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Complex networks 1.

IP level internet network, 2003

Jilia Komjathy 2 /34



Complex networks 2.

Ao A Tweet-network

s/

from Sentinel Visualiser, fmsasg.com/SocialNetworkAnal
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Degree plots

Empirical degree distributions are fitted to:

(Pure) power laws
For 7 > 2, c

P(D=x)=—

(D=x)=— |
(Exponentially) truncated power laws
For 7 > 2,
P(D, = x) = <. e~ X/én
n XT |

Truncation parameter £, might depend on the size of the network.
For x < &,: a power law,
for x &~ £,: exponential decay.
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Pure power laws
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Figure 5: The outdegree plots: Log-log plot of frequency fy versus the outdegree d.
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Figure : Growing IP level internet network: a pure power law
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Pure and truncated power laws
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Figure : Ecological networks: pure and truncated power laws, exponential decay
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Examples

Pure power laws
@ internet backbone network,
@ metabolic reaction networks,
o telephone call graphs,

@ ecological networks.

Truncated power laws

@ movie actor network,
air transportation networks,
co-authorship networks,

brain functional networks,

ecological networks.
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Scale free vs ultra small

A network is called scale free when T € (2, 3).

Def: scale free J
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Scale free vs ultra small

Def: scale free

A network is called scale free when 7 € (2, 3).

Def: small world
A network is called a small world when

dg(u,v) = O(logn),

dg(u, v) is the graph distance between two uniformly chosen vertices.

(called typical distance).

Def: ultrasmall world

A network is called an ultrasmall world when

dg(u,v) = O(loglog n).

Jalia Komjathy

8 /34



?
Scale free = ultra small

Typical distances vs 7
How does the exponent relate to the (ultra)small world property? J
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For pure power laws, 7 > 3 implies small world.
e.g. Newman, Strogatz, Watts. Phys Rev E, 2000,
e.g. Bhamidi, van der Hofstad, Hooghiemstra. AoP 2016+.
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Typical distances vs 7

How does the exponent relate to the (ultra)small world property?

Typical distances when 7 > 3

For pure power laws, 7 > 3 implies small world.
e.g. Newman, Strogatz, Watts. Phys Rev E, 2000,
e.g. Bhamidi, van der Hofstad, Hooghiemstra. AoP 2016+.

Typical distances when 7 € (2,3)

For pure power laws, 7 € (2,3) implies ultrasmall world.
e.g. Cohen, Havlin. Phys Rev Lett 2003,
e.g. van der Hofstad, Hooghiemstra, Znamenski. EJP 2007.
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?
Truncated scale free = ultrasmall world

How does the truncation point &, affect the ultrasmall world property?

Goal of this talk J
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Building a network: the configuration model

[Uniform matching simulator by Robert Fitzner]
[Configuration model simulator by Robert Fitzner]
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http://www.networkpages.nl/CostumMedia/Animations/RandomGraph/CM/CmCreation.html
http://www.networkpages.nl/CostumMedia/Animations/RandomGraph/CM/PowerLaw.html

Building a network: the configuration model
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Building a network: the configuration model
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Degree assumptions

Empirical degree distribution:

1 n
Fn(X) = ; Z n{dvgx}'
v=1

We want to capture all possible degree distributions ‘under one hat’:
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Degree assumptions

Empirical degree distribution:

1 n
Fn(X) = ; Z n{dvgx}'
v=1
We want to capture all possible degree distributions ‘under one hat’:

Truncated power law assumption ( TrPL)

For 7 € (2,3), and some 3, > 0,

Ln(x)

XT

1— Fp(x) = , (TrPL)

holds for all x < n(1=¢) for all ¢ > 0. L,(x) is a slowly varying function.
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Degree assumptions

Empirical degree distribution:

1 n
Fn(X) = ; Z n{dvgx}'
v=1
We want to capture all possible degree distributions ‘under one hat’:

Truncated power law assumption ( TrPL)
For 7 € (2,3), and some 3, > 0,

Ln(x)

XT

1—Fp(x) = , (TrPL)

holds for all x < n(1=¢) for all ¢ > 0. L,(x) is a slowly varying function.
1 — Fp(n®(+€)) = 0 for all ¢ > 0.
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Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then (TrPL) is satisfied with
Bn=1/(1 — 1), whp.
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Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then (TrPL) is satisfied with

Bn=1/(1 — 1), whp.

Due to: max,<, D, ~ nt/(7=1)

Exponential truncation
The empirical degree distribution is of the form

¢ e—x/nB”
x7—1

Fa(x)=1-—

9
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Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then (TrPL) is satisfied with

Bn = 1/(7' — 1), whp.
Due to: max,<, D, ~ n'/(7=1)

Exponential truncation
The empirical degree distribution is of the form

—X/nﬁ”
XT—le 2

Fa(x)=1-—

then (TrPL) is satisfied.

Ex: d, := min{D,, G,}, D, ~ D i.i.d. power law, G, ~ Goo(o’”g) ii.d.
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Examples 2.

Hard truncation
The empirical degree distribution is of the form

C
Fn(X) = 1 —_ _X’T—l ]]‘XSHB’”

then (TrPL) is satisfied.
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Examples 2.

Hard truncation
The empirical degree distribution is of the form

C
Fn(X) = 1 —_ _X’T—l ]]‘XSI‘IB"7

then (TrPL) is satisfied.
Ex: d, := min{D,, n‘ﬁ“}, D, ~ D i.i.d. power law
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The answer: truncated scale free # ultrasmall

Heuristic theorem (v/d Hofstad, K)
Consider the configuration model with empirical degree distribution

satisfying ( TrPL) with 5, > W for some § € (0,1). Then

2log log(n®n) B 1
[log(T—=2)|  Bn(3—7)

de(u,v) —

is a tight random variable.
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The answer: truncated scale free # ultrasmall

Heuristic theorem (v/d Hofstad, K)

Consider the configuration model with empirical degree distribution
satisfying ( TrPL) with 5, > W for some § € (0,1). Then
2log log(n®n) B 1

[log(t =2)]  Ba(3—7)

de(u,v) —

is a tight random variable.

The tight random variable shows log-log periodicity.
We also determine its limit along subsequences.
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Discussion
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Discussion

2 log log(n®") 1 e
" Tlog(r ~2)]  Ba3-7) E™

dg(u,v)

Threshold for dominance

e When 8, = o(1/ loglog n), the leading term is O(1//,).
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Discussion

2log]l Bn 1
cglog(n™) _ = tight

) g~ 2 ~ B3 7)

Threshold for dominance
e When S, = o(1/ loglog n), the leading term is O(1/[,).

e When f,loglogn + 0, then the leading term is O(log log n).

The assumption that 3, > W is needed for this.

o When 8, = 1/(log )}, then dg(u,v) = O((log n)}~?),
Truncation allows to interpolate between small and ultrasmall.
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Discussion

Since Newman, Strogatz, Watts ‘00, it was believed that
(at least for 7 > 3)

|
dg(u,v) = :ggyn + tight
n

1 n dy(d—1
where v, = E[D.] >ov=1 %

of the degrees.

is related to the empirical second moment
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Discussion

Since Newman, Strogatz, Watts ‘00, it was believed that
(at least for 7 > 3)

log n
I i —
0og Vp log n(8—7)8n

+ tight

1 n dy(dv—1
where v, = E[D,] > v=1 ( n )

of the degrees.

is related to the empirical second moment
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Discussion

Since Newman, Strogatz, Watts ‘00, it was believed that
(at least for 7 > 3)

log n . 1 .
d = tight = ——— + tight
a(u,v) og v, T BNt = 5 +tight,

d,(d,—1)
n

where v, = ﬁ > ooy
of the degrees.

is related to the empirical second moment

Vp = n(377)/8n(1+op(1)) .

Is this formula valid for 7 € (2, 3)?

@ Cohen, Havlin ‘03: no, distances grow as loglog n at least
@ Fronczak, Fronczak, Hotyst ‘04: yes,

Bn = B yields bounded distances
@ Dorogovtsev, Mendes, Samukhin ‘03: no,

there is also a term %:g_%”‘), with &, the point of truncation.
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Distance between hubs

Distance between hubs

Let vq, vo be two vertices with degrees nxlﬁ", w2 for X1,Xp > T — 2. J

Let’s count the expected paths of length z between them!
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Distance between hubs

Let vi, vo be two vertices with degrees B p2Bn for x1,x0 > T — 2.

Let’s count the expected paths of length z between them!
The probability of matching z pairs of half-edges:
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Distance between hubs

Distance between hubs

Let v1, vo be two vertices with degrees nXlB", 2B for X1, X > T — 2.

Let's count the expected paths of length z between them!
The probability of matching z pairs of half-edges:
1 1 1 1
. . —— | 1))
Ho—1 H,—3 =2 —1 AW g ae

The number of ways to choose these half-edges via arbitrary vertices
VI =T, Xy...,k%, Tz = V2

dv1 : dﬂl(dm - 1) e dﬂ'z—l(dﬂ'z—l - 1) : de
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Distance between hubs

Let v1, vo be two vertices with degrees nXlB", 2B for X1, X > T — 2.

Let's count the expected paths of length z between them!
The probability of matching z pairs of half-edges:
1 1 1 1
. . —— | 1))
Ho—1 H,—3 =2 —1 AW g ae

The number of ways to choose these half-edges via arbitrary vertices
VI =T, Xy...,k%, Tz = V2

dV1 ’ Z dm(dm - 1) T Z dﬂz—1(d7rz_1 - 1) ’ dV2

m1=1 Ty1=1
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Distance between hubs

E[#Path,, \,(2)] = (1 + "(1))E[gn]n

_c.1.
n
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Distance between hubs

E[#Pathy, v, (2)] = (1 + o(1)) r5 7~

z—1
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Distance between hubs

E[#Pathy, v, (2)] = (1 + o(1)) r5 7~

z—1
d,(dy, — 1)
E[D] (Z E[D,]n > %

—c.loa, d, n=DE-78
n
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Distance between hubs

z-1
E#Pathu, o (2)] = (1+ o) grp s (Z T ) d.
=C-=-d,-d,- n(z=1(3—7)Bx

—=C.

S|l

. nXIBn . nXQﬁn . n(zfl)(3f7')ﬁn
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Distance between hubs

E[#Path,, ,,(z)] = (1 + 0(1))E[D In (Z : é?Dn}”l > i

—c. g, d, - n=DEE
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Distance between hubs

E[j#Path,o(2)] = (1+ o(1)) grpr - (Z ST ) d,

= C . dV1 . dv2 . n(zfl)(377—)ﬁn

S|k |+

=C. . nxlﬁn . nX2,Bn . n(Z—l)(3—7’)ﬁn
What is the smallest z so that this does not tend to 07

x1Bn+x0n+(z—1)3—7),>1
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E[#Pathw,vz(z)] =(1+0o(1 ))E[D In (Z E[Dn]n > dv,
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Distance between hubs

E[#Pathw,vz(z)] =(1+0o(1 ))E[D In (Z E[Dn]n > dv,

= C . dV1 . dv2 . n(zfl)(377—)ﬁn

S|k |+

=C. . nxlﬁn . nX2,Bn . n(Z—l)(3—7’)ﬁn

What is the smallest z so that this does not tend to 07

(z=1)B—-7)>1/8p—x1— x2
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Distance between hubs

E[#Pathy, 1,(2)] = (1 + o(1 ))E[D In @ (Z E?Dn]”l ) »

= C . . dV1 . dv2 . n(zf )(377)5n

S|k |+

_c. 1 pase . peB . (z-1)3-7)6n

What is the smallest z so that this does not tend to 07

1/Bn—x1 — X2
3—71 '

Zmin = ’71/’8"3__)(;_ X2-‘ + 1.

z—1>
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Distance between hubs

Distance between hubs

Let v1, v» be two vertices with degrees n1%», p2fn for xi,xp > 7 — 2.
Then whp

LB s
dg(vi, v2) = {%-‘ + 1 = Zmin,

Jilia Komjathy 22 /34




Distance between hubs

Distance between hubs

Let v1, vo be two vertices with degrees nxlﬁ", 2B for X1,Xp > T — 2.
Then whp

1 — X1 — X
dg(vi, v2) = {/6’73_172} + 1= Zmin,

and
E[#Path,, ,,(zmin)] = n " (t+or)]

where fUP = [1/6"3__)2_)(2-‘ - 1/6"3__);1_)(2 is an ‘upper fractional part’.
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dg(vi, v2) = {/6’73_172} + 1= Zmin,

and
E[#Path,, ,,(zmin)] = n " (t+or)]

where fUP = [1/6"3__);1_)(2-‘ - l/ﬁ"3__);1_x2 is an ‘upper fractional part’.
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Distance between hubs

Distance between hubs

Let v1, vo be two vertices with degrees nxlﬁ", 2B for X1,Xp > T — 2.
Then whp

1 — X —
dg(vi, v2) = {WW + 1= Zmin,
and
E[#Pathy, v, (zmin)] = n""(Foe(),

where fUP = [1/6"3__)2_)(2-‘ - 1/6"3__);1_)(2 is an ‘upper fractional part’.

Proof

P(3 a path shorter than zy,n) < E[#Path,, ,,(Zmin — 1)] — 0.

Jilia Komjathy 22 /34



The other direction

Var[#Path,, ., (2)] = E[q@EPa,th,,hvg(z)]2 .
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The other direction

Var[#Path,, ,,(z)] = E[#Path,, ,,(z)] - n("=2)5 .
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The other direction

1 1
Var[#Path,, ,,(z)] = E[#Path,, ,,(2)]> - n(7=2)5 . max{d—, =
Vi Vo
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The other direction

1 1

Var#Pathy, v (2)] = E#Pathy ()] - a7 - max{ o 20}
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The other direction

Var[#Path,, \,(z)] = E[q‘;EPath\,h‘Q(z)]2 - n(7=2)Bn . p=Bnmin{xi,x}
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The other direction

Var[#Path,, ,,(z)] = E[#Path,, ,,(2)]? - n(7=2n . p=Bamin{a e}

This tends to zero if and only if min{xy,x} > 7 —2.

From here, Chebyshev's inequality finishes the proof.

Jilia Komjathy 23 /34



Comment

Distance between hubs

Let vi, v» be two vertices with degrees n1% 2P for xq,xp > 7 — 2.
Then whp

1/Bn_X1_X2

l1=— tight
3—71 -‘+ Bn(3—7)+lg ’

dg(vi,v2) = [
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Comment

Distance between hubs

Let vi, v» be two vertices with degrees n1% 2P for xq,xp > 7 — 2.

Then whp
L + tight
=y - | ,
Bn(3 =)

so the formula from physics is valid only between hubs!

Jilia Komjathy
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How to get to the hubs?

When constructing the shortest path, how long does it take to get to the J
hubs?

Jilia Komjéthy 25/ 34



Neighborhood growth
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Neighborhood growth

Growth rate heuristic

Ballg(:’), Ballg(:) grow double-exponentially as long as their size is ‘reasonably
small’.
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Neighborhood growth

Growth rate heuristic

Ballg(:’), Ballg(:) grow double-exponentially as long as their size is ‘reasonably

small’. l.e., 3 random variables (Y,Eu), Y,EV)) LN (Y@ y)st.,qg=u,v

1 \*
Ball{?) = exp { V(¥ (2) .
n n T J—

Stopping time
Let t(n?) := sup{k, : max{BaIIE{':), Balli‘;)} < n?}, and for g = u, v:

YD = (r — 2)t") |og Balll?)

t(ne)’

then (Y, v\ -% (y(@), y().
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1 k
exp Y,Sq) <7_2> =n?
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1\
exp{Y,Sq) <T_2> } = n?

k
Y39 <1 2> — log n®
—
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k
exp { Y,Sq) <1> } =n?
T—2
k
Y,Sq) <Ti2> = log n?

(- )k — (olog n)/ ¥

T—2
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k
()}
T —

k
Yrsq) <Ti2> = |Og n®

( i2>k = (ologn)/ Y

T

o — log log n — log(o/ Yrsq))
|log(T — 2)|
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k
]
T2
k
v <T1_2> ot

( i2>k = (ologn)/ Y

T

o Ioglogn—log(g/yrsq))
’-‘(”){ [log(7 - 2)| J
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Shell structure

One can find a vertex of degree ~ Ballg'gzg) in the balls.

Step 1 }
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Shell structure

Step 1

One can find a vertex of degree =~ Ball'? in the balls.

t(ne)

Step 2
Structure the high-degree part of the graph in layers of roughly equal
degree (on a log log scale).
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Shell structure

Step 1

One can find a vertex of degree =~ Ball'? in the balls.

t(ne)

Step 2

Structure the high-degree part of the graph in layers of roughly equal
degree (on a log log scale).

Shell
ri={v:d, > n9(772)_i(1 +0o(1))}

Like shells of an onion, to get to the core of the graph.

Jilia Komjathy 28 / 34






The nested shells

N(A):=neighbors of A

Layer connecting lemma

I € N(Fit1) whp
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The nested shells

N(A):=neighbors of A

Layer connecting IemmaJ

r,‘ C N(r,'+]_) Whp
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2nd step: establishing the path to the hubs
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Time it takes to reach a hub

o Maximal degree in the graph: M = n®
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Time it takes to reach a hub

o Maximal degree in the graph: M = n®»
o (lowest degree in ;) ~ n¢/(7=2)

# shells to reach degree > nf(7=2)7?
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Time it takes to reach a hub

@ Maximal degree in the graph: M = nBn
o (lowest degree in ;) ~ no/(r=2)’

# shells to reach degree > nf(7=2)7? J

0/(T = 2) > Ba(T —2)
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Time it takes to reach a hub

@ Maximal degree in the graph: M = nBn
o (lowest degree in ;) ~ no/(r=2)’

# shells to reach degree > nf(7=2)7?

1/(r—2)" > Ba/o
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Time it takes to reach a hub

o Maximal degree in the graph: M = n?

o (lowest degree in I;) ~ n/(T=2)

# shells to reach degree > nf(7=2)? J

log(8n/0)

T
| log(7 —2)|
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Time it takes to reach a hub

o Maximal degree in the graph: M = n®

o (lowest degree in I';) ~ no/(r=2)’

# shells to reach degree > n(7=2)? J

log(Bn/0)
| log(T — 2)|

e R

i+1>
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Time to reach the top
@ Number of shells needed is

e T
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Time to reach the top

@ Number of shells needed is

"= gty

@ Double-exponential growth phase

(n?) — {Iog log n — log(o/ Yt((?@))‘

| log(7 — 2)|
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Time to reach the top

@ Number of shells needed is
| log( — 2)|
@ Double-exponential growth phase
log log n — Iog(g/Y(q) )
|log(7 — 2)|

o Add them together: the time to reach a hub is

t(n?) =

log log(n®n) — |og(Vrgq)) AC)
| log(7 — 2)| Y

T -

with e{? € € (—2,0).
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Time to reach the top

@ Number of shells needed is
| log( — 2)|
@ Double-exponential growth phase
log log n — Iog(g/Y(q) )
|log(7 — 2)|

o Add them together: the time to reach a hub is

t(n?) =

log log(n®n) — |og(Vqu)) AC)
| log(7 — 2)| Y

-
with e{? € € (—2,0).

Observation

T,(,Zl)) does not depend on p! ®

Jilia Komjathy
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Total distance

de(u,v) = T\ + 7 4 d¢(huby, hub,)
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Total distance

de(u,v) = T) + Tt 4+ dg(huby, hub,)

) _ loglog(n™) — log(Y4?)
hub - | log( — 2)|

+ el
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Total distance

dg(u,v) = T + T8 + dg(huby, hub,)

log log(n®") — log( V") (q)
T(‘?) = + enq
hub llog(7 — 2)]

_ 2loglog nPn — log( v YrSV)) (u) | (v)
dg(u,v) = og(r — 2) +en’ +en’ +dg(huby, huby)
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Total distance

de(u,v) = T\ + T8 4 d¢(huby, hub,)

’ | log(T — 2)| ’
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Total distance
de(u,v) = T + 78 4 dg(hub,, hub,)

_ 2loglog nPr — log( () Y,Sv))

— (u) (v) h h
dg(u, v) Tog(r = 2)] +en’ +en’ +dg(huby, hub,)

1/Bn —x1 — x2

dg(huby, hub,) = [ 3
-7

—‘, X1,X2€(T—2,1)
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Total distance

de(u,v) = T + 78 4 d¢(huby, hub, )

2log log n®" — log( stu) Y,SV)) (v) . (v)

d —
c(u,v) log(r — 2)| +en’ +en
1 hub.
+ e,
Bn( _7')
with et ¢ < 2T -1, %)

/b =21 —x

dg(huby, hub,) = { 3
-7

-‘, X1,X2€(7'—2,].)
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Total distance

de(u,v) = T\ + T8 4 dg(huby, hub,)

de(u,v) = 2 log log n" — log( Y,g”) Y,SV))
e [log(r —2)]

1
4+
/Bn(3 - 7-)
+ tight.
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Total distance

de(u,v) = T\ + T8 4 dg(huby, hub,)

de(u,v) = 2 log log n" — log( Y,g”) Y,SV))
e [log(r —2)]

1
4+
/Bn(3 - 7-)
+ tight.

Glele)
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Jilia Komjathy

Thank you for the attention!
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