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Liquid/glass transition

”The deepest and most interesting unsolved problem in solid
state theory is probably the theory of the nature of glass and
the glass transition.” [Nobel prize P.W. Anderson]

Glasses display properties of both liquids and solids
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Liquid/glass transition

How can you manufacture a glass?

• Take a liquid and cool it rapidly in order to prevent
nucleation of the ordered crystal structure;

• relaxation times increase dramatically, the liquid falls out
of equilibrium and enters a metastable phase;

• the molecules move slower and slower:
your liquid is now a thick syrup..

• finally the liquid freezes in a structureless solid:
here is your glass.
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Key features of liquid/glass transition

• huge divergence of timescales;

• no significant structural changes;

• cooperative relaxation;

• dynamical heterogeneities: non trivial spatio-temporal
fluctuations, coexistence of frozen and mobile regions;

• rich phenomenology: anomalous transport properties,
aging, rejuvenation, . . .

• a similar jamming transition: grains in powders, emulsions,
foams, colloidal suspensions, . . .
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Huge relaxation times

Strong supercooled liquids: Arrhenius τ ∼ exp(∆E/T )

Fragile supercooled liquids: superArrhenius τ ∼ exp(c/T 2), . . .
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Kinetically Constrained Spin Models, a.k.a. KCSM

Friedrickson Andersen model on Z2

Configurations : η = {ηi}i∈Z2 with ηi ∈ {0, 1}

Glauber dynamics = Birth and death of particles on Z2

Kinetic constraint = at least 2 empty nearest neighbours

If constraint satisfied: 1→ 0 rate q, 0→ 1 rate 1− q
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The kinetic constraint
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The kinetic constraint

q

1−q
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Ideas behind KCSM

• Free volume shrinks when temperature is lowered;

• molecules should escape the ”cage” formed by neighbours;

• local constraints act cooperatively;

• blocked structures may percolate → time scales diverge
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Other examples

• Friedrickson Andersen k-facilitated models (FA-kf) on Zd:
at least k empty nearest neighbours

• East : at least one empty site among {x− ~e1, . . . , x− ~ed}
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The general framework

• Choose your favorite lattice;

• Choose a collection of finite neighborhoods of 0:
{C1, . . . , Cm} with Ci ⊂ Zd \ 0

• Constraint at x: at least one of the Ci + x completely
empty

C.Toninelli Bootstrap percolation and Kinetically constrained models: time and length scales



KCSM: properties

• Constraint at x does not depend on ηx
→ detailed balance w.r.t. product measure

µ(η) =
∏
i∈Z2

q1−ηi(1− q)ηi

• µ is not the unique invariant measure

• Blocked clusters, blocked configurations

Example of blocked cluster for FA-2f and for North-East
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Main issues, main obstacles

→ Does convergence to equilibrium at large time occurs?

→ Is there a critical vacancy density below which blocked
clusters percolate and relaxation is prevented?

→ How does relaxation time diverge when we approach this
critical density?

• KCSM dynamics is not monotone

• Coupling arguments and censoring not available

• Blocked configurations → relaxation not uniform on the
initial condition, worst case analysis too rough

• Coercive inequalities (e.g. Log-Sobolev) anomalous
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U-bootstrap percolation

Influence classes: U = {C1, . . . , Cm}, Ci ⊂ Zd, 0 6∈ ∪mi=1Ci.

Initial configuration η ∈ {0, 1}Zd
.

A deterministic discrete time process:

• empty sites remain empty forever;

• site v is emptied at time t if the translated at v of (at least)
one the influence classes Ci is completely empty at t− 1,
i.e. if the same constraint as for KCSM is satisfied

Equivalent formulation:

• At set of empty sites at time t

• A0 := {x ∈ Zd : η(x) = 0}
• At+1 := At ∪ {v ∈ Zd : v + C ⊂ At for some C ∈ U}

Dynamics is monotone
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Critical probability

Fix q ∈ (0, 1) and pick η random with law µ = Bernoulli
distribution with µ(ηx = 0) = q.

Does the final set of empty sites cover the lattice?
Which are the finite size effects ?

Consider the process on the torus Zdn.

qc(n,U) := inf{q ∈ [0, 1] : µ(∪t≥0At = Zdn) ≥ 1/2}

How does qc(n,U) depend on U? How does it scale for n→∞?
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KCSM and U-bootstrap

Final set of 1’s for bootstrap ↔ blocked particles for KCSM

• µ is mixing for a KCSM iff q > qc := lim infn→∞ qc(n,U)

• How fast do we converge to µ? Exponentially
∀q > qc, ∃Trel(q) <∞ s.t.
µ(fPtg)− µ(f)µ(g) ≤ Cf,g exp(−t/Trel(q)), ∀f, g ∈ L2(µ)

• How does Trel (=inverse of spectral gap) diverge as q ↓ qc?
Set Lc(q) := min{n : qc(n,U) = q}. Then

Lc ≤ Trel ≤ eL
d
c

[Cancrini, Martinelli, Roberto, C.T. ’08]
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Relaxation time for FA-kf model, k ≤ d

qc = lim infn→∞ qc(n,U) = 0 [Van Enter ’87, Schonmann ’90]

∃λ(d, k) > 0 s.t. Lc = expk−1

(
λ(d, k) + o(1)

q1/(d−k+1)

)
[Aizenmann, Lebowitz ’88, Cerf,Manzo ’02, Balogh, . . . ,
Bollobas, Duminil-Copin,Morris ’12]

Theorem (Martinelli, C.T. ’16)

• For the FA-2f model there exists α, c > 0 s.t.

exp(c/q1/(d−1)) ≤ Trel ≤ exp
(

log(1/q)α/q1/(d−1)
)

• For the FA-kf model for any k ≥ 3 there exists c, c′ s.t.

expk−1

(
c

q1/(d−k+1)

)
≤ Trel ≤ expk−1

(
c′

q1/(d−k+1)

)
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FA-2f Dominant relaxation mechanism

1)

........

2)

x

3) Set `q := 1/q log 1/q.

µ(a segment of length `q contains at least one vacancy) ∼ 1
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FA− 2f d = 2, strategy of the proof

Trel := inf{λ : V ar(f) ≤ λµ(f,−Lf)} ∀f local

µ(f,−Lf) =
∑
x∈Z2

µ(cxV arx(f))

cx= indicator function that x has ≥ 2 empty nearest neighb.

V arx=local variance at x

We want to prove Trel ≤ exp(c| log q|/q), i.e. that ∀f it holds

V ar(f) ≤ exp(c| log q|/q)
∑
x∈Z2

µ(cxV arx(f))
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Step 1: a key constrained Poincaré inequality

Renormalize on L× L boxes with L = 1/q log 1/q.
• a box is good if it contains at least one empty site on each

column and on each line → µ(good) ∼ 1
• a box is super good if it is good and contains at least one

empty column and one empty row
→ µ(supergood) ∼ exp(−1/q log(1/q)2)� 1

V ar(f) ≤
∑

x∈Z2(L)

µ(κxV arBx)

κx= indicator function of

exp(1/q log(1/q)^2)
=Good

=Supergood

=B_x

Maximal path length

Very flexible tool
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Step 2: construct allowed paths

Swap neighbouring good and supergood boxes

Bring two supergood boxes near Bx

For any ω ∈ {0, 1}Bx and y ∈ Bx we can now bring an empty
row and column near y ∈ Bx: the constraint at y is now satisfied

B_x y
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Step 3: canonical paths for reversible Markov chains

Key ingredient: the whole path is constructed by ”shifting” an
empty column of height L = 1/q log 1/q

Our constrained Poincaré inequality + canonical paths for
reversible Markov chains

→ Trel ≤ exp(c/q(log(1/q))2)

(= length of the path × congestion constant)

Changing the notion of Good, Supergood, L, and the oriented
neighborhood of Bx we cover other models..all critical models?
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A universality result for cellular automata in Z2

Take u ∈ S1, let Hu := {x ∈ Z2 :< x, u >< 0}.
u is a stable direction if starting from η empty on Hu and filled
on Z2 \Hu no other site can be emptied.

H_u
u

Ex. East: ~u = −~e1 is stable; ~u = ~e1 + ~e2 is unstable

directionStable

direction

Unstable
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Classification of cellular automata in Z2

• supercritical if ∃ open semicircle without stable directions;
• critical if every open semicircle has a stable direction and ∃

a semicircle with a finite number of stable directions
• subcritical otherwise

Red= stable direction; Green= unstable direction

𝑆

𝑆

𝑆

𝑆 

FA1f : supercritical

East: supercritical

FA2f: critical

North-East : subcritical
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A universality result for cellular automata in Z2

Theorem [Bollobas, Smith, Uzzell ’15 + Bollobas,
Duminil-Copin, Morris, Smith ’16 + Balister, Bollobas,
Przykucki, Smith ’16]

• Supercritical models: qc(n,U) = (1/n)Θ(1)

• Critical models: ∃α(U) > 0 s.t. qc(n,U) = Θ (1/ log n)α

• Subcritical models: lim infn→∞ qc(n,U) > 0

→ Lc(q) = 1/qΘ(1) for supercritical models
→ Lc = Θ(exp(1/qα)) for critical models

Lc(q) determined by the action of the cellular automata on
discrete half planes
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Supecritical models the key mechanism

Supercritical models:

• there is a finite empty droplet D ⊂ Zd from which we can
empty an infinite half line

• if n� 1/q|D| we will typically droplets to empty all Zdn
• Ex. East: a single empty site is a droplet

xx x
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Critical models the key mechanism

Critical models:

• we can expand a finite empty droplet one step further iff
we find a group of α empty sites on its boundary

• if we have an empty droplet of size � 1/qα we will
typically be able to continue untill emptying all Zdn.

• Ex. FA-2f: a rectangle of empty sites can be expanded if
there is at least one empty on the next column
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Supercritical KCSM on Z2

Theorema [Martinelli, Morris, C.T. ’16]

A refined classification : a supercritical model is rooted if there
are two non opposite stable directions. It is unrooted otherwise.

• for all supercritical unrooted models Trel = 1/qΘ(1)

• for all supercritical rooted models Trel = 1/qΘ(log(1/q))

Lc =
1

q

Θ(1)

→ unrooted models ∃α s.t. Trel = O(Lαc )

→ rooted models ∃α s.t. Trel ≥ Lα logLc
c
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Intuition behind the unrooted result

• ∃ empty droplet can be shifted back and forth along a line:
from the droplet one can empty the entire line

• FA-1 f is unrooted, empty droplet = a single empty site

• scaling proven via renormalization to FA1f model in d = 1
and using the polynomial result for FA1f [Cancrini, Martinelli,

Roberto, Toninelli ’08]
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Intuition behind the rooted result

• from any finite empty region we can empty only a cone.

• lower bound: logarithmic energy barriers

- start from a single droplet
- to create a new droplet at distance ` you necessarily go

through a configuration with c log ` simultaneous empty
sites

- → time 1/qc log 1/q

• upper bound: renormalisation to East in d = 1 model and
using TEastrel = 1/qc log 1/q [Aldous, Diaconis ’02, Cancrini, Martinelli,

Roberto, Toninelli ’08, Chlebloun, Faggionato,Martinelli ’15]
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Critical KCSM on Z2

α(~u) = difficulty of direction ~u= minimal number of empty site
to be added to Hu in order to grow the empty set Hu of one
step in the ~u direction

α := min
C

max
~u∈C

α(~u)

→ Lc = Θ(exp(c/qα))

Conjecture

[Martinelli, Morris ,C.T.] A refined classification: a critical
model is α -rooted if there are two non opposite stable
directions of difficulty > α. It is α-unrooted otherwise. Then

• for α- unrooted models Trel = O(exp(c/qα| log(1/q)|)
• for α-rooted models Trel ≥ exp(c/qβ), β > α
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Summary

• KCSM are stochastic models for liquid/glass transition

• intimate relation to bootstrap percolation

• ergodicity for KCSM = percolation cellular automata

• Trel = 1/gap <∞ in the ergodic regime and Trel > Lc

• universality results for bootstrap percolation in d = 2

• due to logarithmic barriers sometimes Trel � Lc

• a refined classification of the influence classes, conjecture
on the universal behavior for supercritical / critical KCSM

• a new toolbox to upper bound Trel
• scaling for FA-kf on Zd

• scaling for all critical/supercritical models in d = 2
hopefully . . .
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