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Liquid/glass transition

”The deepest and most interesting unsolved problem in solid
state theory is probably the theory of the nature of glass and
the glass transition.” [Nobel prize P.W. Anderson|

Glasses display properties of both liquids and solids
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Liquid/glass transition

How can you manufacture a glass?

e Take a liquid and cool it rapidly in order to prevent
nucleation of the ordered crystal structure;

e relaxation times increase dramatically, the liquid falls out
of equilibrium and enters a metastable phase;

e the molecules move slower and slower:
your liquid is now a thick syrup..

e finally the liquid freezes in a structureless solid:
here is your glass.
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Key features of liquid/glass transition

e huge divergence of timescales;
e 1o significant structural changes;
e cooperative relaxation;

e dynamical heterogeneities: non trivial spatio-temporal
fluctuations, coexistence of frozen and mobile regions;

e rich phenomenology: anomalous transport properties,
aging, rejuvenation, ...

e a similar jamming transition: grains in powders, emulsions,
foams, colloidal suspensions, ...
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relaxation times
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Strong supercooled liquids: Arrhenius 7 ~ exp(AE/T)

Fragile supercooled liquids: superArrhenius 7 ~ exp(c/T?), ...
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Kinetically Constrained Spin Models, a.k.a. KCSM

Friedrickson Andersen model on Z2

Configurations : 7 = {n; };cz2 with n; € {0,1}
Glauber dynamics = Birth and death of particles on Z?2
Kinetic constraint = at least 2 empty nearest neighbours

If constraint satisfied: 1 —Orateq, 0— lratel —gq
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The kinetic constraint
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The kinetic constraint
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Ideas behind KCSM

Free volume shrinks when temperature is lowered;

molecules should escape the ”cage” formed by neighbours;

local constraints act cooperatively;

blocked structures may percolate — time scales diverge
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Other examples

e Friedrickson Andersen k-facilitated models (FA-kf) on Z%:
at least k empty nearest neighbours

e East : at least one empty site among {z — €1,...,x — €y}
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The general framework

e Choose your favorite lattice;

e Choose a collection of finite neighborhoods of 0:
{C1,...,Cp)} with C; € Z4\ 0

e Constraint at x: at least one of the C; + x completely
empty
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KCSM: properties

e Constraint at  does not depend on 7,
— detailed balance w.r.t. product measure

pm)=J[ ¢ —om
i€Z2
e 4 is not the unique invariant measure

e Blocked clusters, blocked configurations

Example of blocked cluster for FA-2f and for North-East
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Main issues, main obstacles

d

Does convergence to equilibrium at large time occurs?

1

Is there a critical vacancy density below which blocked
clusters percolate and relaxation is prevented?

— How does relaxation time diverge when we approach this
critical density?

e KCSM dynamics is not monotone
e Coupling arguments and censoring not available

e Blocked configurations — relaxation not uniform on the
initial condition, worst case analysis too rough

e Coercive inequalities (e.g. Log-Sobolev) anomalous
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U -bootstrap percolation

Influence classes: U = {C1,...,Cn}, C; CZ%,0¢ Ui, C;.
Initial configuration n € {0,1}2".
A deterministic discrete time process:

e empty sites remain empty forever;

e site v is emptied at time ¢ if the translated at v of (at least)
one the influence classes C; is completely empty at t — 1,
i.e. if the same constraint as for KCSM is satisfied

Equivalent formulation:

o A; set of empty sites at time ¢
o Ay :={z €2 n(z) =0}
o Ay ::AtU{UEZd:v—i—C’CAt for some C' € U}

Dynamics is monotone
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Critical probability

Fix g € (0,1) and pick n random with law g = Bernoulli
distribution with u(n, = 0) = ¢.

Does the final set of empty sites cover the lattice?
Which are the finite size effects 7

Consider the process on the torus Z2.

ge(n,U) == inf{q € [0,1] : p(Up=0A; = Z) > 1/2}

How does q.(n,U) depend on U? How does it scale for n — oo?
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KCSM and U-bootstrap

Final set of 1’s for bootstrap <> blocked particles for KCSM

e 4 is mixing for a KCSM iff ¢ > ¢, := liminf,, ;o g.(n,U)

e How fast do we converge to u? Exponentially
Vg > qey FTrer(q) < 00 s.t.
u(fPrg) — u(f)ulg) < Crgexp(—t/Tralq)), Vf,g€ L?(n)

e How does T}.; (=inverse of spectral gap) diverge as q | q.7
Set L.(q) := min{n : g.(n,U) = q}. Then

d
Le <The < ele

[Cancrini, Martinelli, Roberto, C.T. "08|
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Relazation time for FA-kf model, k < d

¢c = liminf, o g.(n,U) = 0 [Van Enter '87, Schonmann ’90]

Ad, k) +o(1
I\, k) > 0s.t. Lo = expy_y <(ql/(d)_k+1())>

[Aizenmann, Lebowitz ’88, Cerf,Manzo ’02, Balogh, ...,
Bollobas, Duminil-Copin,Morris '12]

Theorem (Martinelli, C.T. ’16)

e For the FA-2f model there exists o, ¢ > 0 s.t.
exp(c/q"/ V) < Ty < exp <1og(1/q)"/q1/(d_1))
o For the FA-kf model for any k > 3 there exists c,c’ s.t.

€ < Tpep < ¢
€XPr_q m S Lrel = €XPiq m
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FA-2f Dominant relazation mechanism
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3) Set £y :=1/qlog1/q.

(a segment of length ¢, contains at least one vacancy) ~ 1
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FA—-2f d=2, strategy of the proof

Trer :=1nf{\: Var(f) < \u(f,—Lf)} Vf local
p(f,=LF) =Y wleaVara(f))

T€Z?

¢, = indicator function that z has > 2 empty nearest neighb.

Var,=local variance at x

We want to prove T, < exp(c|logq|/q), i.e. that Vf it holds

Var(f) < exp(c|logal/g) Y ulesVars(f))

T€Z?
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Step 1: a key constrained Poincaré inequality

Renormalize on L x L boxes with L = 1/qlog1/q.
e a box is good if it contains at least one empty site on each
column and on each line — p(good) ~ 1
e a box is super good if it is good and contains at least one
empty column and one empty row
— p(supergood) ~ exp(—1/qlog(1/q)?) < 1

Var(f) < Z w(keVarg,)

z€Z?(L)

k.= indicator function of

] Maximal path length
exp(1/q log(1/q)"2)

B =Good
Il =Supergood
B =B_x

Very flexible tool



Step 2: construct allowed paths

Swap neighbouring good and supergood boxes

00000
coooo
00000
cocooo
eecee
00000

=)
o
o
o
o

coooo
00000
00000

Bring two supergood boxes near B,

For any w € {0,1}P* and y € B, we can now bring an empty
row and column near y € B,: the constraint at y is now satisfied
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Step 3: canonical paths for reversible Markov chains

Key ingredient: the whole path is constructed by ”shifting” an
empty column of height L = 1/qlog1/q

Our constrained Poincaré inequality 4+ canonical paths for
reversible Markov chains

— Trer < exp(c/q(log(1/q))?)

(= length of the path x congestion constant)

Changing the notion of Good, Supergood, L, and the oriented
neighborhood of B, we cover other models..all critical models?
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A universality result for cellular automata in Z>

Take u € SY, let H, := {z € Z? :< x,u >< 0}.
u is a stable direction if starting from n empty on H, and filled
on Z?\ H, no other site can be emptied.

o oo S oo
Ex. East: & = —e} is stable; & = €1 4 €5 is
LN N N JeNeoNeoNe] o000 OOGOO
0000000 (A X N NN N ]
®0e000000 Unstable Ceeeessee
Stable [ X X X JleNeNeXe} direction oo (X X
direction LN N N JieNeoNeoNe] O 0O o000
090000000 0000 [N N J
0000000 O000O0
00000000 00000
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Classification of cellular automata in 7.2

e supercritical if 3 open semicircle without stable directions;

e critical if every open semicircle has a stable direction and 3
a semicircle with a finite number of stable directions

e subcritical otherwise

Red= stable direction; Green= unstable direction

FA1f : supercritical

East: supercritical

FA2f: critical

North-East : subcritical

%)
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A universality result for cellular automata in Z>

Theorem [Bollobas, Smith, Uzzell 15 + Bollobas,
Duminil-Copin, Morris, Smith ’16 + Balister, Bollobas,
Przykucki, Smith ’16]

e Supercritical models: g.(n,U) = (1/n)®(1)
e Critical models: Ja(U) > 0 s.t. g.(n,U) = O (1/logn)”

e Subcritical models: liminf,,_,~ g.(n,U) >0

— Lo(q) = 1/¢°M for supercritical models
— L. = O(exp(1/q*)) for critical models

L.(q) determined by the action of the cellular automata on
discrete half planes
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Supecritical models the key mechanism

Supercritical models:

e there is a finite empty droplet D C Z¢ from which we can
empty an infinite half line

o if n>> 1/¢/P! we will typically droplets to empty all Z<¢

e Ex. East: a single empty site is a droplet

X X X

© — 00 ——000
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Critical models the key mechanism

Critical models:

e we can expand a finite empty droplet one step further iff
we find a group of a empty sites on its boundary

e if we have an empty droplet of size > 1/¢* we will
typically be able to continue untill emptying all Z¢.

e Fx. FA-2f: a rectangle of empty sites can be expanded if
there is at least one empty on the next column

O000 e 0 OO0 0|0
[ONCONONON | 0 OO0 0|0
O OO 0|0 — |00 O 0|0
[ONGONONON | 0 OO0 0|0
OO0OO0CO0|e O OO 0|0
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Supercritical KCSM on Z?

Theorema [Martinelli, Morris, C.T. ’16]

A refined classification : a supercritical model is rooted if there
are two non opposite stable directions. It is unrooted otherwise.

e for all supercritical unrooted models T, = 1/ ¢®®

e for all supercritical rooted models T}.c; = 1/ ¢©oe(1/9))

16(1)

q

c

— unrooted models Ja s.t. Ty = O(LY)

— rooted models Ja s.t. T,y > LE108Fe
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Intuition behind the unrooted result

e d empty droplet can be shifted back and forth along a line:
from the droplet one can empty the entire line

e FA-1 f is unrooted, empty droplet = a single empty site
e scaling proven via renormalization to FA1f model in d = 1
and using the polynomial result for FA1f [cancrini, Martinelt,

Roberto, Toninelli ’08]
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Intuition behind the rooted result

e from any finite empty region we can empty only a cone.
e lower bound: logarithmic energy barriers
- start from a single droplet
- to create a new droplet at distance ¢ you necessarily go
through a configuration with clog ¢ simultaneous empty
sites
- — time 1/¢°lo8t/a
e upper bound: renormalisation to East in d = 1 model and
USIDg TrEe;lSt = 1/qC IOg l/q [Aldous, Diaconis 02, Cancrini, Martinelli,

Roberto, Toninelli 08, Chlebloun, Faggionato,Martinelli ’15]
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Critical KCSM on 72

a(t) = difficulty of direction @= minimal number of empty site
to be added to H, in order to grow the empty set H, of one
step in the @ direction

a := min max o()
ueC

— Le = O(exp(c/q”))

Conjecture

[Martinelli, Morris ,C.T.] A refined classification: a critical

model is « -rooted if there are two non opposite stable

directions of difficulty > . It is a-unrooted otherwise. Then
e for a- unrooted models T.; = O(exp(c/q*|log(1/q)|)

o for a-rooted models T} > exp(c/q®), B> a
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Summary

e KCSM are stochastic models for liquid/glass transition
e intimate relation to bootstrap percolation

e ergodicity for KCSM = percolation cellular automata
e T,.i = 1/gap < oo in the ergodic regime and T;.; > L.
e universality results for bootstrap percolation in d = 2
e due to logarithmic barriers sometimes 7}.¢; > L.

e a refined classification of the influence classes, conjecture
on the universal behavior for supercritical / critical KCSM

a new toolbox to upper bound T,

e scaling for FA-kf on Z¢
e scaling for all critical/supercritical models in d = 2
hopefully ...
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