Epidemic mitigation in populations modelled as networks

David Sirl University of Nottingham david.sirl@nottingham.ac.uk

Bristol, March 2017

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
●○		00000000000000	000000	000
Outline				

- Motivation.
- SIR epidemics on a network/graph.
- A simple model of a population as a network/graph.
 - The network.
 - Epidemics on it.
 - Their analysis.
- Vaccination.
 - Allocating vaccine to better mitigate epidemics.
- 'Dropping'.
 - Individuals changing their behaviour in response to the presence of infection.

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
○●		00000000000000	000000	000
Motivatio	n			

- Mathematically tractable epidemic models are valuable tools for understanding, predicting, mitigating, planning, ... in the context of infectious diseases.
- Classical models include several assumptions of homogeneity, many of which are unrealistic.
- Heterogeneity has been included in many ways, including households, multiple types, multiple severities,
- Our focus is on using network structure to reflect population structures like social networks in human/animal populations, network connectivity of computers.

Front	matter

Stochastic SIR epidemic on a network

Given a graph G (undirected), identify nodes with individuals and edges with 'friendships' and define an epidemic model:

- Initially 1 infectious (chosen UAR) and n-1 susceptible.
- SIR (suceptible \rightarrow infectious \rightarrow removed) progression.
- Infectious individuals remain so for random time distributed as *I*, then become removed.
- Infectious individuals make contacts with each neighbour in G at the points of Poisson Processes of rate $\lambda > 0$; if neighbour is susceptible it becomes infectious.
- Infectious periods and PPs mutually independent.
- Continue until no infectious individuals remain.

Classical model has $G = K_n$. Analysis is as $n \to \infty$.

• Investigate the number of initial susceptibles that are ultimately removed, the *final size*.

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
	○●○○○○○	00000000000000	000000	000
Final size	behaviour			

Histograms of relative final sizes from 10,000 simulations of a network-based SIR epidemic model, n = 300.

We investigate (i) whether large outbreaks are possible, and if so (ii) how likely they are and (iii) how big they are.

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
00		00000000000000	000000	000
Epidemic	model properties			

- Main object of interest is the *final size* Z, the number of initial susceptibles that are ultimately removed.
- As n→∞, we empirically we observe in that either the infection dies out quickly and infects few individuals (Z = O(1)) or takes off and infects a significant fraction of the population (Z = O(n)).
- By analysing the early stages of the epidemic we find a threshold parameter R_{*} and the probability of a major outbreak p_{maj} = ℙ(Z = O(n)); with p_{maj} > 0 ⇐ R_{*} > 1.
- We also find the expected relative final size of a major outbreak z = E[Z/n | Z = O(n)].
- (Can also get CLT for $\sqrt{n}(Z/n-z)$ in the event of a major outbreak.)

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
00	०००●०००	00000000000000	000000	000
BP approx	imations			

- \bullet A forward process \mathcal{B}_F approximates the spread of infection.
- The criticality of B_F determines whether a major outbreak is possible.

 $R_* =$ mean of offspring distn of \mathcal{B}_F .

• Total progeny of \mathcal{B}_F approximates the final size.

 $p_{\text{maj}} \approx \mathbb{P}(\mathcal{B}_F \text{ avoids extinction}).$

- A *backward process* \mathcal{B}_B approximates the 'spread' of an individual's 'susceptibility set'.
- In the event of a major outbreak, a UAR chosen individual is infected 'iff' its susceptibility set is infinite.
- Total progeny of B_B approximates the size of an individuals susceptibility set.

 $z \approx \mathbb{P}(\mathcal{B}_B \text{ avoids extinction}).$

Front matter	Framework & underlying models	Vaccination 00000000000000	Dropping 000000	End matter 000
Graphs				

- Classical model has $G = K_n$.
- Can also use G(n, p) or random regular graphs¹.
- These represent (more-or-less) homogeneous mixing of homogeneous individuals.
- The degree distribution of these graphs does not reflect what is empirically observed.
 - degree distribution: distribution of the number of neighbours of a randomly chosen vertex.

¹Neal (2003); Diekmann, de Jong & Metz (1998).

Front matter	Framework & underlying models	Vaccination 00000000000000	Dropping 000000	End matter 000
Configurat	cion model			

A random graph model with specified degree distribution².

- Given *n* and a degree distribution *D*,
 - assign each individual $D_i \stackrel{\mathcal{D}}{=} D$ stubs (half-edges) and
 - pair the stubs UAR.
- This gives a random graph with specified degree distribution, uniformly from all (multi-)graphs on *n* vertices with that degree distribution.
- There are sufficiently few of these 'imperfections' that they don't affect our analysis.
- No clustering (small loops) or degree correlation (assortativity / disassortativity).

²Durrett (2007).

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
00		00000000000000	000000	000
Configura	tion model			

SIR epidemic on a CM random graph³.

• BP approximations give the following threshold parameter and PGF for *z*:

$$R_* = p \mu_{\tilde{D}-1} = p(\mu_D + \frac{\sigma_D^2}{\mu_D} - 1),$$

 $f_{B'}(s) = f_{\tilde{D}-1}(1 - p + sp), \quad f_B(s) = f_D(1 - p + sp).$

Here
$$\mathbb{P}(\tilde{D} = d) = d\mathbb{P}(D = d)/\mu_D$$
, $p = 1 - \phi(\lambda)$,
 $f_X(s) = \mathbb{E}[s^X]$ and $f^{(i)}(s) = \frac{d^i}{ds^i}f(s)$.

More complex PGFs for $p_{\rm maj}$, but just as numerically amenable.

³Andersson (1997); Newman (2002); Kenah & Robins (2007); Ball, Sirl & Trapman (2009).

Front matter	Framework & underlying models	Vaccination ••••••	Dropping 000000	End matter 000
Vaccinatio	'n			

- Including the effect of possible interventions is a key use of epidemic models.
- We deal with prophylactic vaccination; vaccination done in advance of any outbreak.
- (Not contact tracing or any other reactive approach.)
- Two key aspects to model:
 - Allocation: who gets vaccinated.
 - Action: the effect on those who are vaccinated.
- We focus on the former.

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
00		○●○○○○○○○○○○○○	000000	000
Vaccinatio	n: our baseline moo	dels		

The CM-SIR epidemic model.

- Configuration model network with degrees $\sim D$.
- Per-pair infection rate λ .
- Infectious period $\sim I$.

• Formulae to compute R_* , p_{mai} , z numerically.

Front matter	Framework & underlying	n

Vaccination modelling

- Vaccine action⁴
 - Perfect: complete protection.

odels

- All or nothing: complete protection with probability ε, otherwise no effect, independently for each individual.
- Non-random: rate of incoming PPs multiplied by a ≥ 0, rate of outgoing PPs multiplied by b ≥ 0.
- Vaccine allocation
 - Simplest is to vaccinate individuals UAR. Analysis is fairly straightforward.
 - Being more intelligent (i.e. exploiting population structure) allows us to do better.
 - For example, in the standard households model the *equalising strategy* is provably optimal in some circumstances and often (but certainly not always) optimal or near-optimal otherwise⁵.

⁴Becker & Starczak (1998).

⁵Ball et al. (1997); Keeling & Ross (2015).

A challenge is to develop vaccine allocation strategies which target key (well-connected) individuals in the network structure, using

only local knowledge about this structure.

One way of doing this is through *acquaintance vaccination*⁶.

- Sample individuals UAR with probability p_S .
- Sampled individuals independently name each of their neighbours with probability p_N .
- Named individuals are vaccinated.

⁶Ball & Sirl (2013).

Acquaintance vaccination: BP approximations

Sample individuals UAR w.p. p_S ; sampled individuals name each of their neighbours for vaccination independently w.p. p_N .

- Knowing an individual is vaccinated gives some information about its degree.
- We type individuals as N/V/U and S/S^c .
 - Named for vaccination by their infector, Vaccinated but not named by their infector, Unvaccinated.
 - Sampled or unsampled (for possibly naming their neighbours).
- This yields 6-type BPs, from which we derive a threshold parameter R_v and also p_{maj} and z.

Acquaintance vaccination: allocation specifics

• Vaccine coverage is easily shown to be

$$p_V = 1 - f_D(1 - p_S p_N).$$

- This depends on p_S and p_N only through the product $p_S p_N$.
- Performance (measured by R_v , p_{maj} or z) does depend on specific values of p_S and p_N .
- For a perfect vaccine and fixed $p_S p_N$, R_v is increasing in p_N ; i.e. it is better to have everyone name a few friends than a few people name all their friends.
- The difference between best and worst is quite small; and for imperfect vaccines the dependence on the precise values of *p_S* and *p_N* again seems very small.

 Front matter
 Framework & underlying models
 Vaccination
 Dropping
 End matter

 00
 000000
 000000
 000000
 000
 000

Asides before numerical results

• Use the notation $D \sim {\sf Hea}(k, lpha)$ to mean

$$\mathbb{P}(D=d) \propto egin{cases} k^{-lpha} & ext{ for } d=0,1,\ldots,k, \ d^{-lpha} & ext{ for } d=k+1,k+2,\ldots. \end{cases}$$

 We compare the performance of old and new (best and worst) acquaintance vaccination to vaccinating individuals chosen UAR and to the 'CM-optimal' allocation of vaccinating individuals of highest degree. Front matter 00 Framework & underlying models

Vaccination

Dropping 000000 End matter 000

Acquaintance vaccination performance 1a

Framework & underlying models

Vaccination

Dropping 000000 End matter 000

Acquaintance vaccination performance 1b

Front matte	Framework & unde	rlying models	Vaccinatio	n 000●0000	Dropping 000000	End matter 000
			<i>c</i>	•		

Acquaintance vaccination performance 2a

Acquaintance vaccination performance with CM population. Parameters $D \sim \text{Hea}(12, 3.4)$, $I \sim \exp(10)$ and $\lambda = 1$.

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
00		○○○○○○○○○●○○○	000000	000
Λ · ·	• • • •			

Acquaintance vaccination performance 2b

Front matter	Framework & underlying models	Vaccination	Dropping 000000	End matter 000
k Acque	intonco vaccination	in CM nonula	tion	

k-Acquaintance vaccination in CM population

Sample individuals UAR w.p. p_S ; sampled individuals name each of their neighbours w.p. p_N .

- Rather than vaccinating individuals named at least once, vaccinate those named at least k times.
- With higher k this more strongly targets individuals of high degree. (But requires more effort to achieve a given coverage.)
- Branching process of infected individuals ($\rightarrow R_v$, p_{maj} , z).
- Now need an 8 type process, typing by whether or not an individual is
 - Named by its infector,
 - Vaccinated,
 - Sampled.
- Numerical results for k = 2.

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
		000000000000000000000000000000000000000		

k-Acquaintance vaccination performance 1

Framework & underlying models

Vaccination

Dropping 000000 End matter 000

k-Acquaintance vaccination performance 2

Dropping edges in the CM-SIR model

- CM network model, SIR progression as before.
- Infectives
 - infect each neighbour at rate λ ,
 - recover at rate γ .
- Also let each neighbour of an infective drop their connection to the infective at rate ω .

00	0000000		00000	000
Analysis	of model with drop	ning		

- Britton *et al.*⁷ (i) treat an SEIR model and (ii) allow 'rewiring'.
- Britton *et al.* analyse the early stages (threshold parameters and early exponential growth rate).
 - Branching process approximation.
 - Pair approximation (deterministic large population 'limit' ODEs for the number of singletons, pairs, triples, ... of individuals in the various disease states): system of 7/10 ODEs.
- They find that the threshold parameters disagree, but simulation results are more in agreement with the BP predictions.
- The simpler model is what we⁸ have investigated further (as a first step).

⁷Britton *et al.* (2016).

⁸Ball, Britton, Leung & Sirl (in prep.).

	dograa roprocontat	00000000000000000000000000000000000000	00000	000
Ellective	degree representati	On		

- Construct the network and the epidemic at the same time.
- Give individuals their (random number of) stubs; an individual's effective degree is the number of remaining free stubs it has.
- Let the epidemic evolve, pairing up stubs only when an infection or *informing* event occurs.
- This leads to a CTMC

 $W(t) = ((X_i(t))_{i=0}^{\infty}, (Y_i(t))_{i=0}^{\infty}, Z_E(t)) \in \mathbb{Z}_+^{\infty} \times \mathbb{Z}_+^{\infty} \times \mathbb{Z}_+.$

• Here X_i is the number of susceptible individuals of effective degree *i*, Y_i similarly for infectives and Z_E is the number of unpaired stubs emanating from removed individuals.

⁹Ball and Neal (2008).

00	0000000	0000000000000	000000	000		
Effective degree analysis						

• Theory of density dependent population processes¹⁰ gives a functional LLN and CLT, e.g.

$$\lim_{N\to\infty}\frac{W^{(N)}(t)}{N}\to w(t),$$

where w(t) is the solution of an ODE system and \rightarrow can be made precise.

- DD theory applies to finite systems, so must impose a maximum degree (or apply the optimism principle of applied mathematics).
- Infinite system reduces to a single driving ODE; which when $\omega = 0$ is that of Volz/Miller¹¹.

¹⁰Ethier & Kurtz (1986, Chapter 11) ¹¹Miller, Slim & Volz (2012).

Front matter	Framework &	und

ork & underlying models

Vaccination 0000000000000 Dropping

End matter 000

(Expected relative) final size

- Letting $t \to \infty$ in the ODE(s) gives the asymptotic relative final size of the epidemic started with a positive fraction of infected individuals (i.e. a major outbreak).
- This yields implicit equations for z.
- (The same one we saw earlier when $\omega = 0.$)
- Final size in this model with dropping

= final size without dropping but recovery rate $\gamma + \omega$.

Front matter	Framework & underlying models	Vaccination 0000000000000	Dropping ○○○○○●	End matter 000
CLT for fir	nal size			

• Kurtz's theory of DD processes also gives a CLT for the final size of the epidemic:

$$\sqrt{N}\left(\frac{Z^{(N)}}{N}-z\right).$$

(A little more work is is required to make the DD theory apply.)

- This will suggest a CLT for the size of the giant component in a CM random graph. Previously
 - Derived heuristically for a very special case¹².
 - Asymptotic variance known rigorously¹³.

¹²Ball & Neal (2008).

¹³Ball & Neal (2016).

Summany	l, futuro			
Front matter	Framework & underlying models	Vaccination	Dropping	End matter
	0000000	00000000000000	000000	●○○

- BP approximations to characterise final size behaviour of SIR epidemic models on random graph population structures.
- Vaccination.
 - Acquaintance vaccination.
 - Including household structure.
 - Further targeting of highly connected individuals.
- Dropping
 - A simple dynamic network.
 - Incorporate 'rewiring'.
- Finding individuals whose vaccination will have the most impact (by some measure).
- Minimising R_v is not always equivalent to minimising z.
- Variations / refinements.
- Performance in other models of network structure.
- A version/variation suitable for implementation?

Front matter	Framework & underlying models	Vaccination	Dropping	End matter
00		00000000000000	000000	○●●
References	5			

- Andersson (1997). Math. Biosci. 140:79-84.
- Ball, Mollison & Scalia-Tomba (1997). Ann. Appl. Probab. 7:46-89.
- Ball & Neal (2008). Math. Biosci. 212:69-87.
- Ball & Neal (2016). Ann. Appl. Probab. To appear.
- Ball & Sirl (2013). J. Appl. Probab. 50:1147-1168.
- Ball, Sirl & Trapman (2009). Adv. Appl. Probab. 41:765-796.
- Ball, Sirl & Trapman (2010). *Math. Biosci.* 224:53–73. (Erratum *ibid.* 225:81.)

Britton, Juher & Saldaña (2016). *Bull. Math. Biol.* 78:2427–2454. Diekmann, de Jong & Metz (1998). *J. Appl. Probab.* 35:448–462. Durrett (2007). Random Graph Dynamics.

Front matter	Framework & underlying models	Vaccination 00000000000000	Dropping 000000	End matter ○●●	
References II					

- Ethier & Kurtz (1986). Markov Processes: Characterization and Convergence.
- Keeling & Ross (2015). *Epidemics* 11:7–13.
- Kenah & Robins (2007). Phys. Rev. E 76:036113.
- Miller, Slim & Volz (2012). J. R. Soc. Interface 9:890-906.
- Neal (2003). J. Appl. Probab. 40:779-782.
- Newman (2002). Phys. Rev. E 66:016128.