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Complex networks 1.

IP level internet network, 2003
from the OPTE project, opte.org
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Complex networks 2.

A Tweet-network
from Sentinel Visualiser, fmsasg.com/SocialNetworkAnalysis/
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Degree plots

Empirical degree distributions are fitted to:

(Pure) power laws

For τ ≥ 2,

P(D = x) =
C

xτ

(Exponentially) truncated power laws

For τ ≥ 2,

P(Dn = x) =
C

xτ
· e−x/ξn

Truncation parameter ξn might depend on the size of the network.
For x � ξn: a power law,
for x ≈ ξn: exponential decay.
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Pure power laws

Figure : Growing IP level internet network: a pure power law

from Faloutsos et al, 1999
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Pure and truncated power laws

Figure : Ecological networks: pure and truncated power laws, exponential decay

from Montoya, Pimm, Solé, Nature 2006
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Examples

Pure power laws

internet backbone network,

metabolic reaction networks,

telephone call graphs,

ecological networks.

Truncated power laws

movie actor network,

air transportation networks,

co-authorship networks,

brain functional networks,

ecological networks.
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Scale free vs ultra small

Def: scale free

A network is called scale free when τ ∈ (2, 3).

Def: small world

A network is called a small world when

dG (u, v) = O(log n),

dG (u, v) is the graph distance between two uniformly chosen vertices.
(called typical distance).

Def: ultrasmall world

A network is called an ultrasmall world when

dG (u, v) = O(log log n).
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Júlia Komjáthy 8 / 34



Scale free vs ultra small

Def: scale free

A network is called scale free when τ ∈ (2, 3).

Def: small world

A network is called a small world when

dG (u, v) = O(log n),

dG (u, v) is the graph distance between two uniformly chosen vertices.
(called typical distance).

Def: ultrasmall world

A network is called an ultrasmall world when

dG (u, v) = O(log log n).

Júlia Komjáthy 8 / 34



Scale free
?
= ultra small

Typical distances vs τ

How does the exponent relate to the (ultra)small world property?

Typical distances when τ > 3

For pure power laws, τ > 3 implies small world.
e.g. Newman, Strogatz, Watts. Phys Rev E, 2000,
e.g. Bhamidi, van der Hofstad, Hooghiemstra. AoP 2016+.

Typical distances when τ ∈ (2, 3)

For pure power laws, τ ∈ (2, 3) implies ultrasmall world.
e.g. Cohen, Havlin. Phys Rev Lett 2003,
e.g. van der Hofstad, Hooghiemstra, Znamenski. EJP 2007.
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Truncated scale free
?
= ultrasmall world

Goal of this talk

How does the truncation point ξn affect the ultrasmall world property?
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Building a network: the configuration model

[Uniform matching simulator by Robert Fitzner]
[Configuration model simulator by Robert Fitzner]
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http://www.networkpages.nl/CostumMedia/Animations/RandomGraph/CM/CmCreation.html
http://www.networkpages.nl/CostumMedia/Animations/RandomGraph/CM/PowerLaw.html
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Júlia Komjáthy 12 / 34



Building a network: the configuration model

v1

v2

v3

v4

v5

v8

v7

v6

Júlia Komjáthy 12 / 34



Building a network: the configuration model

v1

v2

v3

v4

v5

v8

v7

v6
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Degree assumptions

Empirical degree distribution:

Fn(x) :=
1

n

n∑
v=1

11{dv≤x}.

We want to capture all possible degree distributions ‘under one hat’:

Truncated power law assumption (TrPL)

For τ ∈ (2, 3), and some βn > 0,

1− Fn(x) =
Ln(x)

xτ
, (TrPL)

holds for all x ≤ nβn(1−ε) for all ε > 0. Ln(x) is a slowly varying function.
1− Fn(nβn(1+ε)) = 0 for all ε > 0.
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Examples

i.i.d. degrees

Degrees are i.i.d. from a pure power law, then (TrPL) is satisfied with
βn ≡ 1/(τ − 1), whp.

Due to: maxv≤n Dv ≈ n1/(τ−1)

Exponential truncation

The empirical degree distribution is of the form

Fn(x) = 1− C

xτ−1
e−x/n

βn
,

then (TrPL) is satisfied.

Ex: dv := min{Dv ,Gv}, Dv ∼ D i.i.d. power law, Gv ∼ Geo(e−n
β

) i.i.d.
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Examples 2.

Hard truncation

The empirical degree distribution is of the form

Fn(x) = 1− C

xτ−1
11x≤nβn ,

then (TrPL) is satisfied.

Ex: dv := min{Dv , n
βn}, Dv ∼ D i.i.d. power law
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The answer: truncated scale free 6= ultrasmall

Heuristic theorem (v/d Hofstad, K)

Consider the configuration model with empirical degree distribution
satisfying (TrPL) with βn � 1

(log n)1−δ for some δ ∈ (0, 1). Then

dG (u, v)− 2 log log(nβn)

| log(τ − 2)|
− 1

βn(3− τ)

is a tight random variable.

The tight random variable shows log-log periodicity.
We also determine its limit along subsequences.
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Discussion

dG (u, v)− 2 log log(nβn)

| log(τ − 2)|
− 1

βn(3− τ)
= tight

Threshold for dominance

When βn = o(1/ log log n), the leading term is O(1/βn).

When βn log log n 6→ 0, then the leading term is O(log log n).
The assumption that βn � 1

(log n)1−δ is needed for this.

When βn = 1/(log n)1−δ, then dG (u, v) = O((log n)1−δ),
Truncation allows to interpolate between small and ultrasmall.

Júlia Komjáthy 17 / 34



Discussion

dG (u, v)− 2 log log(nβn)

| log(τ − 2)|
− 1

βn(3− τ)
= tight

Threshold for dominance

When βn = o(1/ log log n), the leading term is O(1/βn).

When βn log log n 6→ 0, then the leading term is O(log log n).
The assumption that βn � 1

(log n)1−δ is needed for this.

When βn = 1/(log n)1−δ, then dG (u, v) = O((log n)1−δ),
Truncation allows to interpolate between small and ultrasmall.
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Discussion

Since Newman, Strogatz, Watts ‘00, it was believed that
(at least for τ > 3)

dG(u, v) =
log n

log νn
+ tight

where νn = 1
E[Dn]

∑n
v=1

dv (dv−1)
n is related to the empirical second moment

of the degrees.

νn = n(3−τ)βn(1+oP(1)).

Is this formula valid for τ ∈ (2, 3)?

Cohen, Havlin ‘03: no, distances grow as log log n at least

Fronczak, Fronczak, Ho lyst ‘04: yes,
βn ≡ β yields bounded distances

Dorogovtsev, Mendes, Samukhin ‘03: no,
there is also a term 2 log log(ξn)

| log(τ−2)| , with ξn the point of truncation.
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Distance between hubs

Distance between hubs

Let v1, v2 be two vertices with degrees nx1βn , nx2βn , for x1, x2 > τ − 2.

Let’s count the expected paths of length z between them!

The probability of matching z pairs of half-edges:

1

Hn − 1
· 1

Hn − 3
· · · · · 1

Hn − 2z − 1
= (1 + o(1))

1

(E[Dn]n)z

The number of ways to choose these half-edges via vertices
v1 = π0, πz = v2

dv1 ·

n∑
π1=1

dπ1(dπ1 − 1) · · · · ·

n∑
πz−1=1

dπz−1(dπz−1 − 1) · dv2
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Júlia Komjáthy 20 / 34



Distance between hubs

Distance between hubs

Let v1, v2 be two vertices with degrees nx1βn , nx2βn , for x1, x2 > τ − 2.

Let’s count the expected paths of length z between them!
The probability of matching z pairs of half-edges:

1

Hn − 1
· 1

Hn − 3
· · · · · 1

Hn − 2z − 1
= (1 + o(1))

1

(E[Dn]n)z

The number of ways to choose these half-edges via fixed vertices
v1 = π0, π1, . . . , πz−1, πz = v2

dv1 ·

n∑
π1=1

dπ1(dπ1 − 1) · · · · ·

n∑
πz−1=1

dπz−1(dπz−1 − 1) ·

dv2
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Distance between hubs

E[#Pathv1,v2(z)] =

(1 + o(1))
1 · dv1 ·

(
n∑

v=1

)z−1

dv2

= C · 1

n
· dv1 · dv2 · n(z−1)(3−τ)βn

= C · 1

n
· nx1βn · nx2βn · n(z−1)(3−τ)βn

What is the smallest z so that this does not tend to 0?
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Distance between hubs

E[#Pathv1,v2(z)] = (1 + o(1))
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n
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z − 1 >
1/βn − x1 − x2

3− τ
.

zmin :=

⌈
1/βn − x1 − x2

3− τ

⌉
+ 1.
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Distance between hubs

Distance between hubs

Let v1, v2 be two vertices with degrees nx1βn , nx2βn , for x1, x2 > τ − 2.
Then whp

dG (v1, v2) =

⌈
1/βn − x1 − x2

3− τ

⌉
+ 1 = zmin,

and
E[#Pathv1,v2(zmin)] = nf

up(1+oP(1)),

where f up =
⌈

1/βn−x1−x2

3−τ

⌉
− 1/βn−x1−x2

3−τ is an ‘upper fractional part’.

Proof

P(∃ a path shorter than zmin)

≤ E[#Pathv1,v2(zmin − 1)]→ 0.
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The other direction

Var[#Pathv1,v2(z)] = E[#Pathv1,v2(z)]2 ·

n(τ−2)βn ·

This tends to zero if and only if min{x1, x2} > τ − 2.

From here, Chebyshev’s inequality finishes the proof.
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Júlia Komjáthy 23 / 34



The other direction

Var[#Pathv1,v2(z)] = E[#Pathv1,v2(z)]2 · n(τ−2)βn · max{ 1

dv1

,
1

dv2

}

This tends to zero if and only if min{x1, x2} > τ − 2.

From here, Chebyshev’s inequality finishes the proof.
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Comment

Distance between hubs

Let v1, v2 be two vertices with degrees nx1βn , nx2βn , for x1, x2 > τ − 2.
Then whp

dG (v1, v2) =

⌈
1/βn − x1 − x2

3− τ

⌉
+ 1 =

1

βn(3− τ)
+ tight,

so the formula from physics is valid only between hubs!
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How to get to the hubs?

When constructing the shortest path, how long does it take to get to the
hubs?
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Neighborhood growth

Growth rate heuristic

Ball
(u)
kn
,Ball

(v)
kn

grow double-exponentially as long as their size is ‘reasonably

small’.

I.e., ∃ random variables (Y
(u)
k ,Y

(v)
k )

d−→ (Y (u),Y (v)) s.t.,q = u, v

Ball
(q)
kn

= exp

{
Y

(q)
kn

(
1

τ − 2

)kn
}
.

Stopping time

Let t(n%) := sup{kn : max{Ball
(u)
kn
,Ball

(v)
kn
} ≤ n%}, and for q = u, v :

Y
(q)
n := (τ − 2)t(n%) log Ball

(q)
t(n%),

then (Y
(u)
n ,Y

(v)
n )

d−→ (Y (u),Y (v)).
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exp

{
Y

(q)
n

(
1

τ − 2

)k
}

= n%
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exp
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= n%

Y
(q)
n

(
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τ − 2

)k

= log n%
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(
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(
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log log n − log(%/Y
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exp

{
Y

(q)
n
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Y
(q)
n

(
1
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(
1
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= (% log n)/Y
(q)
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Shell structure

Step 1

One can find a vertex of degree ≈ Ball
(q)
t(n%) in the balls.

Step 2

Structure the high-degree part of the graph in layers of roughly equal
degree (on a log log scale).

Shell i :

Γi = {v : dv ≥ n%(τ−2)−i
(1 + o(1))}

Like shells of an onion, to get to the core of the graph.
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Júlia Komjáthy 28 / 34



The nested shells

j j

n1/(τ−1)

u0

u1

u2

u3

u4

u5

n
τ−2
τ−1
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The nested shells

N(A) :=neighbors of A

Layer connecting lemma

Γi ⊂ N(Γi+1) whp

j j

n1/(τ−1)

u0

u1

u2

u3

u4

u5

n
τ−2
τ−1
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2nd step: establishing the path to the hubs

j j

n1/(τ−1)

u0

u1

u2
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u5

n
τ−2
τ−1
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t = k?
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2nd step: establishing the path to the hubs

t = k? + 2
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2nd step: establishing the path to the hubs

t = k? + 3
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2nd step: establishing the path to the hubs

t = k? + 4

j j

n1/(τ−1)

u0

u1

u2

u3

u4

u5

n
τ−2
τ−1
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2nd step: establishing the path to the hubs

t = k? + 5

j j

n1/(τ−1)

u0

u1

u2

u3

u4

u5

n
τ−2
τ−1
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Time it takes to reach a hub

Maximal degree in the graph: M = nβn

(lowest degree in Γi ) ≈ n%/(τ−2)i

# shells to reach degree > nβn(τ−2)?
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Time to reach the top

Number of shells needed is

i? =

⌈
log(βn/%)

| log(τ − 2)|
− 1

⌉

Double-exponential growth phase

t(n%) =

 log log n − log(%/Y
(q)
t(n%))

| log(τ − 2)|


Add them together: the time to reach a hub is

T
(q)
hub :=

log log(nβn)− log(Y
(q)
n )

| log(τ − 2)|
+ e

(q)
n ,

with e
(q)
n ∈ (−2, 0).

Observation

T
(q)
hub does not depend on ρ! ,
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Júlia Komjáthy 33 / 34



Time to reach the top

Number of shells needed is

i? =

⌈
log(βn/%)

| log(τ − 2)|
− 1

⌉
Double-exponential growth phase

t(n%) =

 log log n − log(%/Y
(q)
t(n%))

| log(τ − 2)|


Add them together: the time to reach a hub is

T
(q)
hub :=

log log(nβn)− log(Y
(q)
n )

| log(τ − 2)|
+ e

(q)
n ,

with e
(q)
n ∈ (−2, 0).

Observation

T
(q)
hub does not depend on ρ! ,
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Total distance

dG (u, v) = T
(u)
hub + T

(v)
hub + dG (hubu, hubv )

,,,
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Thank you for the attention!
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