When are scale-free graphs ultra-small?

Júlia Komjáthy
joint with Remco van der Hofstad
Eindhoven University of Technology
Probability Seminar in Bristol,
Nov 4, 2016

Complex networks 1 .

IP level internet network, 2003
from the OPTE project, opte.org

Complex networks 2.

A Tweet-network

from Sentinel Visualiser, fmsasg.com/SocialNetworkAnalysis/

Degree plots

Empirical degree distributions are fitted to:

Degree plots

Empirical degree distributions are fitted to:
(Pure) power laws
For $\tau \geq 2$,

$$
\mathbf{P}(D=x)=\frac{C}{x^{\tau}}
$$

Degree plots

Empirical degree distributions are fitted to:
(Pure) power laws
For $\tau \geq 2$,

$$
\mathbf{P}(D=x)=\frac{C}{x^{\tau}}
$$

(Exponentially) truncated power laws
For $\tau \geq 2$,

$$
\mathbf{P}\left(D_{n}=x\right)=\frac{C}{x^{\tau}} \cdot \mathrm{e}^{-x / \xi_{n}}
$$

Degree plots

Empirical degree distributions are fitted to:
(Pure) power laws
For $\tau \geq 2$,

$$
\mathbf{P}(D=x)=\frac{C}{x^{\tau}}
$$

(Exponentially) truncated power laws
For $\tau \geq 2$,

$$
\mathbf{P}\left(D_{n}=x\right)=\frac{C}{x^{\tau}} \cdot \mathrm{e}^{-x / \xi_{n}}
$$

Truncation parameter ξ_{n} might depend on the size of the network.

Degree plots

Empirical degree distributions are fitted to:
(Pure) power laws
For $\tau \geq 2$,

$$
\mathbf{P}(D=x)=\frac{C}{x^{\tau}}
$$

(Exponentially) truncated power laws
For $\tau \geq 2$,

$$
\mathbf{P}\left(D_{n}=x\right)=\frac{C}{x^{\tau}} \cdot \mathrm{e}^{-x / \xi_{n}}
$$

Truncation parameter ξ_{n} might depend on the size of the network. For $x \ll \xi_{n}$: a power law, for $x \approx \xi_{n}$: exponential decay.

Pure power laws

Figure 5: The outdegree plots: $\log -\log$ plot of frequency f_{d} versus the outdegree d.

Figure : Growing IP level internet network: a pure power law

Pure and truncated power laws

Figure : Ecological networks: pure and truncated power laws, exponential decay

Examples

Examples

Pure power laws

- internet backbone network,
- metabolic reaction networks,
- telephone call graphs,
- ecological networks.

Examples

Pure power laws

- internet backbone network,
- metabolic reaction networks,
- telephone call graphs,
- ecological networks.

Truncated power laws

- movie actor network,
- air transportation networks,
- co-authorship networks,
- brain functional networks,
- ecological networks.

Scale free vs ultra small

Def: scale free
A network is called scale free when $\tau \in(2,3)$.

Scale free vs ultra small

Def: scale free
A network is called scale free when $\tau \in(2,3)$.

Def: small world
A network is called a small world when

$$
\mathrm{d}_{G}(u, v)=O(\log n),
$$

$\mathrm{d}_{G}(u, v)$ is the graph distance between two uniformly chosen vertices. (called typical distance).

Scale free vs ultra small

Def: scale free
A network is called scale free when $\tau \in(2,3)$.

Def: small world
A network is called a small world when

$$
\mathrm{d}_{G}(u, v)=O(\log n),
$$

$\mathrm{d}_{G}(u, v)$ is the graph distance between two uniformly chosen vertices. (called typical distance).

Def: ultrasmall world
A network is called an ultrasmall world when

$$
\mathrm{d}_{G}(u, v)=O(\log \log n) .
$$

Scale free $\stackrel{?}{=}$ ultra small

Typical distances vs τ
How does the exponent relate to the (ultra)small world property?

Scale free $\stackrel{?}{=}$ ultra small

Typical distances vs τ
How does the exponent relate to the (ultra)small world property?

Typical distances when $\tau>3$
For pure power laws, $\tau>3$ implies small world.
e.g. Newman, Strogatz, Watts. Phys Rev E, 2000, e.g. Bhamidi, van der Hofstad, Hooghiemstra. AoP 2016+.

Scale free $\stackrel{?}{=}$ ultra small

Typical distances vs τ How does the exponent relate to the (ultra)small world property?

Typical distances when $\tau>3$
For pure power laws, $\tau>3$ implies small world.
e.g. Newman, Strogatz, Watts. Phys Rev E, 2000,
e.g. Bhamidi, van der Hofstad, Hooghiemstra. AoP 2016+.

Typical distances when $\tau \in(2,3)$
For pure power laws, $\tau \in(2,3)$ implies ultrasmall world.
e.g. Cohen, Havlin. Phys Rev Lett 2003,
e.g. van der Hofstad, Hooghiemstra, Znamenski. EJP 2007.

Truncated scale free $\stackrel{?}{=}$ ultrasmall world

Goal of this talk

How does the truncation point ξ_{n} affect the ultrasmall world property?

Building a network: the configuration model

[Uniform matching simulator by Robert Fitzner] [Configuration model simulator by Robert Fitzner]

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Building a network: the configuration model

Degree assumptions

Empirical degree distribution:

$$
F_{n}(x):=\frac{1}{n} \sum_{v=1}^{n} \mathbb{1}_{\left\{d_{v} \leq x\right\}} .
$$

We want to capture all possible degree distributions 'under one hat':

Degree assumptions

Empirical degree distribution:

$$
F_{n}(x):=\frac{1}{n} \sum_{v=1}^{n} \mathbb{1}_{\left\{d_{v} \leq x\right\}} .
$$

We want to capture all possible degree distributions 'under one hat':
Truncated power law assumption (TrPL)

Degree assumptions

Empirical degree distribution:

$$
F_{n}(x):=\frac{1}{n} \sum_{v=1}^{n} \mathbb{1}_{\left\{d_{v} \leq x\right\}} .
$$

We want to capture all possible degree distributions 'under one hat':
Truncated power law assumption (TrPL)
For $\tau \in(2,3)$, and some $\beta_{n}>0$,

$$
\begin{equation*}
1-F_{n}(x)=\frac{L_{n}(x)}{x^{\tau}} \tag{Tr}
\end{equation*}
$$

holds for all $x \leq n^{\beta_{n}(1-\varepsilon)}$ for all $\varepsilon>0 . L_{n}(x)$ is a slowly varying function.

Degree assumptions

Empirical degree distribution:

$$
F_{n}(x):=\frac{1}{n} \sum_{v=1}^{n} \mathbb{1}_{\left\{d_{v} \leq x\right\}} .
$$

We want to capture all possible degree distributions 'under one hat':
Truncated power law assumption (TrPL)
For $\tau \in(2,3)$, and some $\beta_{n}>0$,

$$
\begin{equation*}
1-F_{n}(x)=\frac{L_{n}(x)}{x^{\tau}} \tag{Tr}
\end{equation*}
$$

holds for all $x \leq n^{\beta_{n}(1-\varepsilon)}$ for all $\varepsilon>0 . L_{n}(x)$ is a slowly varying function. $1-F_{n}\left(n^{\beta_{n}(1+\varepsilon)}\right)=0$ for all $\varepsilon>0$.

Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then (TrPL) is satisfied with $\beta_{n} \equiv 1 /(\tau-1)$, whp.

Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then $(\operatorname{Tr} P L)$ is satisfied with $\beta_{n} \equiv 1 /(\tau-1)$, whp.
Due to: $\max _{v \leq n} D_{v} \approx n^{1 /(\tau-1)}$

Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then $(\operatorname{Tr} P L)$ is satisfied with $\beta_{n} \equiv 1 /(\tau-1)$, whp.
Due to: $\max _{v \leq n} D_{v} \approx n^{1 /(\tau-1)}$

Exponential truncation

The empirical degree distribution is of the form

$$
F_{n}(x)=1-\frac{C}{x^{\tau-1}} \mathrm{e}^{-x / n^{\beta_{n}}}
$$

then $(\operatorname{Tr} P L)$ is satisfied.

Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then (TrPL) is satisfied with $\beta_{n} \equiv 1 /(\tau-1)$, whp.
Due to: $\max _{v \leq n} D_{v} \approx n^{1 /(\tau-1)}$

Exponential truncation

The empirical degree distribution is of the form

$$
F_{n}(x)=1-\frac{C}{x^{\tau-1}} \mathrm{e}^{-x / n^{\beta_{n}}}
$$

then $(\operatorname{Tr} P L)$ is satisfied.
Ex: $d_{v}:=\min \left\{D_{v}, G_{v}\right\}, D_{v} \sim D$ i.i.d. power law, $G_{v} \sim \operatorname{Geo}\left(\mathrm{e}^{-n^{\beta}}\right)$ i.i.d.

Examples 2.

Hard truncation

The empirical degree distribution is of the form

$$
F_{n}(x)=1-\frac{C}{x^{\tau-1}} \mathbb{1}_{x \leq n^{\beta} n},
$$

then (TrPL) is satisfied.

Examples 2.

Hard truncation

The empirical degree distribution is of the form

$$
F_{n}(x)=1-\frac{C}{x^{\tau-1}} \mathbb{1}_{x \leq n^{\beta} n},
$$

then ($\operatorname{Tr} P L$) is satisfied.
Ex: $d_{v}:=\min \left\{D_{v}, n^{\beta_{n}}\right\}, D_{v} \sim D$ i.i.d. power law

The answer: truncated scale free \neq ultrasmall

Heuristic theorem (v/d Hofstad, K)

Consider the configuration model with empirical degree distribution satisfying ($\operatorname{Tr} P L$) with $\beta_{n} \gg \frac{1}{(\log n)^{1-\delta}}$ for some $\delta \in(0,1)$. Then

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}
$$

is a tight random variable.

The answer: truncated scale free \neq ultrasmall

Heuristic theorem (v/d Hofstad, K)

Consider the configuration model with empirical degree distribution satisfying ($\operatorname{Tr} P L$) with $\beta_{n} \gg \frac{1}{(\log n)^{1-\delta}}$ for some $\delta \in(0,1)$. Then

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}
$$

is a tight random variable.
The tight random variable shows \log - \log periodicity.

The answer: truncated scale free \neq ultrasmall

Heuristic theorem (v/d Hofstad, K)

Consider the configuration model with empirical degree distribution satisfying $(\operatorname{Tr} P L)$ with $\beta_{n} \gg \frac{1}{(\log n)^{1-\delta}}$ for some $\delta \in(0,1)$. Then

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}
$$

is a tight random variable.
The tight random variable shows \log - \log periodicity. We also determine its limit along subsequences.

Discussion

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}=\text { tight }
$$

Discussion

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}=\text { tight }
$$

Threshold for dominance

Discussion

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}=\text { tight }
$$

Threshold for dominance

- When $\beta_{n}=o(1 / \log \log n)$, the leading term is $O\left(1 / \beta_{n}\right)$.

Discussion

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}=\text { tight }
$$

Threshold for dominance

- When $\beta_{n}=o(1 / \log \log n)$, the leading term is $O\left(1 / \beta_{n}\right)$.
- When $\beta_{n} \log \log n \nrightarrow 0$, then the leading term is $O(\log \log n)$.

The assumption that $\beta_{n} \gg \frac{1}{(\log n)^{1-\delta}}$ is needed for this.

Discussion

$$
\mathrm{d}_{G}(u, v)-\frac{2 \log \log \left(n^{\beta_{n}}\right)}{|\log (\tau-2)|}-\frac{1}{\beta_{n}(3-\tau)}=\text { tight }
$$

Threshold for dominance

- When $\beta_{n}=o(1 / \log \log n)$, the leading term is $O\left(1 / \beta_{n}\right)$.
- When $\beta_{n} \log \log n \nrightarrow 0$, then the leading term is $O(\log \log n)$. The assumption that $\beta_{n} \gg \frac{1}{(\log n)^{1-\delta}}$ is needed for this.
- When $\beta_{n}=1 /(\log n)^{1-\delta}$, then $\mathrm{d}_{G}(u, v)=O\left((\log n)^{1-\delta}\right)$, Truncation allows to interpolate between small and ultrasmall.

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}\left(1+o_{\mathrm{P}}(1)\right)}
$$

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }=\frac{\log n}{\log n^{(3-\tau) \beta_{n}}}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}(1+o \mathrm{p}(1))}
$$

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}\left(1+o_{\mathrm{P}}(1)\right)}
$$

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}\left(1+o_{P}(1)\right)} .
$$

Is this formula valid for $\tau \in(2,3)$?

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}\left(1+o_{P}(1)\right)} .
$$

Is this formula valid for $\tau \in(2,3)$?

- Cohen, Havlin '03: no, distances grow as $\log \log n$ at least

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}\left(1+o_{P}(1)\right)} .
$$

Is this formula valid for $\tau \in(2,3)$?

- Cohen, Havlin '03: no, distances grow as $\log \log n$ at least
- Fronczak, Fronczak, Hołyst '04: yes, $\beta_{n} \equiv \beta$ yields bounded distances

Discussion

Since Newman, Strogatz, Watts '00, it was believed that (at least for $\tau>3$)

$$
\mathrm{d}_{\mathrm{G}}(u, v)=\frac{\log n}{\log \nu_{n}}+\text { tight }=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

where $\nu_{n}=\frac{1}{\mathrm{E}\left[D_{n}\right]} \sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{n}$ is related to the empirical second moment of the degrees.

$$
\nu_{n}=n^{(3-\tau) \beta_{n}\left(1+o_{P}(1)\right)} .
$$

Is this formula valid for $\tau \in(2,3)$?

- Cohen, Havlin '03: no, distances grow as $\log \log n$ at least
- Fronczak, Fronczak, Hołyst '04: yes, $\beta_{n} \equiv \beta$ yields bounded distances
- Dorogovtsev, Mendes, Samukhin '03: no, there is also a term $\frac{2 \log \log \left(\xi_{n}\right)}{|\log (\tau-2)|}$, with ξ_{n} the point of truncation.

Proof idea

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them!

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} .
$$

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} .
$$

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdot \cdots \cdot \frac{1}{H_{n}-2 z-1}
$$

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}}
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}}
$$

The number of ways to choose these half-edges via fixed vertices

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}}
$$

The number of ways to choose these half-edges via fixed vertices $v_{1}=\pi_{0}, \pi_{1}, \ldots, \pi_{z-1}, \quad \pi_{z}=v_{2}$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}}
$$

The number of ways to choose these half-edges via fixed vertices $v_{1}=\pi_{0}, \pi_{1}, \ldots, \pi_{z-1}, \quad \pi_{z}=v_{2}$

$$
d_{v_{1}} .
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}}
$$

The number of ways to choose these half-edges via fixed vertices $v_{1}=\pi_{0}, \pi_{1}, \ldots, \pi_{z-1}, \quad \pi_{z}=v_{2}$

$$
d_{v_{1}} . \quad d_{\pi_{1}}\left(d_{\pi_{1}}-1\right)
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{2}}
$$

The number of ways to choose these half-edges via fixed vertices $v_{1}=\pi_{0}, \pi_{1}, \ldots, \pi_{z-1}, \pi_{z}=v_{2}$

$$
d_{v_{1}} \cdot \quad d_{\pi_{1}}\left(d_{\pi_{1}}-1\right) \cdots \cdot \quad d_{\pi_{2-1}}\left(d_{\pi_{z-1}}-1\right) .
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{2}}
$$

The number of ways to choose these half-edges via fixed vertices $v_{1}=\pi_{0}, \pi_{1}, \ldots, \pi_{z-1}, \pi_{z}=v_{2}$

$$
d_{v_{1}} \cdot \quad d_{\pi_{1}}\left(d_{\pi_{1}}-1\right) \cdot \cdots \cdot \quad d_{\pi_{z-1}}\left(d_{\pi_{z-1}}-1\right) \cdot d_{v_{2}}
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{2}}
$$

The number of ways to choose these half-edges via arbitrary vertices $v_{1}=\pi_{0}, \star, \ldots, \star, \pi_{z}=v_{2}$

$$
d_{v_{1}} \cdot \quad d_{\pi_{1}}\left(d_{\pi_{1}}-1\right) \cdot \cdots . \quad d_{\pi_{z-1}}\left(d_{\pi_{z-1}}-1\right) \cdot d_{v_{2}}
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$.
Let's count the expected paths of length z between them! The probability of matching z pairs of half-edges:

$$
\frac{1}{H_{n}-1} \cdot \frac{1}{H_{n}-3} \cdots \cdots \frac{1}{H_{n}-2 z-1}=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}}
$$

The number of ways to choose these half-edges via arbitrary vertices $v_{1}=\pi_{0}, \star, \ldots, \star, \pi_{z}=v_{2}$

$$
d_{v_{1}} \cdot \sum_{\pi_{1}=1}^{n} d_{\pi_{1}}\left(d_{\pi_{1}}-1\right) \cdot \cdots \cdot \sum_{\pi_{z-1}=1}^{n} d_{\pi_{z-1}}\left(d_{\pi_{z-1}}-1\right) \cdot d_{v_{2}}
$$

Distance between hubs

$$
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=
$$

Distance between hubs

$$
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=(1+o(1)) \frac{1}{\left(\mathbf{E}\left[D_{n}\right] n\right)^{z}} .
$$

Distance between hubs

$\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=(1+o(1)) \frac{1}{\left(E\left[D_{n}\right] n\right)^{2}} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} d_{v}\left(d_{v}-1\right)\right)^{z-1} d_{v_{2}}$

Distance between hubs

$\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=(1+o(1)) \frac{1}{\left(E\left[D_{n}\right] n\right)^{2}} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} d_{v}\left(d_{v}-1\right)\right)^{z-1} d_{v_{2}}$

Distance between hubs

$$
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=(1+o(1)) \frac{1}{\mathbf{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{E\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}}
$$

Distance between hubs

$$
\begin{aligned}
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathbf{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathbf{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C .
\end{aligned}
$$

Distance between hubs

$$
\begin{aligned}
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathbf{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathbf{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} .
\end{aligned}
$$

Distance between hubs

$$
\begin{aligned}
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{E\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathbf{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} .
\end{aligned}
$$

Distance between hubs

$$
\begin{aligned}
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{E\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathbf{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

Distance between hubs

$$
\begin{aligned}
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathbf{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathbf{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}} \\
& =C \cdot \frac{1}{n} \cdot n^{x_{1} \beta_{n}} \cdot n^{x_{2} \beta_{n}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

Distance between hubs

$$
\begin{aligned}
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathbf{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathbf{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}} \\
& =C \cdot \frac{1}{n} \cdot n^{x_{1} \beta_{n}} \cdot n^{x_{2} \beta_{n}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

What is the smallest z so that this does not tend to 0 ?

Distance between hubs

$$
\begin{aligned}
\mathrm{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathrm{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathrm{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}} \\
& =C \cdot \frac{1}{n} \cdot n^{x_{1} \beta_{n}} \cdot n^{x_{2} \beta_{n}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

What is the smallest z so that this does not tend to 0 ?

$$
x_{1} \beta_{n}+x_{2} \beta_{n}+(z-1)(3-\tau) \beta_{n}>1
$$

Distance between hubs

$$
\begin{aligned}
\mathrm{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathrm{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathrm{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}} \\
& =C \cdot \frac{1}{n} \cdot n^{x_{1} \beta_{n}} \cdot n^{x_{2} \beta_{n}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

What is the smallest z so that this does not tend to 0 ?

$$
x_{1}+x_{2}+(z-1)(3-\tau)>1 / \beta_{n}
$$

Distance between hubs

$$
\begin{aligned}
\mathrm{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathrm{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathrm{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}} \\
& =C \cdot \frac{1}{n} \cdot n^{x_{1} \beta_{n}} \cdot n^{x_{2} \beta_{n}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

What is the smallest z so that this does not tend to 0 ?

$$
(z-1)(3-\tau)>1 / \beta_{n}-x_{1}-x_{2}
$$

Distance between hubs

$$
\begin{aligned}
\mathrm{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right] & =(1+o(1)) \frac{1}{\mathrm{E}\left[D_{n}\right] n} \cdot d_{v_{1}} \cdot\left(\sum_{v=1}^{n} \frac{d_{v}\left(d_{v}-1\right)}{\mathrm{E}\left[D_{n}\right] n}\right)^{z-1} d_{v_{2}} \\
& =C \cdot \frac{1}{n} \cdot d_{v_{1}} \cdot d_{v_{2}} \cdot n^{(z-1)(3-\tau) \beta_{n}} \\
& =C \cdot \frac{1}{n} \cdot n^{x_{1} \beta_{n}} \cdot n^{x_{2} \beta_{n}} \cdot n^{(z-1)(3-\tau) \beta_{n}}
\end{aligned}
$$

What is the smallest z so that this does not tend to 0 ?

$$
\begin{gathered}
z-1>\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau} . \\
z_{\min }:=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1 .
\end{gathered}
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$. Then whp

$$
\mathrm{d}_{G}\left(v_{1}, v_{2}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1=z_{\min },
$$

Distance between hubs

Distance between hubs

Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$. Then whp

$$
\mathrm{d}_{G}\left(v_{1}, v_{2}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1=z_{\min },
$$

and

$$
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}\left(z_{\min }\right)\right]=n^{f u p}(1+o p(1)),
$$

where $f^{u p}=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil-\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}$ is an 'upper fractional part'.

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$. Then whp

$$
\mathrm{d}_{G}\left(v_{1}, v_{2}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1=z_{\min },
$$

and

$$
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}\left(z_{\min }\right)\right]=n^{f u p}(1+o p(1)),
$$

where $f^{u p}=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil-\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}$ is an 'upper fractional part'.

Proof

$\mathbf{P}\left(\exists\right.$ a path shorter than $\left.z_{\text {min }}\right)$

Distance between hubs

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$. Then whp

$$
\mathrm{d}_{G}\left(v_{1}, v_{2}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1=z_{\min },
$$

and

$$
\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}\left(z_{\min }\right)\right]=n^{f u p}(1+o p(1)),
$$

where $f^{u p}=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil-\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}$ is an 'upper fractional part'.

Proof

$\mathbf{P}\left(\exists\right.$ a path shorter than $\left.z_{\text {min }}\right) \leq \mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}\left(z_{\text {min }}-1\right)\right] \rightarrow 0$.

The other direction

$\operatorname{Var}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]^{2}$.

The other direction

$\operatorname{Var}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]^{2} \cdot n^{(\tau-2) \beta_{n}}$.

The other direction

$\operatorname{Var}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=\mathbf{E}\left[\# \operatorname{Path}_{\mathrm{V}_{1}, v_{2}}(z)\right]^{2} \cdot n^{(\tau-2) \beta_{n}} \cdot \max \left\{\frac{1}{d_{v_{1}}}, \frac{1}{d_{v_{2}}}\right\}$

The other direction

$\operatorname{Var}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]^{2} \cdot n^{(\tau-2) \beta_{n}} \cdot \max \left\{\frac{1}{n^{x_{1} \beta_{n}}}, \frac{1}{n^{x_{2} \beta_{n}}}\right\}$

The other direction

$\operatorname{Var}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]^{2} \cdot n^{(\tau-2) \beta_{n}} \cdot n^{-\beta_{n} \min \left\{x_{1}, x_{2}\right\}}$

The other direction

$$
\operatorname{Var}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]=\mathbf{E}\left[\# \operatorname{Path}_{v_{1}, v_{2}}(z)\right]^{2} \cdot n^{(\tau-2) \beta_{n}} \cdot n^{-\beta_{n} \min \left\{x_{1}, x_{2}\right\}}
$$

This tends to zero if and only if $\min \left\{x_{1}, x_{2}\right\}>\tau-2$.
From here, Chebyshev's inequality finishes the proof.

Comment

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$. Then whp

$$
\mathrm{d}_{G}\left(v_{1}, v_{2}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

Comment

Distance between hubs
Let v_{1}, v_{2} be two vertices with degrees $n^{x_{1} \beta_{n}}, n^{x_{2} \beta_{n}}$, for $x_{1}, x_{2}>\tau-2$. Then whp

$$
\mathrm{d}_{G}\left(v_{1}, v_{2}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil+1=\frac{1}{\beta_{n}(3-\tau)}+\text { tight }
$$

so the formula from physics is valid only between hubs!

How to get to the hubs?

When constructing the shortest path, how long does it take to get to the hubs?

Neighborhood growth

Neighborhood growth

Growth rate heuristic

Ball $_{k_{n}}^{(u)}$, Ball ${ }_{k_{n}}^{(v)}$ grow double-exponentially as long as their size is 'reasonably small'.

Neighborhood growth

Growth rate heuristic

Ball $_{k_{n}}^{(u)}$, Ball ${ }_{k_{n}}^{(v)}$ grow double-exponentially as long as their size is 'reasonably small'. I.e., \exists random variables $\left(Y_{k}^{(u)}, Y_{k}^{(v)}\right) \xrightarrow{d}\left(Y^{(u)}, Y^{(v)}\right)$ s.t., $q=u, v$

$$
\operatorname{BaIl}_{k_{n}}^{(q)}=\exp \left\{Y_{k_{n}}^{(q)}\left(\frac{1}{\tau-2}\right)^{k_{n}}\right\}
$$

Neighborhood growth

Growth rate heuristic

Ball $_{k_{n}}^{(u)}$, Ball ${ }_{k_{n}}^{(v)}$ grow double-exponentially as long as their size is 'reasonably small'. I.e., \exists random variables $\left(Y_{k}^{(u)}, Y_{k}^{(v)}\right) \xrightarrow{d}\left(Y^{(u)}, Y^{(v)}\right)$ s.t., $q=u, v$

$$
\operatorname{BaIl}_{k_{n}}^{(q)}=\exp \left\{Y_{k_{n}}^{(q)}\left(\frac{1}{\tau-2}\right)^{k_{n}}\right\}
$$

Stopping time

Let $t\left(n^{\varrho}\right):=\sup \left\{k_{n}: \max \left\{\right.\right.$ Ball $_{k_{n}}^{(u)}$, Ball $\left.\left._{k_{n}}^{(v)}\right\} \leq n^{\varrho}\right\}$, and for $q=u, v$:

$$
Y_{n}^{(q)}:=(\tau-2)^{t\left(n^{\varrho}\right)} \log \mathrm{Ball}_{t\left(n^{\varrho}\right)}^{(q)},
$$

then $\left(Y_{n}^{(u)}, Y_{n}^{(v)}\right) \xrightarrow{d}\left(Y^{(u)}, Y^{(v)}\right)$.

$$
\exp \left\{Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}\right\}=n^{\varrho}
$$

$$
\begin{gathered}
\exp \left\{Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}\right\}=n^{\varrho} \\
Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}=\log n^{\varrho}
\end{gathered}
$$

$$
\begin{gathered}
\exp \left\{Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}\right\}=n^{\varrho} \\
Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}=\log n^{\varrho} \\
\left(\frac{1}{\tau-2}\right)^{k}=(\varrho \log n) / Y_{n}^{(q)}
\end{gathered}
$$

$$
\begin{gathered}
\exp \left\{Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}\right\}=n^{\varrho} \\
Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}=\log n^{\varrho} \\
\left(\frac{1}{\tau-2}\right)^{k}=(\varrho \log n) / Y_{n}^{(q)} \\
k=\frac{\log \log n-\log \left(\varrho / Y_{n}^{(q)}\right)}{|\log (\tau-2)|}
\end{gathered}
$$

$$
\begin{gathered}
\exp \left\{Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}\right\}=n^{\varrho} \\
Y_{n}^{(q)}\left(\frac{1}{\tau-2}\right)^{k}=\log n^{\varrho} \\
\left(\frac{1}{\tau-2}\right)^{k}=(\varrho \log n) / Y_{n}^{(q)} \\
t\left(n^{\varrho}\right)=\left\lfloor\frac{\log \log n-\log \left(\varrho / Y_{n}^{(q)}\right)}{|\log (\tau-2)|}\right\rfloor
\end{gathered}
$$

Shell structure

Step 1

One can find a vertex of degree $\approx \operatorname{Ball}_{t\left(n^{e}\right)}^{(q)}$ in the balls.

Shell structure

Step 1

One can find a vertex of degree $\approx \operatorname{Ball}_{t\left(n^{a}\right)}^{(q)}$ in the balls.

Step 2

Structure the high-degree part of the graph in layers of roughly equal degree (on a log log scale).

Shell structure

Step 1

One can find a vertex of degree \approx Ball $_{t\left(n^{\Omega}\right)}^{(q)}$ in the balls.

Step 2

Structure the high-degree part of the graph in layers of roughly equal degree (on a log log scale).

Shell i :

$$
\Gamma_{i}=\left\{v: d_{v} \geq n^{\varrho(\tau-2)^{-i}}(1+o(1))\right\}
$$

Like shells of an onion, to get to the core of the graph.

The nested shells

The nested shells

$N(A):=$ neighbors of A
Layer connecting lemma
$\Gamma_{i} \subset N\left(\Gamma_{i+1}\right) \quad$ whp

The nested shells

$N(A):=$ neighbors of A
Layer connecting lemma
$\Gamma_{i} \subset N\left(\Gamma_{i+1}\right) \quad$ whp

The nested shells

$N(A):=$ neighbors of A
Layer connecting lemma
$\Gamma_{i} \subset N\left(\Gamma_{i+1}\right) \quad$ whp

The nested shells

$N(A):=$ neighbors of A
Layer connecting lemma
$\Gamma_{i} \subset N\left(\Gamma_{i+1}\right) \quad$ whp

The nested shells

$N(A):=$ neighbors of A
Layer connecting lemma
$\Gamma_{i} \subset N\left(\Gamma_{i+1}\right) \quad$ whp

2nd step: establishing the path to the hubs

2nd step: establishing the path to the hubs

2nd step: establishing the path to the hubs

2nd step: establishing the path to the hubs

2nd step: establishing the path to the hubs

2nd step: establishing the path to the hubs

2nd step: establishing the path to the hubs

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$
\# shells to reach degree $>n^{\beta_{n}(\tau-2)}$?

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$
$\#$ shells to reach degree $>n^{\beta_{n}(\tau-2)}$?

$$
n^{\varrho /(\tau-2)^{i}}>n^{\beta_{n}(\tau-2)}
$$

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$
\# shells to reach degree $>n^{\beta_{n}(\tau-2)}$?

$$
\varrho /(\tau-2)^{i}>\beta_{n}(\tau-2)
$$

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$
\# shells to reach degree $>n^{\beta_{n}(\tau-2)}$?

$$
1 /(\tau-2)^{i+1}>\beta_{n} / \varrho
$$

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$
\# shells to reach degree $>n^{\beta_{n}(\tau-2)}$?

$$
i+1>\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|}
$$

Time it takes to reach a hub

- Maximal degree in the graph: $M=n^{\beta_{n}}$
- (lowest degree in Γ_{i}) $\approx n^{\varrho /(\tau-2)^{i}}$
$\#$ shells to reach degree $>n^{\beta_{n}(\tau-2)}$?

$$
\begin{gathered}
i+1>\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|} \\
i^{\star}=\left\lceil\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|}-1\right\rceil .
\end{gathered}
$$

Time to reach the top

- Number of shells needed is

$$
i^{\star}=\left\lceil\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|}-1\right\rceil
$$

Time to reach the top

- Number of shells needed is

$$
i^{\star}=\left\lceil\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|}-1\right\rceil
$$

- Double-exponential growth phase

$$
t\left(n^{\varrho}\right)=\left\lfloor\frac{\log \log n-\log \left(\varrho / Y_{t\left(n^{\varrho}\right)}^{(q)}\right)}{|\log (\tau-2)|}\right\rfloor
$$

Time to reach the top

- Number of shells needed is

$$
i^{\star}=\left\lceil\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|}-1\right\rceil
$$

- Double-exponential growth phase

$$
t\left(n^{\varrho}\right)=\left\lfloor\frac{\log \log n-\log \left(\varrho / Y_{t\left(n^{\varrho}\right)}^{(q)}\right)}{|\log (\tau-2)|}\right\rfloor
$$

- Add them together: the time to reach a hub is

$$
T_{h u b}^{(q)}:=\frac{\log \log \left(n^{\beta_{n}}\right)-\log \left(Y_{n}^{(q)}\right)}{|\log (\tau-2)|}+e_{n}^{(q)},
$$

with $e_{n}^{(q)} \in(-2,0)$.

Time to reach the top

- Number of shells needed is

$$
i^{\star}=\left\lceil\frac{\log \left(\beta_{n} / \varrho\right)}{|\log (\tau-2)|}-1\right\rceil
$$

- Double-exponential growth phase

$$
t\left(n^{\varrho}\right)=\left\lfloor\frac{\log \log n-\log \left(\varrho / Y_{t\left(n^{\varrho}\right)}^{(q)}\right)}{|\log (\tau-2)|}\right\rfloor
$$

- Add them together: the time to reach a hub is

$$
T_{h u b}^{(q)}:=\frac{\log \log \left(n^{\beta_{n}}\right)-\log \left(Y_{n}^{(q)}\right)}{|\log (\tau-2)|}+e_{n}^{(q)},
$$

with $e_{n}^{(q)} \in(-2,0)$.

Observation

$T_{\text {hub }}^{(q)}$ does not depend on $\rho!$! ©

Total distance

$$
\mathrm{d}_{G}(u, v)=T_{h u b}^{(u)}+T_{h u b}^{(v)}+\mathrm{d}_{G}\left(\operatorname{hub}_{u}, \text { hub }_{v}\right)
$$

Total distance

$$
\mathrm{d}_{G}(u, v)=T_{h u b}^{(u)}+T_{h u b}^{(v)}+\mathrm{d}_{G}\left(\operatorname{hub}_{u}, \text { hub }_{v}\right)
$$

Total distance

$$
\begin{gathered}
\mathrm{d}_{G}(u, v)=T_{\text {hub }}^{(u)}+T_{\text {hub }}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right) \\
T_{\text {hub }}^{(q)}:=\frac{\log \log \left(n^{\beta_{n}}\right)-\log \left(Y_{n}^{(q)}\right)}{|\log (\tau-2)|}+e_{n}^{(q)}
\end{gathered}
$$

Total distance

$$
\begin{gathered}
\mathrm{d}_{G}(u, v)=T_{h u b}^{(u)}+T_{h u b}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right) \\
T_{h u b}^{(q)}:=\frac{\log \log \left(n^{\beta_{n}}\right)-\log \left(Y_{n}^{(q)}\right)}{|\log (\tau-2)|}+e_{n}^{(q)} \\
\mathrm{d}_{G}(u, v)=\frac{2 \log \log n^{\beta_{n}}-\log \left(Y_{n}^{(u)} Y_{n}^{(v)}\right)}{|\log (\tau-2)|}+e_{n}^{(u)}+e_{n}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)
\end{gathered}
$$

Total distance

$$
\mathrm{d}_{G}(u, v)=T_{\text {hub }}^{(u)}+T_{\text {hub }}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)
$$

$$
\mathrm{d}_{G}(u, v)=\frac{2 \log \log n^{\beta_{n}}-\log \left(Y_{n}^{(u)} Y_{n}^{(v)}\right)}{|\log (\tau-2)|}+e_{n}^{(u)}+e_{n}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)
$$

Total distance

$$
\begin{gathered}
\mathrm{d}_{G}(u, v)=T_{\text {hub }}^{(u)}+T_{\text {hub }}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right) \\
\mathrm{d}_{G}(u, v)=\frac{2 \log \log n^{\beta_{n}}-\log \left(Y_{n}^{(u)} Y_{n}^{(v)}\right)}{|\log (\tau-2)|}+e_{n}^{(u)}+e_{n}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right) \\
\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil, \quad x_{1}, x_{2} \in(\tau-2,1)
\end{gathered}
$$

Total distance

$$
\mathrm{d}_{G}(u, v)=T_{\text {hub }}^{(u)}+T_{\text {hub }}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)
$$

$$
\begin{aligned}
\mathrm{d}_{G}(u, v) & =\frac{2 \log \log n^{\beta_{n}}-\log \left(Y_{n}^{(u)} Y_{n}^{(v)}\right)}{|\log (\tau-2)|}+e_{n}^{(u)}+e_{n}^{(v)} \\
& +\frac{1}{\beta_{n}(3-\tau)}+e_{n}^{\text {hub }},
\end{aligned}
$$

with $e_{n}^{\text {hub }} \in\left(\frac{-2}{3-\tau}-1, \frac{-2(\tau-2)}{3-\tau}\right)$.

$$
\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)=\left\lceil\frac{1 / \beta_{n}-x_{1}-x_{2}}{3-\tau}\right\rceil, \quad x_{1}, x_{2} \in(\tau-2,1)
$$

Total distance

$$
\mathrm{d}_{G}(u, v)=T_{h u b}^{(u)}+T_{h u b}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)
$$

$$
\begin{aligned}
\mathrm{d}_{G}(u, v) & =\frac{2 \log \log n^{\beta_{n}}-\log \left(Y_{n}^{(u)} Y_{n}^{(v)}\right)}{|\log (\tau-2)|} \\
& +\frac{1}{\beta_{n}(3-\tau)}
\end{aligned}
$$

+ tight.

Total distance

$$
\mathrm{d}_{G}(u, v)=T_{h u b}^{(u)}+T_{h u b}^{(v)}+\mathrm{d}_{G}\left(\text { hub }_{u}, \text { hub }_{v}\right)
$$

$$
\begin{aligned}
\mathrm{d}_{G}(u, v) & =\frac{2 \log \log n^{\beta_{n}}-\log \left(Y_{n}^{(u)} Y_{n}^{(v)}\right)}{|\log (\tau-2)|} \\
& +\frac{1}{\beta_{n}(3-\tau)}
\end{aligned}
$$

+ tight.
$\odot \odot \odot$

Thank you for the attention!

