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Let G = (V, E) be an undirected graph of bounded degree.
Place a particle on each vertex v. At rate 1 select an edge uniformly at
random and swap the two particles across that edge.
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Let G = (V, E) be an undirected graph of bounded degree.
Place a particle on each vertex v. At rate 1 select an edge uniformly at
random and swap the two particles across that edge.
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o¢(v) = particle at vertex v at time t
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we write o = (1,4, 3)(2,5)(6) and call the bits inside cycles.
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Theorem (Téth (1993))
‘ .

Various quantities associated to the 5-spin quantum Heisen-
berg ferromagnet in terms of the cycle lengths of 5, where

1

_ F£cycles of _
U) - E[2#cycles ofot] U]P)(Ut - U)'

]P)(&t —

We only look at o; in this talk.
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What is known?

Theorem (Schramm(2005))
8 Let G be the complete graph and suppose that t = (n.
(i) Subcritical phase, 5 < 1/2: all the cycles have length
O(log n)
(ii) Supercritical phase, 5 > 1/2 : a positive proportion
of vertices lie on cycles of length comparable to n

Moreover, in the supercritical phase, the cycle lengths
rescaled appropriately converge to a Poisson-Dirichlet dis-
tribution.
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What is known?

Theorem (Schramm(2005))
&' Let G be the complete graph and suppose that t = (n.

(i) Subcritical phase, 5 < 1/2: all the cycles have length
O(log n)

(ii) Supercritical phase, 5 > 1/2 : a positive proportion
of vertices lie on cycles of length comparable to n

Moreover, in the supercritical phase, the cycle lengths

rescaled appropriately converge to a Poisson-Dirichlet dis-
tribution.

Theorem (Berestycki (2011), Berestycki, Kozma (2015))
l The phase transition of Schramm with (1) a different proof

and (2) using representation theory.
—
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Theorem (Kotecky, Mitos, Ueltschi (2016))
m Let G be the hypercube {0,1}" and suppose that t = [32".
: (i) Subcritical phase, 5 < 1/2: all the cycles have length
& o
- (ii) Supercritical phase, § > 1/2 : a positive proportion

of vertices lie on cycles of length at least 2= for any
e>0.
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Theorem (Kotecky, Mitos, Ueltschi (2016))

% Let G be the hypercube {0,1}" and suppose that t = [32".
V.7 (i) Subcritical phase, 5 < 1/2: all the cycles have length
& oo
- (ii) Supercritical phase, § > 1/2 : a positive proportion

of vertices lie on cycles of length at least 2= for any
e>0.

Should be comparable to 2" in the supercritical phase.
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Theorem (Angel (2003), Hammond (2013), Hammond (2015))
Phase transition between the finite and infinite cycles on
infinite d-regular trees. The transition is sharp when the

degree d is large.



Theorem (Angel (2003), Hammond (2013), Hammond (2015))

Phase transition between the finite and infinite cycles on
infinite d-regular trees. The transition is sharp when the

degree d is large.

Conjecture

The interchange process on Z9 has finite cycles for all times when d = 2

and has a sharp phase transition between finite cycles and infinite cycles
when d > 3.

When d > 3, on the graph {—n,...,n}9 there is a phase transition
between cycles of length O(log n) and cycles of length comparable to n9.
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Our result

Hamming graph: V = {1,...,n}?, edge between any two vertices on same
row or column:

Theorem (Mitos, $. (2016))

Q Let G be the complete graph and suppose that t = 3n°.
LR (i) Subcritical phase, 5 < 1/2: all the cycles have length
b= i O(log n)
a"' (ii) Supercritical phase, 5 > 1/2 : a positive proportion
/] of vertices lie in cycles of length at least n>~¢ for any .
e>0. i



Suppose edge e = (v, w) is selected for a swap at time ¢, then
or =0t o(v,w).



Suppose edge e = (v, w) is selected for a swap at time ¢, then
or =0t o(v,w).

Merger: When v and w are in different cycles of o;_, e.g.
or— =(1,3,4)(2,5), e=(2,3)

(1,3,4)(2,5) 0 (2,3) = (1,3,5,2,4).
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Suppose edge e = (v, w) is selected for a swap at time ¢, then

or =0t o(v,w).

Merger: When v and w are in different cycles of o;_, e.g.
or— =(1,3,4)(2,5), e=(2,3)

(1,3,4)(2,5) 0 (2,3) = (1,3,5,2,4).

Split: When v and w are in the same cycle of o;_, e.g.
or— =(1,3,4)(2,5), e =(1,4)

(1,3,4)(2,5) o (1,4) = (1)(2,5)(3,4).
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Coupling with percolation

Obtained by ignoring the splits:
Each time an edge e rings, declare it to be open.

This results in a bond percolation G; with parameter p, = 1 — e~ t/IEl

(where |E| = #{of edges}).

by
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Coupling with percolation

Obtained by ignoring the splits:
Each time an edge e rings, declare it to be open.

This results in a bond percolation G; with parameter p, = 1 — e~ t/IEl
(where |E| = #{of edges}).

Every cycle of o; is contained in an open connected component of
Gt.



Subcritical phase:

Hamming graph: |E| = n?(n—1), t = 8n?, pr=1—e t/IEl ~ % the
expected number of open edges at a vertex is 203.

Adaptation of Erdés-Rényi arguments: for 8 < 1/2, all open connected
components of G; are O(log n).

Coupling: cycle lengths of o; are O(log n).
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Subcritical phase:

Hamming graph: |E| = n?(n—1), t = 8n?, pr=1—e t/IEl ~ % the
expected number of open edges at a vertex is 203.

Adaptation of Erdés-Rényi arguments: for 8 < 1/2, all open connected
components of G; are O(log n).

Coupling: cycle lengths of o; are O(log n).

Supercritical phase:

» Erd6s-Rényi arguments = unique component of size comparable to
2

n<.

» A priori, the giant component could be made up of many cycles of
small length.

> Show that cycles of length o(n?) are more likely to merge than split
= giant component is covered by O(1) many cycles



Complete graph:
Suppose that a cycle ¢ has length k.

2
#{edges from ¢ to {1,...,n}\c} = k(n — k)

k
#{edges between vertices of ¢} = ( )

Cycle is much more likely to merge then split when ('2‘) << k(n—k), or
alternatively k << n (graph volume is n).



Complete graph:

Suppose that a cycle ¢ has length k.

#{edges between vertices of ¢} = (
#{edges from ¢ to {1,...,n}\c} = k(n — k)

Cycle is much more likely to merge then split when ('2‘) << k(n—k), or

alternatively k << n (graph volume is n).

Hamming graph:

k
2

)

Big problem: cycle of length n (graph volume is n?) which is equally likely

to be merge as it is to split:



Isoperimetry

Let H denote the 2-dimensional Hamming graph. For A C H let

t(A) = maximum number of elements of A lying any row or column.



Isoperimetry

Let H denote the 2-dimensional Hamming graph. For A C H let

t(A) = maximum number of elements of A lying any row or column.

Heuristically what should ¢(c) of a cycle ¢ C o+ look like?
» v i~ o¢(v) is the position of CSRW on H at time t,
> (v,0¢(v),0r00¢(v),...) looks like the trace of a CSRW
» CSRW mixes very quickly to the uniform measure so ¢ looks like a set
of i.i.d. uniform points.
el
n

t(c) =1V —logn.



The isoperimetry lemma

Let
orblt‘(v) ={v,0¢(v),...,0r0---00¢(v)}.
[ —————
k times
i.e.
orbk(v)

—N—

(VoX1y ooy Xk e v )
Lemma

Suppose that for k = o(n)

liminf inf P(Jorb%(v)| = k) >0

n—0o0 seclt—A,t]

then

lim P sup supc(orbf(w))>log?n| =0.
n—=oo \se[t—A,1 w

If cycles of length k exist, then they don’t concentrate on any row

or column.

4
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Cyclic random walk




Cyclic random walk

» Fix t = Bn® and place a bridge when an edge rings prior to time t.

» X = (X, :s>0) CRW with X, € {1,...,n}? x [0, t] with
Xo = (v,2)

» X, moves at unit speed up, switches to the other end of the cross, L;:EA
goes to the bottom when it reaches the top.
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Cyclic random walk

» Fix t = Bn® and place a bridge when an edge rings prior to time t.

» X = (X, :s>0) CRW with X, € {1,...,n}? x [0, t] with
Xo = (v,2)

» X, moves at unit speed up, switches to the other end of the cross, L;:EA
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Properties

v

X is periodic.
» X is measurable w.r.t. (op : t' <t).

X is non-Markovian:

v

v

The cycle containing v is given by {Xy|[2 s.t. Xuljo,q) = t}
o({first k vertices visited by X'}) ~ t(orb¥(v))

v

A



Why doesn’t the CRW concentrate on rows/columns?

Control the number of vertices it visits on the first row:

» At each pair of steps, there is a bounded probability that we do an
L-shaped jump from the first row:

» Suppose L-shaped jump happens at time T, then X7 = (v,z) is
roughly uniform.

A



» Condition on A =o{X, :u< T} and let
A = {vertices visited before time T}



» Condition on A =o{X, :u< T} and let
A = {vertices visited before time T}

» The remaining looks like the original graph so
P(X stays away from first row next k steps|.A) ~
P(X visits at least k vertices) > const.



» Condition on A =o{X, :u< T} and let
A = {vertices visited before time T}

» The remaining looks like the original graph so
P(X stays away from first row next k steps|.A) ~
P(X visits at least k vertices) > const.

» Positive probability of L-shaped jump 4+ escape at each step on the
first oo = can't spend more than O(1) steps on the first row.



Return to percolation coupling

Each time an edge e rings, declare it to be open. (G; is bond percolation
with p: ~ 3/n)

Every cycle of o; is contained in an open connected component of G;.
Lemma

For o € (0,1/2) and 8 > 3’ > 1/2, there exists a § € (0,1) such that with
probability approaching 1,

inf  #{vertices in cycles of length > n® at time s} > dn?
s€[B’n?,8n?)
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Return to percolation coupling

Each time an edge e rings, declare it to be open. (G; is bond percolation
with p: ~ 3/n)
Every cycle of o; is contained in an open connected component of G;.

Lemma
For o € (0,1/2) and 8 > 3’ > 1/2, there exists a § € (0,1) such that with
probability approaching 1,

inf  #{vertices in cycles of length > n® at time s} > dn?
s€[B’n?,8n?)

» Let s € [8'n?, Bn?], then G has a unique giant component of size
O(1)n?

» Consider a vertex v € {giant component of Gs} such that
lorb2®(v)| < n®.
This vertex must have been in a cycle prior to time s which was .
involved in a split where one of the resulting pieces has length < n® R



» Probability a uniformly chosen edge e = (u, w) makes such a split is
at most n®1:

w must fall here or here

(o) XiyevosXne s UYLy e ey Yaay .ot )

» Thus the total number of vertices in the giant cpt and in cycles of
length < n® is at most

&rﬁ > 5”2 wn® 1 — O(n1+2a) — O(nZ)

# of vertices in cycle  {ime interval

> Giant component has size O(1)n?



Inducting

Set 3>1/2, t=pn tg=1t—2n>"%logn, t; =t — n>"*logn.
Let Go be a graph with the same connected cpts as 04,. Add an edge to G
whenever an edge is selected for swap after time tp.

1,2
0 3" to ¢
oo I : - ot
Go Ii Gi—t,
giaﬁt cpt

Gp has a lot of vertices in n® cpts + sprinkling — Gs has a giant cpt

when s > t;
Every cycle of o4, is contained in an open connected component

of @5.

et



» Consider a vertex v € {giant component of G,} such that
lorbgs 4 (V)| < n7.
This vertex must have been in a cycle prior at time s’ € [tp, s + to]
which was involved in a split where one of the resulting pieces has
length < n?

» Probability a uniformly chosen edge e = (u, w) makes such a split

w must fall here or here
(oo Xeyeo oy Xy Uy Yoy Yy e )

o U

X, Y1, -
EEEEREEXXX]
EEEEEEXXX)
eceeeecceoe
e000000c e
eeceececee
e000000c e
EEEEEEKX)
EEEEEEXXX)

is 1(orb2" (x1))/2n



1(orb? (x1)) < max ¢(orb? (w)) x 207~ < 207" log? n
w —

F#slices

¢ of a slice
by isoperimetry lemma

» Thus the total number of vertices in the giant cpt and in cycles of
length < n7 is at most

¥ 2—a y—a—1 2 _ 14+2(v—a) 3
&r}/ x2n“"%logn xn log=n= O(n log> n)

# of vertices in cycle time interval

when v € (a, 1/2 + ) this is o(n?).



1(orb2 (x1)) < max ¢(orb? (w)) x 207 ~% < 2n7"%log? n
w —

F#slices

¢ of a slice
by isoperimetry lemma

» Thus the total number of vertices in the giant cpt and in cycles of
length < n7 is at most

2n” x 2n° " “logn xn' > log? n = O(n't21=) |og n)
<~
# of vertices in cycle time interval

when v € (a, 1/2 + ) this is o(n?).
» For v € (a,1/2 + «) there exists a 6 € (0,1) such that with
probability approaching 1,

i[nf ]#{vertices in cycles of length > n7 at time s} > &n?
s€lto,t



READ. WRITE. RiNsE. REPEAT.

nl/2 nl p3/2,7/4

| 1 1 N
0] i i mmunk

Powers go v — (1/2)(1 4+ v + min{~, 1}) which has fixed point at 7 = 2.

by



Thank you!



