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2003.]

Agelos Georgakopoulos



Geometric Random Graphs Literature

[Remco Van Der Hofstad. Random graphs and complex networks. Lecture
Notes, 2013.]

[Mathew Penrose. Random Geometric Graphs. Oxford University Press,
2003.]
Random planar graphs ...

Percolation theory ...
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How Mafia’s grow

A network evolves in (continuous or discrete) time with the
following rules:

@ When a (Poisson) clock ticks, nodes split into two;

@ When a node x splits into two nodes x’, x”’, each of its
existing edges gets inherited by x” or x” independently
with probability 1/2;

@ Moreover, a Poisson(k)-distributed number of new edges
are added between x’ and x”.
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How Mafia’s grow

A network evolves in (continuous or discrete) time with the
following rules:

@ When a (Poisson) clock ticks, nodes split into two;

@ When a node x splits into two nodes x’, x”’, each of its
existing edges gets inherited by x” or x” independently
with probability 1/2;

@ Moreover, a Poisson(k)-distributed number of new edges
are added between x’ and x”.

As time goes to infinity, the distribution of the component
(mafia) of a designated vertex converges.

Is the component in the limit distribution finite or infinite?
If it is finite, is its expected size finite or infinite?
If finite, how does it depend on k?
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A nice property

E(# edges xy in Ry,
withx in X andy in'Y)

converges.

?
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The Poisson integral representation formula

The classical Poisson formula
1
h(z) = f h©)P(z,0)do
0

where P(z,6) := %
recovers every continuous harmonic
function h on D from its boundary
values h on the circle dD.
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The Poisson integral representation formula

The classical Poisson formula
1 1
h(z) = f h©)P(z,6)do = f h©)dv,(6)
0 0

where P(z,6) := %
recovers every continuous harmonic
function h on D from its boundary
values h on the circle dD.
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The Poisson-Furstenberg boundary

The Poisson boundary of an (infinite) graph G consists of
- a (Lebesgue-Rohlin) measurable space (Pg,X), and
- a family of probability measures {v;,z € Vg},

such that

@ every bounded harmonic function h can be obtained by
hz) = [ hopdva
Pe

@ this h e L>(g) is unique up to modification on a null-set;

@ conversely, for every h e L= ®g) the function
zZ fPG h(n)dv,(n) is bounded and harmonic.

i.e. there is Poisson-like formula establishing an isometry
between the Banach spaces H*(G) and L*(Pg).
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The Poisson-Furstenberg boundary

Selected work on the Poisson boundary
@ Introduced by Furstenberg to study semi-simple
Lie groups  [Annals of Math. *63]

@ Kaimanovich & Vershik give a general criterion using the
entropy of random walk  [Annals of Probability 83]

@ Kaimanovich identifies the Poisson boundary of hyperbolic
groups, and gives general criteria  [Annals of Math. *00]
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A nice property

Proposition

For every two measurable
subsets X, Y of the Poisson (or
Martin) boundary 6G,

E(# edges xy in Ry,
with x ‘close to’ X
and y ‘close to’ Y)

converges.
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A nice property

For every two measurable
subsets X, Y of the Poisson (or
Martin) boundary 6G,

E(4 edges xy in Ry,
with x ‘close to’ X
and y ‘close to’ Y)

converges.

We use the limit to define a measure on G x 4G via

C(X,Y) := limE(4 edges ...)



Energy and Douglas’ formula

The classical Douglas formula [Douglas '31]

27 27
E(h - fo - (hon) - oo molnoe

calculates the (Dirichlet) energy of a
harmonic function h on D from its
boundary values h on the circle dD.
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Energy in finite electrical networks

E(h) = Y apes (M@ — h(b))? Cap,
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Energy in finite electrical networks

E(h) = ¥ apes (N(@) — h(b)) Cap,
Compare with Douglas: E(h) = 02" 02”(77(77) — h())20(, mdnd¢

How can we generalise this to an arbitrary domain?
To an infinite graph?
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Effective conductance

We call C the effective conductance measure, because

Theorem (G & V. Kaimanovich '12-17+)

For every locally finite network G, and every harmonic
function h, we have

—~ 2
Eh) = [,5.06 (A0 = (D) dC@. 0.
History: Douglas '31, Naim ’57, Doob '62, Silverstein '74

Finite version: E(h) = 3, pes (M@ — h(b))? Cap

b
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The Naim Kernel
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Convergence of the Naim Kernel

) G(zn, Yn)
o, n) = | —_—
&m zﬁ'&%n G(zn, 0)G(0, yn)
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Convergence of the Naim Kernel

i G(Zn, }/n)
= | . MNCA v
®({’ ’7) Znﬁg}r/]nﬂn G(Zn, O)G(O’ yn)

Problem: Let (Z));ay and (¥))jen be independent simple random
walks from o. Then lim, m—« ®(Zp, ym) exists almost surely.
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Random Interlacements and C

Random Interlacements 7 [Sznitman]:
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Random Interlacements and C

Random Interlacements 7 [Sznitman]:
¢ A Poisson point process whose ‘points’ are 2-way infinite
trajectories
e applied to study the vacanct set on the discrete 3D-torus
e governed by a certain o-finite measure v

Theorem (G & Kaimanovich '17+)

For every transient, locally finite graph G,
CX,Y)=v(xy W").
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Long range percolation

(Joint work in progress with J. Haslegrave.
Thanks to O. Angel and G. Ray for important ideas)

Theorem (Newman & Schulman, Aizenman & Newman ’86)

In long range percolation on Z, with parameters e=/x=¥°,
percolation occurs for large enough A if s < 2.

R(Z?) converges (a la Benjamini-Schramm) to an instance R,
of this (with s =2) as n — .

But R (Tree) does not percolate for any A!

How large is R (T)?
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The expected size of the TWRG

Let C# denote the component of a uniformly random vertex of
Ra(T) (or RL(T)).

Theorem (G & Haslegrave, state of the art 2/17)

ebﬁ

Ae®! <E(CL)) < Be
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The expected size of the TWRG

Let C# denote the component of a uniformly random vertex of
Ra(T) (or RL(T)).

Theorem (G & Haslegrave, state of the art 2/17)

ebﬁ

Ae®! <E(CL)) < Be

Conijecture:
E(Cl) ~ A"

(backed by simulations)
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