄ − 1).
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Add dispersal:

∂w

∂t
=

m

2
∆w + αw(1 − w)(2w − 1).



The Allen-Cahn equation: zooming out

∂w

∂t
=

m

2
∆w + αw(1 − w)(2w − 1).

Applying a diffusive rescaling t 7→ t
ε2
, x 7→ x

ε , the Allen-Cahn
equation becomes

∂w

∂t
=

m

2
∆w +

α

ε2
w(1− w)(2w − 1).

For convenience, set m = 2, α = 1.

For sufficiently regular initial conditions, as ǫ → 0, the solution
converges to the indicator function of a region whose boundary
evolves according to curvature flow.



Curvature flow

◮ Γt : S
1 → R

2 smooth embeddings;

◮ nt(u) unit (inward) normal vector to Γt at u;

◮ κ = κt(u) curvature of Γt at u.

∂Γt(u)

∂t
= κt(u)nt(u). Defined up to fixed time T

This point moves faster

Curvature Flow by Matt Dunlop (Warwick)



The Allen-Cahn equation and curvature flow

Let d(x, t) be the signed distance from x to Γt. Choose w0 such
that Γ0 = {x ∈ R

2 : w0(x) =
1
2}, w0 <

1
2 inside Γ and > 1

2
outside.

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1).

Theorem (Chen 1992)
Fix T ∗ ∈ (0, T ). Let k ∈ N. There exists ε(k) > 0, and
a(k), c(k) ∈ (0,∞) such that for all ε ∈ (0, ε(k)) and t satisfying
aε2| log ε| ≤ t ≤ T ∗,

1. for x such that d(x, t) ≥ cε| log ǫ|, we have w(t, x) ≥ 1− εk;

2. for x such that d(x, t) ≤ −cε| log ε|, we have w(t, x) ≤ εk.



Adding noise?

Hairer, Ryser & Weber (2012), d = 2 (v = 2w − 1)

dv = (∆v + v − v3)dt+ σdW,

W a mollified space-time white noise.

◮ If the mollifier is removed, solutions converge weakly to zero;

◮ if intensity of W simultaneously converges to zero sufficiently
quickly, recover the deterministic equation.

Will hybrid zones still evolve approximately according to curvature
flow in the presence of random genetic drift?

. . . additive white noise is not a good model of genetic drift



The pain in the torus

The Wright-Malécot model

Average one offspring per individual; location of each offspring
independent Gaussian pick around position of parent

t = 0
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“The pain in the torus” Felsenstein (1975)

In d = 1, 2, need local regulation to prevent clumping
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The pain in the torus

“The pain in the torus” Felsenstein (1975)

In d = 1, 2, need local regulation to prevent clumping

Nonetheless, over intermediate scales, the Wright-Malécot formula
describes the way that correlations in frequencies of different
genetic types decay with sampling distance.



An individual based model

◮ Start with Poisson point process
intensity λdx;
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Some remarks

◮ Population size is locally regulated.

◮ Individual’s probability to reproduce declines with local
population density.

Theorem If λ > λc there is an ergodic stationary distribution.

Genealogical trees are not so easy to write down.

To overcome this, let λ → ∞, but without scaling the Poisson
point process (retains signature of small neighbourhood size).



The (neutral) spatial Lambda Fleming-Viot process

State {w(t, x), x ∈ R
d, t ≥ 0}. (Proportion of type a)

Fix u ∈ (0, 1), µ a finite measure on [0,R). Π Poisson point
process rate dt⊗ dx⊗ µ(dr) on [0,∞)× R

d × [0,∞).

Dynamics: for each (t, x, r) ∈ Π,

◮ z ∼ U(Br(x))

◮ K ∼ Ber(w(t−, z)).

For all y ∈ Br(x),

w(t, y) = (1− u)w(t−, y) + uK.

r
x

z



Backwards in time

◮ A single ancestral lineage evolves in series of jumps with
intensity

dt⊗

∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

Cdrd
u νr(du)µ(dr)dx

on R+ × R
d where Lr(x) = |Br(0) ∩Br(x)|.

◮ Lineages can coalesce when hit
by same ‘event’.

x
r



Adding selection: majority voting

Recall proportion of germ cells that are type a is

(1− s)w̄ + s(3w̄2 − 2w̄3) +O(s2)

First observe that

3w̄2 − w̄3 =
(

w3 + 3w2(1−w)
)

❀ majority voting rule.



Adding selection: majority voting

Recall proportion of germ cells that are type a is

(1− s)w̄ + s(3w̄2 − 2w̄3) +O(s2)

First observe that

3w̄2 − w̄3 =
(

w3 + 3w2(1−w)
)

❀ majority voting rule.

◮ (i) Neutral events rate ∝ (1− s), selective events rate ∝ s.

◮ At selective reproduction events, sample three potential
parents. If types aaa or aaA, then an a reproduces, otherwise
an A does.



Noisy hybrid zones

With thanks to Nic Freeman and Jerome Kelleher



A first scaling result

Specialise to µ(dr) = δR(dr), for some fixed R > 0.

un =
u

n1−2β
, sn =

ρ

n2β
and wn

t (x) := wnt(n
βx).

Theorem (Moficiation of Etheridge, Véber & Yu, 2014)
Suppose that β ∈ (0, 1/3), and that wn

0 converges weakly to some
w0. Then (wn

t )t≥0 converges weakly to (weak) solution of

∂w

∂t
=

m

2
∆w + αw(1 − w)(2w − 1).

where m and α are explicit, with

m ∝ u, α ∝ uρ.

What if ρ → ∞ as n → ∞?



Main result

un =
u

n1−2β
, sn =

1

ε2n

1

n2β
and wn

t (x) := wnt(n
βx).

Theorem (Etheridge, Freeman & Penington, 2016)
Suppose β ∈ (0, 1/4) and εn is such that εn → 0 and
(log n)1/2εn → ∞ as n → ∞. Set wn

0 (x) = w0(n
−βx).

For k ∈ N there exist n(k) < ∞, and a(k), d(k) ∈ (0,∞) such
that for all n ≥ n(k) and all t satisfying aε2n| log εn| ≤ t ≤ T ∗,

1. for almost every x such that d(x, σ2t) ≥ dεn| log εn|, we have
E[wn

t (x)] ≥ 1− εkn.

2. for x such that d(x, σ2t) ≤ −dεn| log εn|, we have
E[wn

t (x)] ≤ εkn.

where σ2 is known explicitly.



Majority voting in (Historical) BBM

W (t) = historical ternary BBM.

For a fixed function p : R2 → [0, 1], define a voting procedure on
W (t) as follows.

1. Each leaf, independently, votes 1 with probability p(Wi(t))
and otherwise votes 0.

2. At each branch point the vote of the parent particle i is the
majority vote of the votes of its three children.

This defines an iterative voting procedure, which runs inwards from
the leaves of W (t) to the root.
Define Vp(W (t)) to be the vote associated to the root.



Majority voting and the Allen-Cahn equation

0

00 0 1 1 1 0 0 1 0 1

0

1

0

1

W (t) = historical BBM, branching rate 1
ε2 ; p : R2 → [0, 1].

w(t, x) = P
ε
x [Vp(W (t)) = 1]

solves

∂w

∂t
= ∆w +

1

ε2
w(1 − w)(2w − 1), w(0, x) = p(x).



Probabilistic proof of Allen-Cahn result

Representation reduces result to

1. for x such that d(x, t) ≥ cε| log ε|,
P
ε
x [Vp(W (t)) = 1] ≥ 1− εk;

2. for x such that d(x, t) ≤ −cε| log ε|, Pε
x [Vp(W (t)) = 1] ≤ εk.

Proof in two steps:

◮ a one-dimensional analogue in the case p(x) = 1{x≥0},
(symmetry, monotonicity for this p and amplification of bias
through majority voting)

◮ for two-dimensional BM W and one-dimensional BM B,
couple so that d(Ws, t− s) is well approximated by Bs when
Ws is close to Γt−s. (uses regularity assumptions on initial
condition)

Approach parallels approximation of solution by one-dimensional
standing wave in Chen (1992).



Proof for the ‘stochastic’ hybrid zones

Π is a Poisson point process on R+ × R
2 × (0,∞) with intensity

measure dt⊗ dx⊗ µ(dr). Dual process of branching and coalescing
‘ancestral’ lineages. Tracing backwards in time:

◮ Start with a single individual;

◮ at event (t, x, r) ∈ Π, independently mark each lineage in
Br(x) with probability u;

◮ if at least one lineage is marked,
1. if event is neutral, all marked lineages coalesce into a single

lineage, whose location is drawn uniformly at random from
within Br(x).

2. if event is selective, all marked individuals are replaced by three

offspring individuals, whose locations are drawn independently
and uniformly from within Br(x).

◮ In both cases, if no individual is marked, then nothing
happens.

Majority voting procedure defined as before.



Recasting the result

0

0 0 1

0

0 1 00 1 0 1 0 1

1
0 0

0

0 0

0

1. for x such that d(x, σ2t) ≥ dεn| log εn|, we have
Px [Vp(Ξ

n(t)) = 1] ≥ 1− εkn.

2. for x such that d(x, σ2t) ≤ −dεn| log εn|, we have
Px [Vp(Ξ

n(t)) = 1] ≤ εkn.



The choice of scaling

Recall

un =
u

n1−2β
, and sn =

1

ǫ2n

1

n2β
.

◮ Each lineage is affected by selective events at rate η/ε2n;

◮ number of lineages bounded by that in ternary branching;

◮ ǫ−2
n = o(log n), so for any δ > 0, o(nδ) pairs of lineages;

◮ each such pair is in the region affected by some event (neutral
or selective) at most O(n) times in [0, T ∗];

◮ chance that we see any coalescence events is o(nu2n n
δ) for

any δ > 0.

Since nu2n = n4β−1, β ∈ (0, 1/4), no coalescence events before
time T ∗.
Now use the proof in the Allen-Cahn case (and approximate the
motion of ancestral lineages by BM).
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∂u

∂t
=

1

2
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1

2
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