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Motivation

Mathematically tractable epidemic models are valuable tools
for understanding, predicting, mitigating, planning, . . . in the
context of infectious diseases.

Classical models include several assumptions of homogeneity,
many of which are unrealistic.

Heterogeneity has been included in many ways, including
households, multiple types, multiple severities, . . . .

Our focus is on using network structure to reflect population
structures like social networks in human/animal populations,
network connectivity of computers.
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Stochastic SIR epidemic on a network

Given a graph G (undirected), identify nodes with individuals and
edges with ‘friendships’ and define an epidemic model:

Initially 1 infectious (chosen UAR) and n − 1 susceptible.

SIR (suceptible → infectious → removed) progression.

Infectious individuals remain so for random time distributed as
I , then become removed.

Infectious individuals make contacts with each neighbour in G
at the points of Poisson Processes of rate λ > 0; if neighbour
is susceptible it becomes infectious.

Infectious periods and PPs mutually independent.

Continue until no infectious individuals remain.

Classical model has G = Kn. Analysis is as n→∞.

Investigate the number of initial susceptibles that are
ultimately removed, the final size.
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Final size behaviour

Histograms of relative final sizes from 10,000 simulations of a
network-based SIR epidemic model, n = 300.
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We investigate (i) whether large outbreaks are possible, and if so
(ii) how likely they are and (iii) how big they are.
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Epidemic model properties

Main object of interest is the final size Z , the number of
initial susceptibles that are ultimately removed.

As n→∞, we empirically we observe in that either the
infection dies out quickly and infects few individuals
(Z = O(1)) or takes off and infects a significant fraction of
the population (Z = O(n)).

By analysing the early stages of the epidemic we find a
threshold parameter R∗ and the probability of a major
outbreak pmaj = P(Z = O(n)); with pmaj > 0 ⇐⇒ R∗ > 1.

We also find the expected relative final size of a major
outbreak z = E[Z/n | Z = O(n)].

(Can also get CLT for
√
n(Z/n − z) in the event of a major

outbreak.)
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BP approximations

A forward process BF approximates the spread of infection.
The criticality of BF determines whether a major outbreak is
possible.

R∗ = mean of offspring distn of BF .
Total progeny of BF approximates the final size.

pmaj ≈ P(BF avoids extinction).

A backward process BB approximates the ‘spread’ of an
individual’s ‘susceptibility set’.
In the event of a major outbreak, a UAR chosen individual is
infected ‘iff’ its susceptibility set is infinite.
Total progeny of BB approximates the size of an individuals
susceptibility set.

z ≈ P(BB avoids extinction).
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Graphs

Classical model has G = Kn.

Can also use G (n, p) or random regular graphs1.

These represent (more-or-less) homogeneous mixing of
homogeneous individuals.

The degree distribution of these graphs does not reflect what
is empirically observed.

degree distribution: distribution of the number of neighbours
of a randomly chosen vertex.

1Neal (2003); Diekmann, de Jong & Metz (1998).
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Configuration model

A random graph model with specified degree distribution2.

Given n and a degree distribution D,

assign each individual Di
D
= D stubs (half-edges) and

pair the stubs UAR.

This gives a random graph with specified degree distribution,
uniformly from all (multi-)graphs on n vertices with that
degree distribution.

There are sufficiently few of these ‘imperfections’ that they
don’t affect our analysis.

No clustering (small loops) or degree correlation (assortativity
/ disassortativity).

2Durrett (2007).
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Configuration model

SIR epidemic on a CM random graph3.

BP approximations give the following threshold parameter and
PGF for z :

R∗= pµD̃−1 = p(µD +
σ2
D

µD
− 1),

fB′(s) = fD̃−1(1− p + sp), fB(s) = fD(1− p + sp).

Here P(D̃ = d) = dP(D = d)/µD , p = 1− φ(λ),

fX (s) = E[sX ] and f (i)(s) = d i

ds i
f (s).

More complex PGFs for pmaj, but just as numerically
amenable.

3Andersson (1997); Newman (2002); Kenah & Robins (2007); Ball, Sirl &
Trapman (2009).
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Vaccination

Including the effect of possible interventions is a key use of
epidemic models.

We deal with prophylactic vaccination; vaccination done in
advance of any outbreak.

(Not contact tracing or any other reactive approach.)

Two key aspects to model:

Allocation: who gets vaccinated.
Action: the effect on those who are vaccinated.

We focus on the former.
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Vaccination: our baseline models

The CM-SIR epidemic model.

Configuration model network with degrees ∼ D.

Per-pair infection rate λ.

Infectious period ∼ I .

Formulae to compute R∗, pmaj, z numerically.
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Vaccination modelling

Vaccine action4

Perfect: complete protection.
All or nothing: complete protection with probability ε,
otherwise no effect, independently for each individual.
Non-random: rate of incoming PPs multiplied by a ≥ 0, rate
of outgoing PPs multiplied by b ≥ 0.

Vaccine allocation

Simplest is to vaccinate individuals UAR. Analysis is fairly
straightforward.
Being more intelligent (i.e. exploiting population structure)
allows us to do better.
For example, in the standard households model the equalising
strategy is provably optimal in some circumstances and often
(but certainly not always) optimal or near-optimal otherwise5.

4Becker & Starczak (1998).
5Ball et al. (1997); Keeling & Ross (2015).
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Acquaintance vaccination

A challenge is to develop vaccine allocation strategies which target
key (well-connected) individuals in the network structure, using
only local knowledge about this structure.

One way of doing this is through acquaintance vaccination6.

Sample individuals UAR with probability pS .

Sampled individuals independently name each of their
neighbours with probability pN .

Named individuals are vaccinated.

6Ball & Sirl (2013).
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Acquaintance vaccination: BP approximations

Sample individuals UAR w.p. pS ; sampled individuals name each of
their neighbours for vaccination independently w.p. pN .

Knowing an individual is vaccinated gives some information
about its degree.

We type individuals as N/V /U and S/Sc .

Named for vaccination by their infector, Vaccinated but not
named by their infector, Unvaccinated.
Sampled or unsampled (for possibly naming their neighbours).

This yields 6-type BPs, from which we derive a threshold
parameter Rv and also pmaj and z .
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Acquaintance vaccination: allocation specifics

Vaccine coverage is easily shown to be

pV = 1− fD(1− pSpN).

This depends on pS and pN only through the product pSpN .

Performance (measured by Rv , pmaj or z) does depend on
specific values of pS and pN .

For a perfect vaccine and fixed pSpN , Rv is increasing in pN ;
i.e. it is better to have everyone name a few friends than a
few people name all their friends.

The difference between best and worst is quite small; and for
imperfect vaccines the dependence on the precise values of pS
and pN again seems very small.
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Asides before numerical results

Use the notation D ∼ Hea(k, α) to mean

P(D = d) ∝

{
k−α for d = 0, 1, . . . , k ,

d−α for d = k + 1, k + 2, . . . .

We compare the performance of old and new (best and worst)
acquaintance vaccination to vaccinating individuals chosen
UAR and to the ‘CM-optimal’ allocation of vaccinating
individuals of highest degree.
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Acquaintance vaccination performance 1a
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Acquaintance vaccination performance 1b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

UAR

New Worst

New Best

Old

CM-Opt

z

coverage

Acquaintance vaccination performance with CM population.
Parameters D ∼ Poi(10), I ∼ exp(3) and λ = 1.
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Acquaintance vaccination performance 2a
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Acquaintance vaccination performance 2b
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Parameters D ∼ Hea(12, 3.4), I ∼ exp(10) and λ = 1.
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k-Acquaintance vaccination in CM population

Sample individuals UAR w.p. pS ; sampled individuals name each of
their neighbours w.p. pN .

Rather than vaccinating individuals named at least once,
vaccinate those named at least k times.

With higher k this more strongly targets individuals of high
degree. (But requires more effort to achieve a given coverage.)

Branching process of infected individuals (→ Rv , pmaj, z).

Now need an 8 type process, typing by whether or not an
individual is

Named by its infector,
Vaccinated,
Sampled.

Numerical results for k = 2.
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k-Acquaintance vaccination performance 1
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k-Acquaintance vaccination performance 2
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Dropping edges in the CM-SIR model

CM network model, SIR progression as before.

Infectives

infect each neighbour at rate λ,
recover at rate γ.

Also let each neighbour of an infective drop their connection
to the infective at rate ω.
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Analysis of model with dropping

Britton et al.7 (i) treat an SEIR model and (ii) allow
‘rewiring’.

Britton et al. analyse the early stages (threshold parameters
and early exponential growth rate).

Branching process approximation.
Pair approximation (deterministic large population ‘limit’ ODEs
for the number of singletons, pairs, triples, . . . of individuals in
the various disease states): system of 7/10 ODEs.

They find that the threshold parameters disagree, but
simulation results are more in agreement with the BP
predictions.

The simpler model is what we8 have investigated further (as a
first step).

7Britton et al. (2016).
8Ball, Britton, Leung & Sirl (in prep.).
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Effective degree representation9

Construct the network and the epidemic at the same time.

Give individuals their (random number of) stubs; an
individual’s effective degree is the number of remaining free
stubs it has.

Let the epidemic evolve, pairing up stubs only when an
infection or informing event occurs.

This leads to a CTMC

W (t) = ((Xi (t))∞i=0, (Yi (t))∞i=0,ZE (t)) ∈ Z∞+ × Z∞+ × Z+.

Here Xi is the number of susceptible individuals of effective
degree i , Yi similarly for infectives and ZE is the number of
unpaired stubs emanating from removed individuals.

9Ball and Neal (2008).
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Effective degree analysis

Theory of density dependent population processes10 gives a
functional LLN and CLT, e.g.

lim
N→∞

W (N)(t)

N
→ w(t),

where w(t) is the solution of an ODE system and → can be
made precise.

DD theory applies to finite systems, so must impose a
maximum degree (or apply the optimism principle of applied
mathematics).

Infinite system reduces to a single driving ODE; which when
ω = 0 is that of Volz/Miller11.

10Ethier & Kurtz (1986, Chapter 11)
11Miller, Slim & Volz (2012).
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(Expected relative) final size

Letting t →∞ in the ODE(s) gives the asymptotic relative
final size of the epidemic started with a positive fraction of
infected individuals (i.e. a major outbreak).

This yields implicit equations for z .

(The same one we saw earlier when ω = 0.)

Final size in this model with dropping
= final size without dropping but recovery rate γ + ω.
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CLT for final size

Kurtz’s theory of DD processes also gives a CLT for the final
size of the epidemic:

√
N

(
Z (N)

N
− z

)
.

(A little more work is is required to make the DD theory
apply.)

This will suggest a CLT for the size of the giant component in
a CM random graph. Previously

Derived heuristically for a very special case12.
Asymptotic variance known rigorously13.

12Ball & Neal (2008).
13Ball & Neal (2016).
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Summary & future

BP approximations to characterise final size behaviour of SIR
epidemic models on random graph population structures.
Vaccination.

Acquaintance vaccination.
Including household structure.
Further targeting of highly connected individuals.

Dropping
A simple dynamic network.
Incorporate ‘rewiring’.

Finding individuals whose vaccination will have the most
impact (by some measure).

Minimising Rv is not always equivalent to minimising z .

Variations / refinements.

Performance in other models of network structure.

A version/variation suitable for implementation?
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