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Let G = (V ,E ) be an undirected graph of bounded degree.
Place a particle on each vertex v . At rate 1 select an edge uniformly at
random and swap the two particles across that edge.
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σt(v) = particle at vertex v at time t



Cyclic notation:

σ =
(

1 2 3 4 5 6
4 5 1 3 2 6

)
we write σ = (1, 4, 3)(2, 5)(6) and call the bits inside cycles.

Theorem (Tóth (1993))
Various quantities associated to the 1

2 -spin quantum Heisen-
berg ferromagnet in terms of the cycle lengths of σ̃t , where

P(σ̃t = σ) = 1
E[2#cycles of σt ]2#cycles of σP(σt = σ).

We only look at σt in this talk.
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What is known?
Theorem (Schramm(2005))

Let G be the complete graph and suppose that t = βn.
(i) Subcritical phase, β < 1/2 : all the cycles have length

O(log n)
(ii) Supercritical phase, β > 1/2 : a positive proportion

of vertices lie on cycles of length comparable to n
Moreover, in the supercritical phase, the cycle lengths
rescaled appropriately converge to a Poisson-Dirichlet dis-
tribution.

Theorem (Berestycki (2011), Berestycki, Kozma (2015))
The phase transition of Schramm with (1) a different proof
and (2) using representation theory.
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Theorem (Kotecký, Mi loś, Ueltschi (2016))
Let G be the hypercube {0, 1}n and suppose that t = β2n.

(i) Subcritical phase, β < 1/2 : all the cycles have length
O(n)

(ii) Supercritical phase, β > 1/2 : a positive proportion
of vertices lie on cycles of length at least 2( 1

2−ε)n for any
ε > 0.

Should be comparable to 2n in the supercritical phase.
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Theorem (Angel (2003), Hammond (2013), Hammond (2015))
Phase transition between the finite and infinite cycles on
infinite d-regular trees. The transition is sharp when the
degree d is large.

Conjecture
The interchange process on Zd has finite cycles for all times when d = 2
and has a sharp phase transition between finite cycles and infinite cycles
when d ≥ 3.
When d ≥ 3, on the graph {−n, . . . , n}d there is a phase transition
between cycles of length O(log n) and cycles of length comparable to nd .
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Our result
Hamming graph: V = {1, . . . , n}2, edge between any two vertices on same
row or column:

Theorem (Mi loś, Ş. (2016))
Let G be the complete graph and suppose that t = βn2.

(i) Subcritical phase, β < 1/2 : all the cycles have length
O(log n)

(ii) Supercritical phase, β > 1/2 : a positive proportion
of vertices lie in cycles of length at least n2−ε for any
ε > 0.



Suppose edge e = (v ,w) is selected for a swap at time t, then
σt = σt− ◦ (v ,w).

Merger: When v and w are in different cycles of σt−, e.g.
σt− = (1, 3, 4)(2, 5), e = (2, 3)

(1, 3, 4)(2, 5) ◦ (2, 3) = (1, 3, 5, 2, 4).

Split: When v and w are in the same cycle of σt−, e.g.
σt− = (1, 3, 4)(2, 5), e = (1, 4)

(1, 3, 4)(2, 5) ◦ (1, 4) = (1)(2, 5)(3, 4).



Suppose edge e = (v ,w) is selected for a swap at time t, then
σt = σt− ◦ (v ,w).

Merger: When v and w are in different cycles of σt−, e.g.
σt− = (1, 3, 4)(2, 5), e = (2, 3)

(1, 3, 4)(2, 5) ◦ (2, 3) = (1, 3, 5, 2, 4).

Split: When v and w are in the same cycle of σt−, e.g.
σt− = (1, 3, 4)(2, 5), e = (1, 4)

(1, 3, 4)(2, 5) ◦ (1, 4) = (1)(2, 5)(3, 4).



Suppose edge e = (v ,w) is selected for a swap at time t, then
σt = σt− ◦ (v ,w).

Merger: When v and w are in different cycles of σt−, e.g.
σt− = (1, 3, 4)(2, 5), e = (2, 3)

(1, 3, 4)(2, 5) ◦ (2, 3) = (1, 3, 5, 2, 4).

Split: When v and w are in the same cycle of σt−, e.g.
σt− = (1, 3, 4)(2, 5), e = (1, 4)

(1, 3, 4)(2, 5) ◦ (1, 4) = (1)(2, 5)(3, 4).



Coupling with percolation

Obtained by ignoring the splits:
Each time an edge e rings, declare it to be open.
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This results in a bond percolation Gt with parameter pt = 1− e−t/|E |

(where |E | = #{of edges}).

Every cycle of σt is contained in an open connected component of
Gt .
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Subcritical phase:
Hamming graph: |E | = n2(n − 1), t = βn2, pt = 1− e−t/|E | ∼ β

n , the
expected number of open edges at a vertex is 2β.
Adaptation of Erdős-Rényi arguments: for β < 1/2, all open connected
components of Gt are O(log n).
Coupling: cycle lengths of σt are O(log n).

Supercritical phase:
I Erdős-Rényi arguments =⇒ unique component of size comparable to

n2.
I A priori, the giant component could be made up of many cycles of

small length.
I Show that cycles of length o(n2) are more likely to merge than split

=⇒ giant component is covered by O(1) many cycles
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Complete graph:
Suppose that a cycle c has length k.

#{edges between vertices of c} =
(

k
2

)
#{edges from c to {1, . . . , n}\c} = k(n − k)

Cycle is much more likely to merge then split when
(k

2
)
<< k(n − k), or

alternatively k << n (graph volume is n).

Hamming graph:
Big problem: cycle of length n (graph volume is n2) which is equally likely
to be merge as it is to split:
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Isoperimetry

Let H denote the 2-dimensional Hamming graph. For A ⊂ H let

ι(A) = maximum number of elements of A lying any row or column.

Heuristically what should ι(c) of a cycle c ⊂ σt look like?
I v 7→ σt(v) is the position of CSRW on H at time t,
I (v , σt(v), σt ◦ σt(v), . . . ) looks like the trace of a CSRW
I CSRW mixes very quickly to the uniform measure so c looks like a set

of i.i.d. uniform points.

ι(c) ≈ 1 ∨ |c|n log n.
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The isoperimetry lemma
Let

orbk
t (v) := {v , σt(v), . . . , σt ◦ · · · ◦ σt(v)︸ ︷︷ ︸

k times

}.

i.e.

(
orbk

t (v)︷ ︸︸ ︷
v , x1, . . . , xk , . . . )

Lemma
Suppose that for k = o(n)

lim inf
n→∞

inf
s∈[t−∆,t]

P(|orbk
s (v)| = k) > 0

then
lim

n→∞
P
(

sup
s∈[t−∆,t]

sup
w
ι(orbk

s (w)) ≥ log2 n
)

= 0.

If cycles of length k exist, then they don’t concentrate on any row
or column.
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I Xu moves at unit speed up, switches to the other end of the cross,
goes to the bottom when it reaches the top.
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Properties

I X is periodic.
I X is measurable w.r.t. (σt′ : t ′ ≤ t).
I X is non-Markovian:

I The cycle containing v is given by {Xu|[n]2 s.t. Xu|[0,t] = t}
I ι({first k vertices visited by X}) ≈ ι(orbk

t (v))



Why doesn’t the CRW concentrate on rows/columns?

Control the number of vertices it visits on the first row:
I At each pair of steps, there is a bounded probability that we do an

L-shaped jump from the first row:

I Suppose L-shaped jump happens at time T , then XT = (v , z) is
roughly uniform.



I Condition on A = σ{Xu : u ≤ T} and let
A = {vertices visited before time T}

I The remaining looks like the original graph so
P(X stays away from first row next k steps|A) ≈
P(X visits at least k vertices) ≥ const.

I Positive probability of L-shaped jump + escape at each step on the
first row =⇒ can’t spend more than O(1) steps on the first row.
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Return to percolation coupling
Each time an edge e rings, declare it to be open. (Gt is bond percolation
with pt ≈ β/n)
Every cycle of σt is contained in an open connected component of Gt .

Lemma
For α ∈ (0, 1/2) and β > β′ > 1/2, there exists a δ ∈ (0, 1) such that with
probability approaching 1,

inf
s∈[β′n2,βn2]

#{vertices in cycles of length ≥ nα at time s} ≥ δn2

I Let s ∈ [β′n2, βn2], then Gs has a unique giant component of size
O(1)n2

I Consider a vertex v ∈ {giant component of Gs} such that
|orb∞s (v)| ≤ nα.
This vertex must have been in a cycle prior to time s which was
involved in a split where one of the resulting pieces has length ≤ nα
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I Probability a uniformly chosen edge e = (u,w) makes such a split is
at most nα−1:

(. . . ,
w must fall here︷ ︸︸ ︷
x1, . . . , xnα , u,

or here︷ ︸︸ ︷
y1, . . . , ynα , . . . )

I Thus the total number of vertices in the giant cpt and in cycles of
length ≤ nα is at most

2nα︸︷︷︸
# of vertices in cycle

× βn2︸︷︷︸
time interval

×nα−1 = O(n1+2α) = o(n2)

I Giant component has size O(1)n2



Inducting

Set β > 1/2, t = βn2, t0 = t − 2n2−α log n, t1 = t − n2−α log n.
Let G̃0 be a graph with the same connected cpts as σt0 . Add an edge to G̃
whenever an edge is selected for swap after time t0.

0 tt0

σt

Gt−t0G0

σ0

t1
1
2n

2

giant cpt

G0 has a lot of vertices in nα cpts + sprinkling =⇒ G̃s has a giant cpt
when s ≥ t1
Every cycle of σt0+s is contained in an open connected component
of G̃s .



I Consider a vertex v ∈ {giant component of G̃s} such that
|orb∞s+t0(v)| ≤ nγ .
This vertex must have been in a cycle prior at time s ′ ∈ [t0, s + t0]
which was involved in a split where one of the resulting pieces has
length ≤ nγ

I Probability a uniformly chosen edge e = (u,w) makes such a split

(. . . ,
w must fall here︷ ︸︸ ︷
x1, . . . , xnγ , u,

or here︷ ︸︸ ︷
y1, . . . , ynγ , . . . )

x1, . . . , y1, . . .
u

is ι(orb2nγ

s′ (x1))/2n



I

ι(orb2nγ

s′ (x1)) ≤ max
w

ι(orbnα

s′ (w))︸ ︷︷ ︸
ι of a slice

× 2nγ−α︸ ︷︷ ︸
#slices

≤ 2nγ−α log2 n

by isoperimetry lemma
I Thus the total number of vertices in the giant cpt and in cycles of

length ≤ nγ is at most

2nγ︸︷︷︸
# of vertices in cycle

× 2n2−α log n︸ ︷︷ ︸
time interval

×nγ−α−1 log2 n = O(n1+2(γ−α) log3 n)

when γ ∈ (α, 1/2 + α) this is o(n2).

I For γ ∈ (α, 1/2 + α) there exists a δ ∈ (0, 1) such that with
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inf
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#{vertices in cycles of length ≥ nγ at time s} ≥ δn2
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n1/2

0 t

n1 n3/2n7/4

Powers go γ 7→ (1/2)(1 + γ + min{γ, 1}) which has fixed point at γ = 2.



Thank you!


