Existence of a phase transition of the interchange process on the Hamming graph

Batı Șengül
joint with Piotr Miłoś

King's College London

February 2017

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree. Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

Let $G=(V, E)$ be an undirected graph of bounded degree.
Place a particle on each vertex v. At rate 1 select an edge uniformly at random and swap the two particles across that edge.

$\sigma_{t}(v)=$ particle at vertex v at time t

Cyclic notation:

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 1 & 3 & 2 & 6
\end{array}\right)
$$

we write $\sigma=(1,4,3)(2,5)(6)$ and call the bits inside cycles.

Cyclic notation:

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 1 & 3 & 2 & 6
\end{array}\right)
$$

we write $\sigma=(1,4,3)(2,5)(6)$ and call the bits inside cycles.
Theorem (Tóth (1993))

Various quantities associated to the $\frac{1}{2}$-spin quantum Heisenberg ferromagnet in terms of the cycle lengths of $\tilde{\sigma}_{t}$, where

$$
\mathbb{P}\left(\tilde{\sigma}_{t}=\sigma\right)=\frac{1}{\mathbb{E}\left[2 \# \text { cycles of } \sigma_{t}\right]} 2^{\# \text { cycles of } \sigma} \mathbb{P}\left(\sigma_{t}=\sigma\right) .
$$

We only look at σ_{t} in this talk.

What is known?

Theorem (Schramm(2005))

Let G be the complete graph and suppose that $t=\beta n$.
(i) Subcritical phase, $\beta<1 / 2$: all the cycles have length $O(\log n)$
(ii) Supercritical phase, $\beta>1 / 2$: a positive proportion of vertices lie on cycles of length comparable to n
Moreover, in the supercritical phase, the cycle lengths rescaled appropriately converge to a Poisson-Dirichlet distribution.

What is known?

Theorem (Schramm(2005))

Let G be the complete graph and suppose that $t=\beta n$.
(i) Subcritical phase, $\beta<1 / 2$: all the cycles have length $O(\log n)$
(ii) Supercritical phase, $\beta>1 / 2$: a positive proportion of vertices lie on cycles of length comparable to n
Moreover, in the supercritical phase, the cycle lengths rescaled appropriately converge to a Poisson-Dirichlet distribution.

Theorem (Berestycki (2011), Berestycki, Kozma (2015))

The phase transition of Schramm with (1) a different proof and (2) using representation theory.

Theorem (Kotecký, Miłoś, Ueltschi (2016))

Let G be the hypercube $\{0,1\}^{n}$ and suppose that $t=\beta 2^{n}$.
(i) Subcritical phase, $\beta<1 / 2$: all the cycles have length $O(n)$
(ii) Supercritical phase, $\beta>1 / 2$: a positive proportion of vertices lie on cycles of length at least $2^{\left(\frac{1}{2}-\varepsilon\right) n}$ for any $\varepsilon>0$.

Theorem (Kotecký, Miłoś, Ueltschi (2016))

Let G be the hypercube $\{0,1\}^{n}$ and suppose that $t=\beta 2^{n}$.
(i) Subcritical phase, $\beta<1 / 2$: all the cycles have length $O(n)$
(ii) Supercritical phase, $\beta>1 / 2$: a positive proportion of vertices lie on cycles of length at least $2^{\left(\frac{1}{2}-\varepsilon\right) n}$ for any $\varepsilon>0$.

Should be comparable to 2^{n} in the supercritical phase.

Theorem (Angel (2003), Hammond (2013), Hammond (2015))
Phase transition between the finite and infinite cycles on infinite d-regular trees. The transition is sharp when the degree d is large.

Theorem (Angel (2003), Hammond (2013), Hammond (2015))

Phase transition between the finite and infinite cycles on infinite d-regular trees. The transition is sharp when the degree d is large.

Conjecture

The interchange process on \mathbb{Z}^{d} has finite cycles for all times when $d=2$ and has a sharp phase transition between finite cycles and infinite cycles when $d \geq 3$.
When $d \geq 3$, on the graph $\{-n, \ldots, n\}^{d}$ there is a phase transition between cycles of length $O(\log n)$ and cycles of length comparable to n^{d}.

Our result

Hamming graph: $V=\{1, \ldots, n\}^{2}$, edge between any two vertices on same row or column:

Theorem (Miłoś, Ș. (2016))
Let G be the complete graph and suppose that $t=\beta n^{2}$.
(i) Subcritical phase, $\beta<1 / 2$: all the cycles have length $O(\log n)$
(ii) Supercritical phase, $\beta>1 / 2$: a positive proportion of vertices lie in cycles of length at least $n^{2-\varepsilon}$ for any $\varepsilon>0$.

Suppose edge $e=(v, w)$ is selected for a swap at time t, then $\sigma_{t}=\sigma_{t-} \circ(v, w)$.

Suppose edge $e=(v, w)$ is selected for a swap at time t, then $\sigma_{t}=\sigma_{t-} \circ(v, w)$.

Merger: When v and w are in different cycles of σ_{t-}, e.g. $\sigma_{t-}=(1,3,4)(2,5), e=(2,3)$

$$
(1,3,4)(2,5) \circ(2,3)=(1,3,5,2,4)
$$

Suppose edge $e=(v, w)$ is selected for a swap at time t, then $\sigma_{t}=\sigma_{t-} \circ(v, w)$.
Merger: When v and w are in different cycles of σ_{t-}, e.g. $\sigma_{t-}=(1,3,4)(2,5), e=(2,3)$

$$
(1,3,4)(2,5) \circ(2,3)=(1,3,5,2,4)
$$

Split: When v and w are in the same cycle of σ_{t-}, e.g. $\sigma_{t-}=(1,3,4)(2,5), e=(1,4)$

$$
(1,3,4)(2,5) \circ(1,4)=(1)(2,5)(3,4) .
$$

Coupling with percolation

Obtained by ignoring the splits:
Each time an edge e rings, declare it to be open.

This results in a bond percolation G_{t} with parameter $p_{t}=1-e^{-t /|E|}$ (where $|E|=\#\{$ of edges $\}$).

Coupling with percolation

Obtained by ignoring the splits:
Each time an edge e rings, declare it to be open.

This results in a bond percolation G_{t} with parameter $p_{t}=1-e^{-t /|E|}$ (where $|E|=\#\{$ of edges $\}$).
Every cycle of σ_{t} is contained in an open connected component of G_{t}.

Subcritical phase:

Hamming graph: $|E|=n^{2}(n-1), t=\beta n^{2}, p_{t}=1-e^{-t /|E|} \sim \frac{\beta}{n}$, the expected number of open edges at a vertex is 2β. Adaptation of Erdős-Rényi arguments: for $\beta<1 / 2$, all open connected components of G_{t} are $O(\log n)$.
Coupling: cycle lengths of σ_{t} are $O(\log n)$.

Subcritical phase:

Hamming graph: $|E|=n^{2}(n-1), t=\beta n^{2}, p_{t}=1-e^{-t /|E|} \sim \frac{\beta}{n}$, the expected number of open edges at a vertex is 2β.
Adaptation of Erdős-Rényi arguments: for $\beta<1 / 2$, all open connected components of G_{t} are $O(\log n)$.
Coupling: cycle lengths of σ_{t} are $O(\log n)$.

Supercritical phase:

- Erdős-Rényi arguments \Longrightarrow unique component of size comparable to n^{2}.
- A priori, the giant component could be made up of many cycles of small length.

Subcritical phase:

Hamming graph: $|E|=n^{2}(n-1), t=\beta n^{2}, p_{t}=1-e^{-t /|E|} \sim \frac{\beta}{n}$, the expected number of open edges at a vertex is 2β.
Adaptation of Erdős-Rényi arguments: for $\beta<1 / 2$, all open connected components of G_{t} are $O(\log n)$.
Coupling: cycle lengths of σ_{t} are $O(\log n)$.

Supercritical phase:

- Erdős-Rényi arguments \Longrightarrow unique component of size comparable to n^{2}.
- A priori, the giant component could be made up of many cycles of small length.
- Show that cycles of length $o\left(n^{2}\right)$ are more likely to merge than split \Longrightarrow giant component is covered by $O(1)$ many cycles

Complete graph:

Suppose that a cycle \mathfrak{c} has length k.

$$
\begin{aligned}
& \#\{\text { edges between vertices of } \mathfrak{c}\}=\binom{k}{2} \\
& \#\{\text { edges from } \mathfrak{c} \text { to }\{1, \ldots, n\} \backslash \mathfrak{c}\}=k(n-k)
\end{aligned}
$$

Cycle is much more likely to merge then split when $\binom{k}{2} \ll k(n-k)$, or alternatively $k \ll n$ (graph volume is n).

Complete graph:

Suppose that a cycle \mathfrak{c} has length k.

$$
\begin{aligned}
& \#\{\text { edges between vertices of } \mathfrak{c}\}=\binom{k}{2} \\
& \#\{\text { edges from } \mathfrak{c} \text { to }\{1, \ldots, n\} \backslash \mathfrak{c}\}=k(n-k)
\end{aligned}
$$

Cycle is much more likely to merge then split when $\binom{k}{2} \ll k(n-k)$, or alternatively $k \ll n$ (graph volume is n).
Hamming graph:
Big problem: cycle of length n (graph volume is n^{2}) which is equally likely to be merge as it is to split:

Isoperimetry

Let H denote the 2-dimensional Hamming graph. For $A \subset H$ let
$\iota(A)=$ maximum number of elements of A lying any row or column.

Isoperimetry

Let H denote the 2-dimensional Hamming graph. For $A \subset H$ let
$\iota(A)=$ maximum number of elements of A lying any row or column.

Heuristically what should $\iota(\mathfrak{c})$ of a cycle $\mathfrak{c} \subset \sigma_{t}$ look like?

- $v \mapsto \sigma_{t}(v)$ is the position of CSRW on H at time t,
- $\left(v, \sigma_{t}(v), \sigma_{t} \circ \sigma_{t}(v), \ldots\right)$ looks like the trace of a CSRW
- CSRW mixes very quickly to the uniform measure so \mathfrak{c} looks like a set of i.i.d. uniform points.

$$
\iota(\mathfrak{c}) \approx 1 \vee \frac{|\mathfrak{c}|}{n} \log n .
$$

The isoperimetry lemma

Let

$$
\operatorname{orb}_{t}^{k}(v):=\{v, \sigma_{t}(v), \ldots, \underbrace{\sigma_{t} \circ \cdots \circ \sigma_{t}(v)}_{k \text { times }}\}
$$

i.e.

$$
(\overbrace{v, x_{1}, \ldots, x_{k}}^{\operatorname{orb}_{t}^{k}(v)}, \ldots)
$$

Lemma
Suppose that for $k=o(n)$

$$
\liminf _{n \rightarrow \infty} \inf _{s \in[t-\Delta, t]} \mathbb{P}\left(\left|\operatorname{orb}_{s}^{k}(v)\right|=k\right)>0
$$

then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\sup _{s \in[t-\Delta, t]} \sup _{w} \iota\left(\operatorname{orb}_{s}^{k}(w)\right) \geq \log ^{2} n\right)=0
$$

If cycles of length k exist, then they don't concentrate on any row or column.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Cyclic random walk

- Fix $t=\beta n^{2}$ and place a bridge when an edge rings prior to time t.
- $\mathcal{X}=\left(\mathcal{X}_{u}: s \geq 0\right)$ CRW with $\mathcal{X}_{u} \in\{1, \ldots, n\}^{2} \times[0, t]$ with $\mathcal{X}_{0}=(v, z)$
- \mathcal{X}_{u} moves at unit speed up, switches to the other end of the cross, goes to the bottom when it reaches the top.

Properties

- \mathcal{X} is periodic.
- \mathcal{X} is measurable w.r.t. $\left(\sigma_{t^{\prime}}: t^{\prime} \leq t\right)$.
- \mathcal{X} is non-Markovian:

- The cycle containing v is given by $\left\{\left.X_{u}\right|_{[n]^{2}}\right.$ s.t. $\left.\left.X_{u}\right|_{[0, t]}=t\right\}$
- $\iota(\{$ first k vertices visited by $\mathcal{X}\}) \approx \iota\left(\operatorname{orb}_{t}^{k}(v)\right)$

Why doesn't the CRW concentrate on rows/columns?

Control the number of vertices it visits on the first row:

- At each pair of steps, there is a bounded probability that we do an L-shaped jump from the first row:

- Suppose L-shaped jump happens at time T, then $\mathcal{X}_{T}=(v, z)$ is roughly uniform.
- Condition on $\mathcal{A}=\sigma\left\{\mathcal{X}_{u}: u \leq T\right\}$ and let $A=\{$ vertices visited before time $T\}$

- Condition on $\mathcal{A}=\sigma\left\{\mathcal{X}_{u}: u \leq T\right\}$ and let $A=\{$ vertices visited before time $T\}$

- The remaining looks like the original graph so $\mathbb{P}(\mathcal{X}$ stays away from first row next k steps $\mid \mathcal{A}) \approx$ $\mathbb{P}(\mathcal{X}$ visits at least k vertices $) \geq$ const.
- Condition on $\mathcal{A}=\sigma\left\{\mathcal{X}_{u}: u \leq T\right\}$ and let $A=\{$ vertices visited before time $T\}$

- The remaining looks like the original graph so $\mathbb{P}(\mathcal{X}$ stays away from first row next k steps $\mid \mathcal{A}) \approx$ $\mathbb{P}(\mathcal{X}$ visits at least k vertices $) \geq$ const.
- Positive probability of L-shaped jump + escape at each step on the first row \Longrightarrow can't spend more than $O(1)$ steps on the first row.

Return to percolation coupling

Each time an edge e rings, declare it to be open. (G_{t} is bond percolation with $p_{t} \approx \beta / n$)
Every cycle of σ_{t} is contained in an open connected component of G_{t}.
Lemma
For $\alpha \in(0,1 / 2)$ and $\beta>\beta^{\prime}>1 / 2$, there exists a $\delta \in(0,1)$ such that with probability approaching 1 ,

$$
\inf _{s \in\left[\beta^{\prime} n^{2}, \beta n^{2}\right]} \#\left\{\text { vertices in cycles of length } \geq n^{\alpha} \text { at time } s\right\} \geq \delta n^{2}
$$

Return to percolation coupling

Each time an edge e rings, declare it to be open. (G_{t} is bond percolation with $p_{t} \approx \beta / n$)
Every cycle of σ_{t} is contained in an open connected component of G_{t}.

Lemma

For $\alpha \in(0,1 / 2)$ and $\beta>\beta^{\prime}>1 / 2$, there exists a $\delta \in(0,1)$ such that with probability approaching 1,

$$
\inf _{s \in\left[\beta^{\prime} n^{2}, \beta n^{2}\right]} \#\left\{\text { vertices in cycles of length } \geq n^{\alpha} \text { at time } s\right\} \geq \delta n^{2}
$$

- Let $s \in\left[\beta^{\prime} n^{2}, \beta n^{2}\right]$, then G_{s} has a unique giant component of size $O(1) n^{2}$
- Consider a vertex $v \in\left\{\right.$ giant component of $\left.G_{s}\right\}$ such that $\left|\operatorname{orb}_{s}^{\infty}(v)\right| \leq n^{\alpha}$.
This vertex must have been in a cycle prior to time s which was involved in a split where one of the resulting pieces has length $\leq n^{\alpha}$
- Probability a uniformly chosen edge $e=(u, w)$ makes such a split is at most $n^{\alpha-1}$:

$$
(\ldots, \overbrace{x_{1}, \ldots, x_{n^{\alpha}}}^{w \text { must fall here }}, u, \overbrace{y_{1}, \ldots, y_{n^{\alpha}}}^{\text {or here }}, \ldots)
$$

- Thus the total number of vertices in the giant cpt and in cycles of length $\leq n^{\alpha}$ is at most

$$
\underbrace{2 n^{\alpha}} \times \underbrace{\beta n^{2}} \times n^{\alpha-1}=O\left(n^{1+2 \alpha}\right)=o\left(n^{2}\right)
$$

\# of vertices in cycle time interval

- Giant component has size $O(1) n^{2}$

Inducting

Set $\beta>1 / 2, t=\beta n^{2}, t_{0}=t-2 n^{2-\alpha} \log n, t_{1}=t-n^{2-\alpha} \log n$.
Let \tilde{G}_{0} be a graph with the same connected cpts as $\sigma_{t_{0}}$. Add an edge to \tilde{G} whenever an edge is selected for swap after time t_{0}.

G_{0} has a lot of vertices in n^{α} cpts + sprinkling $\Longrightarrow \tilde{G}_{s}$ has a giant cpt when $s \geq t_{1}$
Every cycle of $\sigma_{t_{0}+s}$ is contained in an open connected component of \tilde{G}_{s}.

- Consider a vertex $v \in\left\{\right.$ giant component of $\left.\tilde{G}_{s}\right\}$ such that $\left|\operatorname{orb}_{s+t_{0}}^{\infty}(v)\right| \leq n^{\gamma}$.
This vertex must have been in a cycle prior at time $s^{\prime} \in\left[t_{0}, s+t_{0}\right]$ which was involved in a split where one of the resulting pieces has length $\leq n^{\gamma}$
- Probability a uniformly chosen edge $e=(u, w)$ makes such a split

$$
(\ldots, \overbrace{x_{1}, \ldots, x_{n \gamma}}^{w \text { must fall here }}, u, \overbrace{y_{1}, \ldots, y_{n \gamma}}^{\text {or here }}, \ldots)
$$

- u
- $x_{1}, \ldots, y_{1}, \ldots$

is $\iota\left(\operatorname{orb}_{s^{\prime}}^{2 n^{\gamma}}\left(x_{1}\right)\right) / 2 n$

$$
\iota\left(\operatorname{orb}_{s^{\prime}}^{2 n^{\gamma}}\left(x_{1}\right)\right) \leq \underbrace{\max _{w} \iota\left(\operatorname{orb}_{s^{\prime}}^{n^{\alpha}}(w)\right)}_{\iota \text { of a slice }} \times \underbrace{2 n^{\gamma-\alpha}}_{\# \text { slices }} \leq 2 n^{\gamma-\alpha} \log ^{2} n
$$

by isoperimetry lemma

- Thus the total number of vertices in the giant cpt and in cycles of length $\leq n^{\gamma}$ is at most
\# of vertices in cycle $\underbrace{2 n^{\gamma}}_{\text {time interval }} \times \underbrace{2 n^{2-\alpha} \log n} \times n^{\gamma-\alpha-1} \log ^{2} n=O\left(n^{1+2(\gamma-\alpha)} \log ^{3} n\right)$ when $\gamma \in(\alpha, 1 / 2+\alpha)$ this is $o\left(n^{2}\right)$.

$$
\iota\left(\operatorname{orb}_{s^{\prime}}^{2 n^{\gamma}}\left(x_{1}\right)\right) \leq \underbrace{\max _{w} \iota\left(\operatorname{orb}_{s^{\prime}}^{n^{\alpha}}(w)\right)}_{\iota \text { of a slice }} \times \underbrace{2 n^{\gamma-\alpha}}_{\# \text { slices }} \leq 2 n^{\gamma-\alpha} \log ^{2} n
$$

by isoperimetry lemma

- Thus the total number of vertices in the giant cpt and in cycles of length $\leq n^{\gamma}$ is at most
\# of vertices in cycle $\underbrace{2 n^{\gamma}}_{\text {time interval }} \times n^{2 n^{2-\alpha} \log n} \times n^{\gamma-\alpha-1} \log ^{2} n=O\left(n^{1+2(\gamma-\alpha)} \log ^{3} n\right)$
when $\gamma \in(\alpha, 1 / 2+\alpha)$ this is $o\left(n^{2}\right)$.
- For $\gamma \in(\alpha, 1 / 2+\alpha)$ there exists a $\delta \in(0,1)$ such that with probability approaching 1 ,
$\inf _{s \in\left[t_{0}, t\right]} \#\left\{\right.$ vertices in cycles of length $\geq n^{\gamma}$ at time $\left.s\right\} \geq \delta n^{2}$

Powers go $\gamma \mapsto(1 / 2)(1+\gamma+\min \{\gamma, 1\})$ which has fixed point at $\gamma=2$.

Thank you!

