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Terrorists never congregate in even numbers
(or: Some strange results in
fragmentation-coalescence!® )

Andreas E. Kyprianou, University of Bath, UK.

! Joint work with Steven Pagett, Tim Rogers
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Terrorists, consensus and biological clustering

@ Consider a collection of n identical particles
(terrorists/opinions), grouped together into some number of
clusters (cells/consensus). We define a stochastic dynamical
process as follows:
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Terrorists, consensus and biological clustering

@ Consider a collection of n identical particles
(terrorists/opinions), grouped together into some number of
clusters (cells/consensus). We define a stochastic dynamical
process as follows:

o Every k-tuple of clusters coalesces at rate a(k)n'=*,

independently of everything else that happens in the system.

The coalescing cells are merged to form a single cluster with

size equal to the sum of the sizes of the merged clusters.
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Terrorists, consensus and biological clustering

@ Consider a collection of n identical particles
(terrorists/opinions), grouped together into some number of
clusters (cells/consensus). We define a stochastic dynamical
process as follows:

o Every k-tuple of clusters coalesces at rate a(k)n'=*,

independently of everything else that happens in the system.

The coalescing cells are merged to form a single cluster with

size equal to the sum of the sizes of the merged clusters.

o Clusters fragment (terrorist cells are dispersed/consensus
breaks) at constant rate A\ > 0, independently of everything
else that happens in the system. Fragmentation of a cluster of
size £ results in £ ‘singleton’ clusters of size one.
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Model history (but only for dyadic coalescence)

@ This model is a variant of the one presented in:
Bohorquez, Gourley, Dixon, Spagat & Johnson (2009)
Common ecology quantifies human insurgency Nature 462,
911-914.
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@ It is also related to:
Rath and Téth (2009) Erdés-Renyi random graphs + forest
fires = self-organized criticality, 14 Paper no. 45, 1290-1327.
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@ This model is a variant of the one presented in:
Bohorquez, Gourley, Dixon, Spagat & Johnson (2009)
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911-914.

@ It is also related to:
Rath and Téth (2009) Erdés-Renyi random graphs + forest
fires = self-organized criticality, 14 Paper no. 45, 1290-1327.

o Without fragmentation, the model falls within the domain of
study of Smoluchowski coagulation equations, originally
devised to consider chemical processes occurring in
polymerisation, coalescence of aerosols, emulsication,
flocculation.
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Model history (but only for dyadic coalescence)

@ This model is a variant of the one presented in:
Bohorquez, Gourley, Dixon, Spagat & Johnson (2009)
Common ecology quantifies human insurgency Nature 462,
911-914.

@ It is also related to:
Rath and Téth (2009) Erdés-Renyi random graphs + forest
fires = self-organized criticality, 14 Paper no. 45, 1290-1327.

o Without fragmentation, the model falls within the domain of
study of Smoluchowski coagulation equations, originally
devised to consider chemical processes occurring in
polymerisation, coalescence of aerosols, emulsication,
flocculation.

@ In all cases: one is interested in the macroscopic behaviour of
the model (large n), in particular in exploring universality
properties.
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Heavy-tailed terrorism

@ In the insurgency model, two blocks merge if a terrorist in
each block make a connection, which they do at a fixed rate.
This means that coalescence is more likely for a big terrorist
cell.

@ The macroscopic-scale, large time limit of the insurgency
model for a “slow rate of fragmentation” shows that the
distribution of block size is heavy tailed:

“P(typical block = x) &~ const. x x~ %, X — 00."

@ Taken from Bohorquez, Gourley, Dixon, Spagat & Johnson
(2009):
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Back to our model: Generating function

@ Foreach n€ N, and k € {1,..., n}, the state of the system is
specified by the number of clusters of size k at time t.
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Back to our model: Generating function

@ Foreach n€ N, and k € {1,..., n}, the state of the system is
specified by the number of clusters of size k at time t.

@ Introduce the random variables

1
Wi k() == E#{clusters of size k at time t}, 1<k <n.
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Back to our model: Generating function

@ Foreach n€ N, and k € {1,..., n}, the state of the system is
specified by the number of clusters of size k at time t.

@ Introduce the random variables

1
Wi k() == E#{clusters of size k at time t}, 1<k <n.

@ Rather than working with these quantities directly, use the
empirical generating function

Go(x,t) = > x*wuu(t), n>1,x€(0,1),t>0
k=1
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Theorem 1

Suppose that the coalescence rates o : N — R satisfy
a(k) < exp(vkInin(k)), Vk,

where v < 1 is an arbitrary constant. Let G :[0,1] x Rt — R be
the solution of the deterministic initial value problem

G(X,O) =X,

8G o > a(k) k k—1

Sp0x8) = Ax = G(x, 1) + kz:; = (G(x7 t)* — kG(1, £) L G(x, t)) :
Then G,(x,t) converges to G(x,t) in L2, uniformly in x and t, as
n — oo, that is

sup K [(G(x, t) — Ga(x, t))2] —0, as n— oo.
x€[0,1],6>0




distribution.

@ The next theorem deals with the stationary cluster size
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@ The next theorem deals with the stationary cluster size
distribution.

o Let

#{clusters of size k at time t}
#{clusters at time t}

Pnk(t) = , 1<k<n
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@ The next theorem deals with the stationary cluster size

distribution.
o Let
clusters of size k at time t
pnk(t) == # . }, 1<k<n.
’ #{clusters at time t}
@ Define

px = lim lim p, (),

t—00 n—oo

as a distributional limit, which exists thanks to the previous
theorem and that

_ Gu(x,t)
> >0.
ZX P k(t = G (LD’ n>1,xe(0,1),t>0
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Theorem 2

If o satisfies

a(k) < exp(ykInin(k)), vk,

and m is the smallest integer such that a(m) > 0, then the
stationary cluster size distribution obeys

R T (m=1)* (1ymt (=) i m 1 divides k — 1
Pk =
AN\0 0

m—1

otherwise

and in particular, as k — oo

lim Pk ~

AN0 0 otherwise.

{k3/2 if m—1 divides k — 1
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Terrorists never congregate in even numbers

@ In the large n and small A limit we will see no clusters of even
size whatsoever in the stationary distribution.
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Terrorists never congregate in even numbers

@ In the large n and small A limit we will see no clusters of even
size whatsoever in the stationary distribution.

@ The model has the apparently paradoxical feature that
clusters of even size are vanishingly rare, despite the fact that
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Terrorists never congregate in even numbers

@ In the large n and small A limit we will see no clusters of even
size whatsoever in the stationary distribution.

@ The model has the apparently paradoxical feature that
clusters of even size are vanishingly rare, despite the fact that
limy\ o p1 =~ 2/3.

@ This is a consequence of the weight of the tail of the cluster
size distribution.
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Terrorists never congregate in even numbers

@ In the large n and small A limit we will see no clusters of even
size whatsoever in the stationary distribution.

@ The model has the apparently paradoxical feature that
clusters of even size are vanishingly rare, despite the fact that
limy\ o p1 =~ 2/3.

@ This is a consequence of the weight of the tail of the cluster
size distribution.

@ The universal exponent 3/2 suggests a typical cluster size
S 1 kpi = O(n'/?) = clusters ~ O(n'/?).

Coalescence of triples: (”13/2) x a(3)n'=3 = O(n~1/?)
Coalescence of quadruples: ("14/2) x a(4)nt=* ~ O(n71)

With 2/3 of blocks being singletons, this creates an imbalance
with manifests in the disappearance of even sized blocks.
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Some more strange results for exchangeable
fragmentation-coalescence models?

2 Joint work with Steven Pagett, Tim Rogers and Jason Schweinsberg.
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Kingman n-coalescent

@ The Kingman n-coalescent is an (exchangeable) coalescent
process on the space of partitions of {1,---, n} denoted by

N = (MP(), - NG (1), t>0,

where N(t) is the number of blocks at time t and I'II(.")(t) is
the elements of {1,---, n} that belong to the i-th block.



Network fragmentation-coalescence models Partition-valued fragmentation-Coalescence models
000000000 ©0000000

Kingman n-coalescent

@ The Kingman n-coalescent is an (exchangeable) coalescent
process on the space of partitions of {1,---, n} denoted by

N = (MP(), - NG (1), t>0,

where N(t) is the number of blocks at time t and I'II(.")(t) is
the elements of {1,---, n} that belong to the i-th block.

@ Blocks merge in pairs, with a fixed rate ¢ of any two blocks
merging.
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Kingman n-coalescent

@ The Kingman n-coalescent is an (exchangeable) coalescent

process on the space of partitions of {1,---, n} denoted by
N = (M), -, NG 1), t>0,

where N(t) is the number of blocks at time t and I'II(.")(t) is
the elements of {1,---, n} that belong to the i-th block.

@ Blocks merge in pairs, with a fixed rate ¢ of any two blocks
merging.

e Both N(t), t >0, is a Markov process and M is a Markov
process.

@ The notion of the Kingman coalescent can be mathematically
extended in a consistent way to the space of partitions on N.
That is to say the pathwise limit

{N(t): t >0} := nILngo{ﬂ(”)(t) .t >0}

make sense.
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Kingman coalescent

@ Included in this statement is the ability of 1 to “come down
from infinity”.
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Kingman coalescent

@ Included in this statement is the ability of 1 to “come down
from infinity”.

@ (Slighly) more precisely: if the initial configuration is the
trivial partition

M(0) = ({1}, {2}, {3},---)

(so that N(0) = oo) then N(t) < oo almost surely, for all
t>0.

@ In particular, the Markov Chain N(t) has an entrance law at
+00.
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Kingman insurgents meet counter terrorism

@ At rate u, each block in the system is shattered into
singletons.
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Kingman insurgents meet counter terrorism

@ At rate u, each block in the system is shattered into
singletons.

@ When there are a finite number of blocks, each block must
contain an infinite number of integers and hence when a block
shatters, the system jumps back up to “infinity”.
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Kingman insurgents meet counter terrorism

@ At rate u, each block in the system is shattered into
singletons.

@ When there are a finite number of blocks, each block must
contain an infinite number of integers and hence when a block
shatters, the system jumps back up to “infinity”.

o If started with a finite number of blocks, the resulting process

is still a Markov process on the space of partitions of N until
the arrival of the first fragmentation.



Network fragmentation-coalescence models Partition-valued fragmentation-Coalescence models
000000000 00®00000

Kingman insurgents meet counter terrorism

@ At rate u, each block in the system is shattered into
singletons.

@ When there are a finite number of blocks, each block must
contain an infinite number of integers and hence when a block
shatters, the system jumps back up to “infinity”.

o If started with a finite number of blocks, the resulting process
is still a Markov process on the space of partitions of N until
the arrival of the first fragmentation.

@ Can process be “extended” to a Markov process on
N U {+00}? Can the process “come down from infinty” ?

@ This would allow us to consider the process as recurrent on
NU {+o0}.
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A remarkable phase transition

@ We can continue to use the same notation as before with
N(t) = (Mu(t), - Nn),  t2>0,

as a partitioned-valued process.

@ A little thought (exchangeability!) shows that both N(t) and
M(t) :==1/N(t), t > 0, are Markov process (with a possible
absorbing state at +oco resp. 0).

@ We now understand the notion of coming down from infinity
to mean that M := (M(t) : t > 0) has an entrance law at 0.
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A remarkable phase transition

@ We can continue to use the same notation as before with
N(t) = (Mu(t), - Nn),  t2>0,

as a partitioned-valued process.

@ A little thought (exchangeability!) shows that both N(t) and
M(t) :==1/N(t), t > 0, are Markov process (with a possible
absorbing state at +oco resp. 0).

@ We now understand the notion of coming down from infinity
to mean that M := (M(t) : t > 0) has an entrance law at 0.
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A remarkable phase transition

Theorem

If u/c < 1/2, then M is a recurrent strong Markov process on
{1/n:neN}uU{0}.

(Comes down from infinity.)

If u/c > 1/2, then O is an absorbing state for M.
(Does not come down from infinity.)
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Coming down from infinity
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Stationary distribution

Let \/c < 1/2, then M has stationary distribution given by

(1—2\/c)T(k—1+2)\/c)
r2x/c)  T(k+1)

pm(1/k) = , keN.

In particular pp(0) = 0.




Thank you!
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