Existence of a phase transition of the interchange process on the Hamming graph

Batı Şengül joint with Piotr Miłoś

King's College London

February 2017

◆□▶ ◆問▶ ◆臣▶ ◆臣)

◆□▶ ◆問▶ ◆臣▶ ◆臣)

 $\sigma_t(v) = \text{particle at vertex } v \text{ at time } t$

<ロト <回ト < 注ト < 注ト

Cyclic notation:

we write $\sigma = (1, 4, 3)(2, 5)(6)$ and call the bits inside *cycles*.

Cyclic notation:

we write $\sigma = (1, 4, 3)(2, 5)(6)$ and call the bits inside *cycles*.

Theorem (Tóth (1993))

Various quantities associated to the
$$\frac{1}{2}$$
-spin quantum Heisenberg ferromagnet in terms of the cycle lengths of $\tilde{\sigma}_t$, where

$$\mathbb{P}(\tilde{\sigma}_t = \sigma) = \frac{1}{\mathbb{E}[2^{\# \text{cycles of } \sigma_t}]} 2^{\# \text{cycles of } \sigma} \mathbb{P}(\sigma_t = \sigma).$$

(a)

э

We only look at σ_t in this talk.

What is known?

Theorem (Schramm(2005))

- Let G be the complete graph and suppose that $t = \beta n$.
 - (i) Subcritical phase, $\beta < 1/2$: all the cycles have length $O(\log n)$
- (ii) Supercritical phase, $\beta > 1/2$: a positive proportion of vertices lie on cycles of length comparable to n

Moreover, in the supercritical phase, the cycle lengths rescaled appropriately converge to a Poisson-Dirichlet distribution.

What is known?

Theorem (Schramm(2005))

- Let G be the complete graph and suppose that $t = \beta n$.
 - (i) Subcritical phase, $\beta < 1/2$: all the cycles have length $O(\log n)$
- (ii) Supercritical phase, $\beta > 1/2$: a positive proportion of vertices lie on cycles of length comparable to n

Moreover, in the supercritical phase, the cycle lengths rescaled appropriately converge to a Poisson-Dirichlet distribution.

Theorem (Berestycki (2011), Berestycki, Kozma (2015))

The phase transition of Schramm with (1) a different proof and (2) using representation theory.

イロト イボト イヨト イヨト 三日

Theorem (Kotecký, Miłoś, Ueltschi (2016))

- Let G be the hypercube $\{0,1\}^n$ and suppose that $t = \beta 2^n$.
 - (i) Subcritical phase, $\beta < 1/2$: all the cycles have length O(n)
 - (ii) Supercritical phase, $\beta > 1/2$: a positive proportion of vertices lie on cycles of length at least $2^{(\frac{1}{2}-\varepsilon)n}$ for any $\varepsilon > 0$.

Theorem (Kotecký, Miłoś, Ueltschi (2016))

- Let G be the hypercube $\{0,1\}^n$ and suppose that $t = \beta 2^n$.
 - (i) Subcritical phase, $\beta < 1/2$: all the cycles have length O(n)
 - (ii) Supercritical phase, $\beta > 1/2$: a positive proportion of vertices lie on cycles of length at least $2^{(\frac{1}{2}-\varepsilon)n}$ for any $\varepsilon > 0$.

Should be comparable to 2^n in the supercritical phase.

Theorem (Angel (2003), Hammond (2013), Hammond (2015))

Phase transition between the finite and infinite cycles on infinite d-regular trees. The transition is sharp when the degree d is large.

Theorem (Angel (2003), Hammond (2013), Hammond (2015))

Phase transition between the finite and infinite cycles on infinite d-regular trees. The transition is sharp when the degree d is large.

Conjecture

The interchange process on \mathbb{Z}^d has finite cycles for all times when d = 2 and has a sharp phase transition between finite cycles and infinite cycles when $d \ge 3$.

When $d \ge 3$, on the graph $\{-n, ..., n\}^d$ there is a phase transition between cycles of length $O(\log n)$ and cycles of length comparable to n^d .

ヘロト ヘ戸ト ヘヨト ヘヨト

Our result

Hamming graph: $V = \{1, ..., n\}^2$, edge between any two vertices on same row or column:

Theorem (Miłoś, Ş. (2016))

- Let G be the complete graph and suppose that $t = \beta n^2$.
 - (i) Subcritical phase, $\beta < 1/2$: all the cycles have length $O(\log n)$

(ii) Supercritical phase, $\beta > 1/2$: a positive proportion of vertices lie in cycles of length at least $n^{2-\varepsilon}$ for any $\varepsilon > 0$.

Suppose edge e = (v, w) is selected for a swap at time t, then $\sigma_t = \sigma_{t-} \circ (v, w)$.

Suppose edge e = (v, w) is selected for a swap at time t, then $\sigma_t = \sigma_{t-} \circ (v, w)$.

Merger: When v and w are in different cycles of σ_{t-} , e.g. $\sigma_{t-} = (1,3,4)(2,5)$, e = (2,3)

$$(1,3,4)(2,5)\circ(2,3)=(1,3,5,2,4).$$

Suppose edge e = (v, w) is selected for a swap at time t, then $\sigma_t = \sigma_{t-} \circ (v, w)$.

Merger: When v and w are in different cycles of σ_{t-} , e.g. $\sigma_{t-} = (1,3,4)(2,5), e = (2,3)$ $(1,3,4)(2,5) \circ (2,3) = (1,3,5,2,4).$ **Split:** When v and w are in the same cycle of σ_{t-} , e.g. $\sigma_{t-} = (1,3,4)(2,5), e = (1,4)$ $(1,3,4)(2,5) \circ (1,4) = (1)(2,5)(3,4).$

Coupling with percolation

Obtained by ignoring the splits:

Each time an edge *e* rings, declare it to be open.

This results in a bond percolation G_t with parameter $p_t = 1 - e^{-t/|E|}$ (where $|E| = \#\{\text{of edges}\}$).

イロト イポト イヨト イヨト

Coupling with percolation

Obtained by ignoring the splits:

Each time an edge *e* rings, declare it to be open.

This results in a bond percolation G_t with parameter $p_t = 1 - e^{-t/|E|}$ (where $|E| = \#\{\text{of edges}\}$). Every cycle of σ_t is contained in an open connected component of G_t .

(a)

Subcritical phase:

Hamming graph: $|E| = n^2(n-1)$, $t = \beta n^2$, $p_t = 1 - e^{-t/|E|} \sim \frac{\beta}{n}$, the expected number of open edges at a vertex is 2β .

Adaptation of Erdős-Rényi arguments: for $\beta < 1/2$, all open connected components of G_t are $O(\log n)$.

Coupling: cycle lengths of σ_t are $O(\log n)$.

Subcritical phase:

Hamming graph: $|E| = n^2(n-1)$, $t = \beta n^2$, $p_t = 1 - e^{-t/|E|} \sim \frac{\beta}{n}$, the expected number of open edges at a vertex is 2β . Adaptation of Erdős-Rényi arguments: for $\beta < 1/2$, all open connected components of G_t are $O(\log n)$. Coupling: cycle lengths of σ_t are $O(\log n)$.

Supercritical phase:

- Erdős-Rényi arguments \implies unique component of size comparable to n^2 .
- A priori, the giant component could be made up of many cycles of small length.

Subcritical phase:

Hamming graph: $|E| = n^2(n-1)$, $t = \beta n^2$, $p_t = 1 - e^{-t/|E|} \sim \frac{\beta}{n}$, the expected number of open edges at a vertex is 2β . Adaptation of Erdős-Rényi arguments: for $\beta < 1/2$, all open connected components of G_t are $O(\log n)$. Coupling: cycle lengths of σ_t are $O(\log n)$.

Supercritical phase:

- Erdős-Rényi arguments \implies unique component of size comparable to n^2 .
- A priori, the giant component could be made up of many cycles of small length.
- Show that cycles of length o(n²) are more likely to merge than split ⇒ giant component is covered by O(1) many cycles

Complete graph:

Suppose that a cycle \mathfrak{c} has length k.

#{edges between vertices of
$$\mathfrak{c}$$
} = $\binom{k}{2}$
#{edges from \mathfrak{c} to {1,..., n}\ \mathfrak{c} } = $k(n - k)$

Cycle is much more likely to merge then split when $\binom{k}{2} \ll k(n-k)$, or alternatively $k \ll n$ (graph volume is n).

Complete graph:

Suppose that a cycle \mathfrak{c} has length k.

#{edges between vertices of
$$\mathfrak{c}$$
} = $\binom{k}{2}$
#{edges from \mathfrak{c} to {1,..., n}\ \mathfrak{c} } = $k(n - k)$

Cycle is much more likely to merge then split when $\binom{k}{2} \ll k(n-k)$, or alternatively $k \ll n$ (graph volume is n).

Hamming graph:

Big problem: cycle of length n (graph volume is n^2) which is equally likely to be merge as it is to split:

э

イロト 不得 トイヨト イヨト

Isoperimetry

Let *H* denote the 2-dimensional Hamming graph. For $A \subset H$ let

 $\iota(A) =$ maximum number of elements of A lying any row or column.

Isoperimetry

Let *H* denote the 2-dimensional Hamming graph. For $A \subset H$ let

 $\iota(A) = \max \min$ number of elements of A lying any row or column.

Heuristically what should $\iota(\mathfrak{c})$ of a cycle $\mathfrak{c} \subset \sigma_t$ look like?

- $v \mapsto \sigma_t(v)$ is the position of CSRW on H at time t,
- $(v, \sigma_t(v), \sigma_t \circ \sigma_t(v), \dots)$ looks like the trace of a CSRW
- CSRW mixes very quickly to the uniform measure so c looks like a set of i.i.d. uniform points.

$$\iota(\mathfrak{c})\approx 1\vee \frac{|\mathfrak{c}|}{n}\log n.$$

The isoperimetry lemma

 $\operatorname{orb}_t^k(v) := \{v, \sigma_t(v), \dots, \underbrace{\sigma_t \circ \dots \circ \sigma_t(v)}_{k \text{ times}}\}.$

$$(\overbrace{v, x_1, \ldots, x_k}^{\operatorname{orb}_t^k(v)}, \ldots)$$

Lemma

Let

i.e.

Suppose that for k = o(n)

$$\liminf_{n\to\infty}\inf_{s\in[t-\Delta,t]}\mathbb{P}(|\mathrm{orb}_s^k(v)|=k)>0$$

then

$$\lim_{n\to\infty}\mathbb{P}\left(\sup_{s\in[t-\Delta,t]}\sup_w\iota(\operatorname{orb}_s^k(w))\geq \log^2 n\right)=0.$$

If cycles of length k exist, then they don't concentrate on any row or column.

Fix $t = \beta n^2$ and place a *bridge* when an edge rings prior to time t.

• • • • • • • • • • • • • •

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

- $\mathcal{X} = (\mathcal{X}_u : s \ge 0)$ CRW with $\mathcal{X}_u \in \{1, \dots, n\}^2 \times [0, t]$ with $\mathcal{X}_0 = (v, z)$
- ▶ \mathcal{X}_u moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Properties

- X is periodic.
- \mathcal{X} is measurable w.r.t. $(\sigma_{t'}: t' \leq t)$.
- X is non-Markovian:

(日)

- ▶ The cycle containing v is given by $\{X_u|_{[n]^2}$ s.t. $X_u|_{[0,t]} = t\}$
- $\iota(\{\text{first } k \text{ vertices visited by } \mathcal{X}\}) \approx \iota(\operatorname{orb}_t^k(v))$

Why doesn't the CRW concentrate on rows/columns?

Control the number of vertices it visits on the first row:

At each pair of steps, there is a bounded probability that we do an L-shaped jump from the first row:

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Suppose L-shaped jump happens at time T, then $\mathcal{X}_T = (v, z)$ is roughly uniform.

Condition on A = σ{X_u : u ≤ T} and let A = {vertices visited before time T}

Condition on A = σ{X_u : u ≤ T} and let A = {vertices visited before time T}

The remaining looks like the original graph so P(X stays away from first row next k steps|A) ≈ P(X visits at least k vertices) ≥ const.

Condition on A = σ{X_u : u ≤ T} and let A = {vertices visited before time T}

- The remaining looks like the original graph so P(X stays away from first row next k steps | A) ≈ P(X visits at least k vertices) ≥ const.
- ► Positive probability of *L*-shaped jump + escape at each step on the first row ⇒ can't spend more than O(1) steps on the first row.

イロト イボト イヨト イヨト 三日

Return to percolation coupling

Each time an edge *e* rings, declare it to be open. (G_t is bond percolation with $p_t \approx \beta/n$)

Every cycle of σ_t is contained in an open connected component of G_t .

Lemma

For $\alpha \in (0, 1/2)$ and $\beta > \beta' > 1/2$, there exists a $\delta \in (0, 1)$ such that with probability approaching 1,

 $\inf_{s \in [\beta' n^2, \beta n^2]} \#\{ \text{vertices in cycles of length} \ge n^{\alpha} \text{ at time } s \} \ge \delta n^2$

Return to percolation coupling

Each time an edge *e* rings, declare it to be open. (G_t is bond percolation with $p_t \approx \beta/n$)

Every cycle of σ_t is contained in an open connected component of G_t .

Lemma

For $\alpha \in (0, 1/2)$ and $\beta > \beta' > 1/2$, there exists a $\delta \in (0, 1)$ such that with probability approaching 1,

 $\inf_{s \in [\beta' n^2, \beta n^2]} \#\{ \text{vertices in cycles of length} \ge n^{\alpha} \text{ at time } s \} \ge \delta n^2$

▶ Let $s \in [\beta' n^2, \beta n^2]$, then G_s has a unique giant component of size $O(1)n^2$

Consider a vertex v ∈ {giant component of G_s} such that |orb_s[∞](v)| ≤ n^α.
 This vertex must have been in a cycle prior to time s which was involved in a split where one of the resulting pieces has length ≤ n^α

Probability a uniformly chosen edge e = (u, w) makes such a split is at most n^{α-1}:

$$(\ldots, \underbrace{x_1, \ldots, x_{n^{\alpha}}}^{w \text{ must fall here}}, u, \underbrace{y_1, \ldots, y_{n^{\alpha}}}_{y_1, \ldots, y_{n^{\alpha}}}, \ldots)$$

► Thus the total number of vertices in the giant cpt and in cycles of length ≤ n^α is at most

$$\underbrace{2n^{\alpha}}_{\# \text{ of vertices in cycle}} \times \underbrace{\beta n^{2}}_{\text{time interval}} \times n^{\alpha-1} = O(n^{1+2\alpha}) = o(n^{2})$$

A D > A P > A D > A D >

Giant component has size O(1)n²

Inducting

Set $\beta > 1/2$, $t = \beta n^2$, $t_0 = t - 2n^{2-\alpha} \log n$, $t_1 = t - n^{2-\alpha} \log n$. Let \tilde{G}_0 be a graph with the same connected cpts as σ_{t_0} . Add an edge to \tilde{G} whenever an edge is selected for swap after time t_0 .

 G_0 has a lot of vertices in n^{α} cpts + sprinkling $\implies \tilde{G}_s$ has a giant cpt when $s \ge t_1$ Every cycle of σ_{t_0+s} is contained in an open connected component of \tilde{G}_s .

ヘロト ヘ戸ト ヘヨト ヘヨト

• Consider a vertex $v \in \{\text{giant component of } \tilde{G}_s\}$ such that $|\operatorname{orb}_{s+t_0}^{\infty}(v)| \leq n^{\gamma}$. This vertex must have been in a cycle prior at time $s' \in [t_0, s+t_0]$ which was involved in a split where one of the resulting pieces has length $\leq n^{\gamma}$

• Probability a uniformly chosen edge e = (u, w) makes such a split

$$(\dots, \underbrace{x_{1}, \dots, x_{n\gamma}}^{w \text{ must fall here}}, u, \underbrace{y_{1}, \dots, y_{n\gamma}}^{\text{or here}}, \dots)$$

$$u$$

$$x_{1}, \dots, y_{1}, \dots$$

・ロ・・ 日本・ 日本・ 日本・

$$\iota(\operatorname{orb}_{s'}^{2n^{\gamma}}(x_{1})) \leq \underbrace{\max_{w} \iota(\operatorname{orb}_{s'}^{n^{\alpha}}(w))}_{\iota \text{ of a slice}} \times \underbrace{2n^{\gamma-\alpha}}_{\# slices} \leq 2n^{\gamma-\alpha} \log^{2} n$$

by isoperimetry lemma

► Thus the total number of vertices in the giant cpt and in cycles of length ≤ n^γ is at most

$$\underbrace{2n^{\gamma}}_{\# \text{ of vertices in cycle}} \times \underbrace{2n^{2-\alpha} \log n}_{\text{time interval}} \times n^{\gamma-\alpha-1} \log^2 n = O(n^{1+2(\gamma-\alpha)} \log^3 n)$$

when $\gamma \in (\alpha, 1/2 + \alpha)$ this is $o(n^2)$.

$$\iota(\operatorname{orb}_{s'}^{2n^{\gamma}}(x_1)) \leq \underbrace{\max_{w} \iota(\operatorname{orb}_{s'}^{n^{\alpha}}(w))}_{\iota \text{ of a slice}} \times \underbrace{2n^{\gamma-\alpha}}_{\# slices} \leq 2n^{\gamma-\alpha} \log^2 n$$

by isoperimetry lemma

► Thus the total number of vertices in the giant cpt and in cycles of length ≤ n^γ is at most

$$\underbrace{2n^{\gamma}}_{\# \text{ of vertices in cycle}} \times \underbrace{2n^{2-\alpha} \log n}_{\text{time interval}} \times n^{\gamma-\alpha-1} \log^2 n = O(n^{1+2(\gamma-\alpha)} \log^3 n)$$

when $\gamma \in (\alpha, 1/2 + \alpha)$ this is $o(n^2)$.

For γ ∈ (α, 1/2 + α) there exists a δ ∈ (0, 1) such that with probability approaching 1,

 $\inf_{s\in[t_0,t]}\#\{\text{vertices in cycles of length}\geq n^\gamma \text{ at time } s\}\geq \delta n^2$

э

ヘロト ヘ戸ト ヘヨト ヘヨト

Powers go $\gamma \mapsto (1/2)(1 + \gamma + \min\{\gamma, 1\})$ which has fixed point at $\gamma = 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you!

