Swarms of Interacting Agents in Random Environments

Max-Olivier Hongler

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Bristol (UK) - 28th April 2017

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 1 / 54

Basic dynamics - stochastic interacting agents, (self-propagating particles)

Basic dynamics stylized by sets of coupled stochastic differential equations:

$$\dot{X}_{k}(t) = \underbrace{f_{k}\left[X_{k}(t)\right]}_{\text{self-propagation}} + \underbrace{\mathcal{J}_{k}\left[X_{k}(t), \vec{X}(t)\right]}_{\text{mutual interactions kernels}} + \underbrace{\xi_{k}(t)}_{\text{noise}}, \qquad X_{k}(t) \in \Omega,$$
$$\vec{X}(t) = (X_{1}(t), X_{2}(t), \cdots, X_{N}(t)) \qquad k = 1, 2, \cdots, N.$$

Mutual interactions kernels, (for example = "imitation" of neighbours behaviours).

How from mutual interactions emerges a global dynamical order ?

Exhibit some explicitly tractable models of such collective evolutions

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 2 / 54

Pioneering model (\sim 1975) Kuramoto's phase oscillators

Phase-Coupled Oscillators

Nil, partial and full phase-locking behavior in a network of phase-coupled oscillators with all-to-all connectivity. The natural frequencies of the oscillators are normally distributed SD= \pm 0.5Hz. The phase-locking behaviour is dictated by the strength of the global coupling constant K.

Copyright (C) Stewart Heitmann 2011. Use permitted under Creative Commons Attribution License.

Agents with scalar dynamics on the circle \mathbb{S}

M.-O. Hongler (EPFL)

Swarm dynamics

Kuramoto-Sakaguchi's (K-S) coupled phase oscillators - (1975)

$$d\theta_m(t) = \omega_m \, dt \quad + \quad \underbrace{\frac{K}{N} \left[\sum_{j \neq m} \sin\left[\theta_j(t) - \theta_m(t)\right] \right]}_{j \neq m} dt \quad + \sqrt{S} \underbrace{\frac{dW_{m,t}}{indep. WGN}}_{indep. WGN} \begin{cases} \theta_m \in \Omega := [0, 2\pi[, 0, 0]] \\ m = 1, 2, \cdots, N. \end{cases}$$

vanishes when $\theta_i \equiv \theta_m, \forall j \Rightarrow$ synchronizing effect

$$(m-1,2, ..., n)$$

$$\sigma(t)e^{i\Phi(t)} := \frac{1}{N} \sum_{m=1}^{N} e^{i\theta_m(t)}, \qquad \sigma(t) := \text{ order parameter} = \begin{cases} 1, & \text{full synchronization,} \\ 0, & \text{pure randomness.} \end{cases}$$

homog.

and $N \rightarrow \infty \Rightarrow$ mean-field, Fokker-Planck Eq. \Rightarrow phase transition diagram

Sketch of the K-S' s derivation

1

• Order parameter $\sigma(t)$: $\sigma(t)e^{i\Phi(t)} := \frac{1}{N}\sum_{m=1}^{N} e^{i\theta_m(t)}$

 $d\theta_m(t) = K\sigma(t) \left[\sin(\Phi(t) - \theta_m(t))\right] + \sqrt{S} dW_{m,t}$

- Fokker-Planck: $\partial_t [n(\theta, t)] = -K\sigma\partial_\theta [\sin(\Phi \theta) n(\theta, t)] + S\partial^2_{\theta\theta} [n(\theta, t)]$
- <u>stationary measure</u>: $n_s(\theta) = \frac{1}{2\pi \mathcal{I}_0\left[\frac{K\sigma}{S}\right]} e^{\left\{\left[\frac{K\sigma}{S}\right]\cos(\Phi-\theta)\right\}}, \quad (\mathcal{I}_0(\cdot) \text{ Bessel funct.})$
- contin. limit mean-field: $\frac{1}{N} \sum_{m=1}^{N} e^{i\theta_m(t)} \cong \int_0^{2\pi} n(\theta, t) e^{i\theta} d\theta$, (for $N \to \infty$)

• self-consistency
$$\Rightarrow \sigma e^{i\Phi} = \int_0^{2\pi} n_s(\theta) e^{i\theta} d\theta \Rightarrow \sigma = \frac{\mathcal{I}_0^1 \left[\frac{K\sigma}{S}\right]}{\mathcal{I}_0 \left[\frac{K\sigma}{S}\right]} \Rightarrow K_c = 2S$$

• solving for σ enables to draw the K-S phase diagram.

M.-O. Hongler (EPFL)

Von Mises angle statistics

Observe the specific expression for the stationary probability measure $n_s(\theta)$!

$$n_s(\theta) \equiv \mathrm{VM}_{\kappa}(\theta) := \frac{1}{2\pi \, \mathcal{I}_0[\kappa]} e^{\{\kappa \cos(\theta)\}} = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\mathcal{I}_m(\kappa)}{\mathcal{I}_0(\kappa)} \cos(m\theta), \quad \kappa \in \mathbb{R}^+,$$

density known as the Von Mises angle statistics

Proposition, (K. V. Mardia (1972), G. Watson (1983)).

The probability density $VM_{\kappa}(\theta)$ describes the exit-law outside the unit (Euclidean) circle $x^2 + y^2 = 1$ of a complex Brownian Motion with constant drift $(Z_t + t \vec{u}, t \in \mathbb{R}^+)$ starting at 0 and κ is the Euclidean norm of the constant drift vector \vec{u} .

"generalize K-S dynamics by introducing a curvature on the probability state space"

∜

"introduce multiplicative noise sources into the dynamics"

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 6 / 54

< ロ > < 同 > < 回 > < 回 >

Multiplicative noise K-S dynamics:

$$\begin{aligned} d\theta_m(t) &= \frac{K}{N} \left\{ \sum_{j \neq m} \sin\left[\theta_j - \theta_m\right] \right\} dt + \frac{1}{N} \sum_{j \neq m} \left\{ \sqrt{1 + C\cos(\theta_j - \theta_m)} \right\} \sqrt{S} \, dW_{m,t}, \\ C &\in [0, 1] \quad \text{and} \quad K > 0, \quad (\text{two control parameters}), \end{aligned}$$

 $\partial_t [n(\theta, t)] = -K\sigma \partial_\theta [\sin(\Phi - \theta) n(\theta, t)] + S \partial_{\theta\theta}^2 [(1 + \sigma C \cos(\Phi - \theta)) n(\theta, t)]$

stationary measure

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 7 / 54

Exit law of hyperbolic Brownian motion from hyperbolic disk

Proposition, (J.-Cl. Gruet, (2000), see also M. C. Jones & A. Pewsey, (2005)).

Let T_{η} be the first hitting time of the hyperbolic disk \mathcal{D} of radius η centred at 0. The exit probability distribution of \mathcal{D} under the law of the α -drifted hyperbolic Brownian motion starting at 0 is given by the two generalized two parameters hyperbolic von Mises law:

 $HVM(\theta) = \mathcal{Z}^{-1} \left[1 + \tanh(\eta)\cos(\theta)\right]^{-\alpha} \qquad (\theta \in \left[-\pi, +\pi\right] \ \eta \in \mathbb{R}^+, \ \alpha \in \mathbb{R}).$

Kuramoto's dynamics with multiplicative noise

Proposition, (R. Filliger, Ph. Blanchard and MOH (2010)).

Two parameters generalized Kuramoto-Sakagushi phase oscillators model:

$$d\theta_m(t) = \frac{K}{N} \left\{ \sum_{j \neq m} \sin\left[\theta_j - \theta_m\right] \right\} dt + \frac{1}{N} \sum_{j \neq m} \left\{ \sqrt{1 + C\cos(\theta_j - \theta_m)} \right\} \sqrt{S} \, dW_{m,t},$$

$$C \in [0, 1] \quad \text{and} \quad K > 0, \quad (\text{two control parameters})$$

admits the associated angle probability measure in the mean-field limit is given by law $HVM(\theta)$. The onset of synchronisation is given by $K_c = S(2 + C)$.

M.-O. Hongler (EPFL)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inhomogeneous K-S dynamics, (i.e. $\omega_k \neq \omega_j$)

Individual ω 's are randomly drawn from a prob. density: $\omega \sim g(\omega)d\omega$.

 S. Strogatz & R. Mirollo "Stability of incoherence in a population of coupled oscillators". J. Stat. Phys. 63, (1991).

- J. Acebron, L. Bonilla, C. Perez Vicente, F. Ritort & R. Spiegler. "The Kuramoto model: A simple paradigm for synchronization phenomena". Rev. Mod. Phys. 77, (2005).
- R. Filliger, Ph. Blanchard, J. Rodriguez and MOH "Noise induced temporal patterns in population of globally coupled oscillators". IEEE Trans. (2009).

MO.	Hong	gler	(EPFL))
-----	------	------	--------	---

"Unwrap" the circular probability space S

₩

Agents with scalar dynamics on $\ensuremath{\mathbb{R}}$

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 10 / 54

э

Heterogeneous - (Part II)

Homogenous - (Part I)

イロト イヨト イヨト イヨト

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 11/54

Part I

Homogeneous swarms on ${\mathbb R}$

Homogeneity: agents are indistinguishable

Exogenous mutual interaction rule: "Avoid being the laggard"

External enviroment: White Gaussian Noise (WGN)

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 12 / 54

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Imitation dynamics for an homogenous population

- Observation capability: A_k observes \sharp of leaders within a range U.
- Avoid being the laggard:

 $\mathcal{J}\left[X_k(t), \vec{X}(t)\right] = \begin{cases} \gamma \frac{N_{\{U\}}^{(k)}}{N}, & \text{with } N_{\{U\}}^{(k)} := \sharp \text{ of } \mathcal{A}_{(j \neq k)} \in U \text{ ahead of } \mathcal{A}_k, \\\\ 0, & \text{ if } N_{\{U\}}^{(k)} = 0. \end{cases}$

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 13 / 54

Consider large swarms, ($N \to \infty$)

↓

"Hydrodynamic picture": density of agents $\rho(x, t) \in [0, 1] \Rightarrow$ Mean-field dynamics $\rho(x, t) :=$ density of agents at position x at time t.

$$\begin{cases} N_{\{U\}}^{(k)}(t) = \frac{1}{N} \sum_{j \neq k} \mathbb{I}_{\{0 \le X_j(t) - X_k(t) \le U\}} \\ \\ \mathbb{I}_{\{0 \le X_j(t) - X_k(t) \le U\}} = \begin{cases} 1, & \text{if } X_j(t) > X_k(t), \\ 0, & \text{otherwise.} \end{cases} \end{cases}$$

Meanfield description $\Rightarrow N_{\{U\}}(x,t) := \lim_{N \to \infty} \frac{1}{N} \sum_{j} \mathbb{I}_{(0 \le X_j(t) - x \le U)} \simeq \int_{x}^{x+U} \rho(y,t) dy$

Nonlinear and nonlocal Fokker-Planck equation for the density $\rho(x, t)$

$$\partial_t \rho(x,t) = -\partial_x \left\{ \left[f(x,t) + \int_x^{x+U} \rho(y,t) dy \right] \rho(x,t) \right\} + \frac{\sigma^2}{2} \partial_{xx} \left\{ \rho(x,t) \right\}$$

M.-O. Hongler (EPFL)

Simple case: f(x, t) = C and very short range interactions

Infinitesimal imitation range $U \ll 1$, \rightarrow Taylor exp. 1st order in U:

Exact transient behavior for short range imitation

transient solution of the Burgers' equation - evanescent traveling wave

Asymptotically with time agents are fully dispersed \downarrow

short range interaction \Rightarrow swarm cohesion is not sustained

M.-O. Hongler (EPFL)

April 24, 2017 16 / 54

3

Cooperative behavior generated by long range interactions

Infinite imitation range - ($U = \infty$)

 $\begin{cases} \partial_{xt} [G(x,t)] = \underbrace{-\partial_x \{ [\mathcal{C} + \gamma G(x,t)] \partial_x G(x,t) \}}_{\text{interaction nonlinear conribution}} + \frac{\sigma^2}{2} \partial_{xxx}^2 G(x,t), \\ G(x,t) = \int_x^\infty \rho(\zeta,t) d\zeta, \\ \lim_{x \to -\infty} G(x,t) = 1 \quad \text{and} \quad \lim_{x \to +\infty} G(x,t) = 0. \end{cases}$

again Burgers' nonlinear dynamics but with new boundary conditions

Explicit stationary behavior

$$\rho(x,t) = \frac{\Gamma}{\sigma^2 \cosh^2\left[\frac{1}{\sigma^2}\Gamma(x-\Gamma t)\right]}$$

 $\Gamma = \Gamma(\mathcal{C}, \gamma).$

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 17 / 54

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Exact stationary behavior for infinite range imitation)

transient solution of the Burgers' equation - soliton like traveling wave

Asymptotically a coherent and stable spatio-temporal pattern emerges

Barycentric modulated interactions

$$\partial_t \left[\rho(x,t) \right] = -\partial_x \left\{ \left[\mathcal{C} + \int_x^{\infty} \underbrace{g\left(\left| \zeta - \langle X(t) \right| \right)}_{g\left(\left| \zeta - \langle X(t) \right| \right)} \rho(\zeta,t) d\zeta \right] \rho(x,t) \right\} + \frac{\sigma^2}{2} \partial_{xx}^2 \rho(x,t) \\ \langle X(t) \rangle := \int_{\mathbb{R}} x \, \rho(x,t) \, dx.$$

Assume: $g(x) = [\cosh(x)]^{-\eta}$.

 $\eta > 0 \Rightarrow$ "conformism", (i.e. barycentre weight more),

 $\eta < 0 \Rightarrow$ "non-conformism", (i.e. outliers weight more),

M.-O. Hongler (EPFL)

April 24, 2017 19 / 54

э

-

Flocking behavior phase transition

Exact (normalizable) stationary measure exists only for $\eta \in [-\infty, 2[$

$$\begin{cases} \rho(x) = \mathcal{Z}^{-1} \cosh \left(x - Vt \right)^{\eta - 2}, \\ V = \mathcal{C} + (2 - \eta) \frac{\sigma^2}{2}, \qquad (\eta \in [-\infty, 2[). \end{cases}$$

↓

Flocking bifurcation :

$$\eta \in [-\infty, 2],$$
$$\eta \in [2, \infty],$$

soliton like imitation wave.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

dispersive imitation wave.

Snapshots of the shapes of the traveling soliton

Cooperative soliton like regime for $\eta \in [-2,\infty]$

Figure 3: Barycentric modulation functions $\cosh^{-\eta}(x)$, for different values of η , and corresponding collective productivity long-wave $\rho x, t$.

April 24, 2017 21 / 54

Ethology: territorial/non-territorial birds - "titmice innovate but robins do not ?"

Titmice (non-territorial) versus robins (territorial birds)

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 22 / 54

3

Endogenous interaction rules -Stochastic optimal control - Mean-field games (MFG)

Basic goal: Goal here: obtain the previous soliton behavior via a MFG dynamics.

$$\mathsf{MFG} \left\{ \begin{array}{l} dX_m(t) = a(X_m(t), t)dt + \sigma dW_{m,t}, \qquad m = 1, 2, \cdots, N, \\ J(a(\cdot), X_m(t)) = \mathbb{E} \left\{ \int_0^T \left[\underbrace{c(a(X_m(s), s) + \overbrace{V(\rho(\cdot, s); X_m(s))}^{\text{interaction cost}}}_{\mathcal{L}[a(s), X_m(s), \rho(\cdot, s)]} \right] ds + \overbrace{C_T[X_m(T)]}^{\text{final cost}} \right\}, \\ \rho(x, t) = \frac{1}{N} \sum_{j=1}^N \delta(x - X_j(t)), \qquad (\text{empirical distribution}). \end{array} \right\}$$

April 24, 2017 23 / 54

э

イロト イポト イヨト イヨト

MFG dynamics - coupled forward-backward pde's

Value function :
$$u(X(t), t) := \min_{a(\cdot)} \int_t^T \mathcal{L}[a(s), X_m(s), \rho(\cdot, s)] ds + C_T(X_T)$$

Special choice of
$$\mathcal{L} = \frac{1}{2} \left[a(X_m(t), t) - b \right]^2 + \left[\rho(x, t) \right]^p$$

 $dynamic progr. \qquad \Downarrow \qquad \mathsf{HBJ Eq.}$ $\begin{cases} \partial_t u(x,t) + \frac{\sigma^2}{2} \partial_{xx} \left(u(x,t) \right) - \frac{1}{2} |\nabla u(x,t)|^2 = -\left[\rho(x,t) \right]^p \qquad (\mathsf{HBJ}) \\ \partial_t \rho(x,t) = -\partial_x \left\{ \partial_x u(x,t) \rho(x,t) \right\} + \frac{\sigma^2}{2} \partial_{xx} \left(\rho(x,t) \right) \qquad (\mathsf{FP}) \end{cases}$

M.-O. Hongler (EPFL)

April 24, 2017 24 / 54

$$\begin{cases} \Phi(x,t) := e^{-\frac{u(x,t)}{\sigma^2}} \quad \Psi(x,t) := \rho(x,t)e^{+\frac{u(x,t)}{\sigma^2}}, \\ -\sigma^2 \partial_t \Phi(x,t) = \frac{\sigma^4}{2} \partial_{xx} \Phi(x,t) + \rho(x,t)^p, \\ +\sigma^2 \partial_t \Psi(x,t) = \frac{\sigma^4}{2} \partial_{xx} \Psi(x,t) + \rho(x,t)^p. \end{cases}$$

Stationary solution

I. Swiecki, T. Gobron and D. Ullmo. "Schrödinger appraoch to mean-field games". Phys. Rev. Lett. 116, 2016.

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 25 / 54

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Part I - (continued)

Homogeneous swarms on $\ensuremath{\mathbb{R}}$

Dynamics driven by non-Gaussian noise sources

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 26 / 54

э

Piecewise deterministic (i.e. random telegraph) and discontinuous noise sources

$$\dot{X}_{k}(t) = f(X_{k}(t)) + \begin{cases} \mathcal{I}_{k} \left[\left(X_{k}(t); \vec{X}(t) \right), t \right] & \text{RT noise,} \\ q_{k} \left[\left(X_{k}(t); \vec{X}(t) \right), t \right] & \text{Shot noise.} \end{cases}$$

Random telegraphic (RT) noise - (i.e two states Markov chain in continuous time)

- Random telegraphic noise
- Shot noise (i.e Compound Poisson jump process)

Swarms driven by piecewise deterministic stochastic processes

 $\dot{X}_{k}(t) = \underbrace{\mathcal{C}}_{\text{const. drift}} dt + \mathcal{I}\left[\left(X_{k}(t); \vec{X}(t)\right), t\right], \text{ switching rate depends on local agents' density}$

$$\mathcal{I}(t) \in \{-A, +A\} \text{ switching rates} \begin{cases} \alpha \left[\left(X_k(t); \vec{X}(t) \right), t \right], \\ \beta \left[\left(X_k(t); \vec{X}(t) \right), t \right]. \end{cases}$$

 $(X(t), \mathcal{I}(t))$ Markov process, (X(t) alone is not Markov !)

transition probability densities $\begin{cases} P(x, +A, t \mid i.c.) := P_+, \\ P(x, -A, t \mid i.c.) := P_-. \end{cases}$

Fokker – Planck Eq.
$$\begin{cases} \partial_t P_+ - \partial_x \left[(\mathcal{C} - A) P_+ \right] = -\alpha(x, t) P_+ + \beta(x, t) P_+, \\ \partial_t P_- - \partial_x \left[(\mathcal{C} + A) P_- \right] = +\alpha(x, t) P_+ - \beta(x, t) P_+. \end{cases}$$

Discrete velocity Boltzmann Eq. - "myopic" interactions

Large swarms \rightarrow mean-field approach

follow the leaders rule
$$\Rightarrow \begin{cases} \alpha \left[\left(X_k(t); \vec{X}(t) \right), t \right] \longrightarrow \alpha(x, t) := \alpha - \int_x^U P_-(y, t) dy, \\ \beta \left[\left(X_k(t); \vec{X}(t) \right), t \right] \longrightarrow \beta(x, t) := \beta + \int_x^U P_+(y, t) dy. \end{cases}$$

• "myopic" (i.e short range) interactions, $U \ll 1$.

$$\begin{cases} \partial_t P^+(x,t) - (\mathcal{C} - A)\partial_x P^+(x,t) = -P_+P_- - \alpha P^+(x,t) + \beta P^-(x,t), \\ \partial_t P^-(x,t) - (\mathcal{C} + A)\partial_x P^+(x,t) = +P_+P_- + \alpha P^+(x,t) - \beta P^-(x,t). \end{cases}$$

Exactly solvable discrete velocity Boltzman Eq. (T. W. Ruijgrok T.T. Wu (1981) Genralized Hopf-Cole transformation \Rightarrow can be linearized in the Telegrapher's Eq.

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 29 / 54

Discrete velocity Boltzmann Eq. - long range interactions

• Long range interactions, $U \to \infty$.

Define
$$F_{\pm}(x,t) := \int_{x}^{\infty} P_{\pm}(y,t) dy$$
.

$$\partial_t F^+(x,t) - (\mathcal{C} - A)\partial_x F^+(x,t) = -UF_+F_- - \alpha F^+(x,t) + \beta F^-(x,t), \partial_t F^-(x,t) - (\mathcal{C} + A)\partial_x F^+(x,t) = +UF_+P_- + \alpha F^+(x,t) - \beta F^-(x,t).$$

Exactly solvable discrete velocity Boltzman Eq. T. W. Ruijgrok T.T. Wu (1981)

Genralized Hopf-Cole transformation \Rightarrow be linearized to the Telegrapher's Eq.

MO.	Hong	ler ((EPFL)
-----	------	-------	--------

3

イロト 不得 トイヨト イヨト

White Gaussian noise versus Telegraphic noise - "in a nutshell view"

M.-O. Hongler (EPFL)

31/54

Swarms driven by compound Poisson (directly inspired from: M. Balazs, M. Racz and B. Toth, (2014)).

Coupled SDE's driven by jump processes $X_k(t) \in \mathbb{R}$ and $k = 1, 2, \dots, N$.

$$\begin{array}{l} \dot{X}_{k}(t) = f[X_{k}(t)] + q_{k}\left[\left(X_{k}(t);\vec{X}(t)\right), t\right] \quad \text{Compound Poisson process,} \\ \lambda \mapsto \lambda \left[\left(X_{k}(t);\vec{X}(t)\right), t\right] : \mathbb{R} \to \mathbb{R}^{+} \quad \text{Poissonian jump rate,} \\ \zeta \varphi(x) : \mathbb{R}^{+} \to \mathbb{R}^{+} \quad \text{jumps size distribution, (here purely positive jumps).} \end{array}$$

 $\underbrace{\text{Interaction rule}}_{k} \left\{ \begin{array}{l} \text{Avoid being the laggard} \Rightarrow \lambda \left[\left(X_k(t); \vec{X}(t) \right), t \right] = \lambda \left[X_k(t) - \mathbb{E} \left\{ X_t \right\} \right] > 0, \\ \mathbb{E} \left\{ X(t) \right\} := \frac{1}{N} \sum_{j=1}^{N} X_j(t) \quad \text{and} \quad \lambda \left[X_k(t) - \mathbb{E} \left\{ X_t \right\} \right] : \mathbb{R} \to \mathbb{R}^+ \text{ monot. decreas.} \end{array} \right.$

M.-O. Hongler (EPFL)

Swarm dynamics

Master Equation - General formalism for compound Poisson processes

- Markovian dynamics
- large swarms' populations \Rightarrow Mean-field approach
 - Fokker-Planck ⇒ Master equation

 $\partial_t P(x,t|x_0,0) = \partial_x [f(x)P(x,t|x_0,0)] - \lambda(x,t)P(x,t|x_0,0) + \int_{-\infty}^x \varphi(x-z)\lambda(z,t)P(z,t|x_0,0)dz$

 $P(x,t|x_0,0)$ transition pdf of the jump Markov process X(t)

Solve the master equation for $P(x,t|x_0,0) \Rightarrow$ characterizes the swarm propagation

Focus on the jumps class:

 $\varphi(x) = \frac{\gamma^m x^{m-1} e^{-\gamma x}}{\Gamma(m)} \chi_{x \ge 0}, \qquad m = 1, 2, \cdots$ (Erlang law)

M.-O. Hongler (EPFL)

Erlang jumps' distribution \Rightarrow high-order differential Master Equation

Proposition (R. Filliger and MOH - 2016). For jumps drawn from an mth-order Erlang law:

$$\varphi(x) = \frac{\gamma^m x^{m-1} e^{-\gamma x}}{\Gamma(m)} \chi_{x \ge 0}, \qquad m = 1, 2, \cdots,$$

the associated transition probability density $P_m(x, t \mid x_0, 0) := P_m$ solves the high order pde:

$$\left[\partial_{x}+\gamma\right]^{m}\left(\partial_{t}P_{m}-\partial_{x}\left[f\cdot P_{m}\right]\right)=\left[\gamma^{m}-\left[\partial_{x}+\gamma\right]^{m}\right]\left(\lambda(x,t)\cdot P_{m}\right)$$

3

Cooperative propagation of the swarm

Assume existence of a stationary co-operative behavior:

$$\begin{cases} P_{s,m}(x - C_m t) := P_{s,m}(\xi), & \int_{-\infty}^{+\infty} P_{s,m}(\xi) d\xi = 1, \\ \lambda \left[X_k(t) - \mathbb{E} \left\{ X_t \right\} \right] = \lambda(x - C_m t) = \lambda(\xi) \\ \int_{-\infty}^{+\infty} \xi P_m(\xi) d\xi = 0, & \text{soliton like propagation with constant velocity } C_m. \end{cases}$$
$$= 1 \implies P_1(\xi) = \mathcal{N}e^{-\gamma\xi + \int^{\xi} \frac{\lambda(\xi)d\xi}{C_1}}.$$
$$= 2 \implies P_2(\xi) = \exp\left\{ -\gamma\xi + \int^{\xi} \frac{\lambda(\xi)}{2C_2} dz \right\} \Psi(\xi) \\ \partial_{\xi\xi} \Psi(\xi) + \underbrace{\left[-\frac{\partial_{\xi}\lambda(\xi)}{2C_2} - \frac{\lambda^2(\xi)}{4C_2^2} - \frac{\gamma\lambda(\xi)}{C_2} \right]}_{:=W(\xi) \quad \text{Schroedinger's quantum mechanical potential}} \Psi(\xi) = 0.$$

M. Balazs, M. Racz and B. Toth. "Modeling flocks and prices: jumping particles with an attractive interaction ". Ann. Inst. Poincaré, (2014).

M.-O. Hongler (EPFL)

• m • m

Swarm dynamics

April 24, 2017 35 / 54

Explicitly soluble illustration - some "baroque" analysis implies:

•
$$m = 1 \Rightarrow \begin{cases} P_{s,1}(\xi) = \mathcal{N}_1(\beta, \gamma, C_1) e^{-\gamma \xi - \frac{1}{\beta C_1} e^{-\beta \xi}}, & \text{(Gumbel probab. law.)} \end{cases}$$

Swarm velocity : $C_1 = \frac{1}{\beta} e^{-\psi(\gamma/\beta)}.$ (M. Balazs, M. Racz and B. Toth. Ann. Inst. Poincaré, (2014)).

•
$$m = 2$$
 $\lambda(\xi) = e^{-\beta\xi} \Rightarrow W(\xi) = \left[\frac{(\beta - 2\gamma)}{2C_2}e^{-\beta\xi} - \frac{1}{4C_2^2}e^{-2\beta\xi}\right],$ (Morse potential)
• $m = 2 \Rightarrow \begin{cases} P_2(\xi) = \mathcal{N}(\beta, \gamma, C_2)e^{\left[\frac{\beta}{2} - \gamma\right]\xi - \frac{e^{-\beta\xi}}{2\beta C_2}} \underbrace{W_{\frac{\beta - 2\gamma}{2\beta}, 0}\left(\frac{e^{-\beta\xi}}{\beta C_2}\right)}_{\text{Whitaker function, second kind}}, \\ \text{Swarm velocity} : C_2 = \frac{1}{\beta}e^{\psi(2\gamma/\beta) - 2\psi(\gamma/\beta)}, \qquad (\psi(z) := \text{Digamma funct.}). \end{cases}$

Explicit shapes of swarms densities

Probability densities $P_1(\xi)$ and $P_2(\xi)$

Swarm's velocities ratio: $C_2/C_1 = exp(e^{\psi(2\gamma/\beta)} - \psi(\gamma/\beta)) > 2$.

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 37 / 54

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Part II

Swarms with leader-followers dynamics versus swarms driven by a shill

- The leader behavior is not influenced by her followers.
- The shill interacts with her fellows via "usual" swarm rule however the shill itself can be externally driven (i.e basic idea behind the concept of "soft-control").

MO.	Hong	ler (EPI	FL)
-----	------	-------	-----	-----

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Leader-follower dynamics - Stochastic feedback particles filters (FPF)

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 39 / 54

Stochastic Filtering iltering task- basic idea

filtering task - "express overview for the continuous discrete case"

$$\begin{cases} dX(t) = F(X(t))dt + \sigma_B dW_t, & system's signal, dW_t WGN \\ Z_k = h(X_k) + \sigma_o dB_k, & system's observation, dB_t WGN. \end{cases}$$

Basic goal: merge information from the model evolution and successive observations

$$Z_{k} := \{z_{\tau} : \tau \leq k\},$$

$$P(x, t_{k}|Z_{k-1}) = \mathcal{F}\{P(x, t_{k-1}|Z_{k-1})\}, \text{ Fokker-Planck evolution for } t_{k-1} \leq t < t_{k},$$

$$P(x, t_{k}|Z_{k}) := P(x, t_{k}|z_{k}, Z_{k-1}), \text{ updating after observation } z_{k} \text{ at time } t_{k},$$

$$P(x, t_{k}|Z_{k}, Z_{k-1})P(z_{k}|Z_{k-1}) = P(x, z_{k}, t_{k}|Z_{k-1}) = P(z_{k}, t_{k}|x_{k}, Z_{k-1})P(x, t_{k}|Z_{k-1}), \text{ Bayes,}$$

$$P(x, t_{k}|Z_{k}) = \underbrace{P(z_{k}, t_{k}|x_{k}, Z_{k-1})P(x, t_{k}|Z_{k-1})}_{P(z_{k}|Z_{k-1})} = \underbrace{\left[\underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2}}{2\sigma_{o}^{2}}\right\}}{\sqrt{2\pi\sigma_{o}^{2}}}\right]}_{P(y_{k}|Z_{k-1})} P(x, t_{k}|Z_{k-1})} = \underbrace{\left[\underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2}}{2\sigma_{o}^{2}}\right\}}{\sqrt{2\pi\sigma_{o}^{2}}}\right]}_{P(y_{k}|Z_{k-1})} P(x, t_{k}|Z_{k-1})} = \underbrace{\left[\underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}_{P(y_{k}|Z_{k-1})}}_{P(y_{k}|Z_{k-1})} + \underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}_{P(y_{k}|Z_{k-1})}} \right]}_{P(y_{k}|Z_{k-1})} = \underbrace{\left[\underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}_{P(y_{k}|Z_{k-1})}}_{P(y_{k}|Z_{k-1})} + \underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}}_{P(y_{k}|Z_{k-1})}} \right]}_{P(y_{k}|Z_{k-1})} = \underbrace{\left[\underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}_{P(y_{k}|Z_{k-1})}}_{P(y_{k}|Z_{k-1})} + \underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}}_{P(y_{k}|Z_{k-1})}} \right]}_{P(y_{k}|Z_{k-1})} = \underbrace{\left[\underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}}_{P(y_{k}|Z_{k-1})} + \underbrace{\frac{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}}_{P(y_{k}|Z_{k-1})}} \right]}_{P(y_{k}|Z_{k-1})} + \underbrace{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}}_{P(y_{k}|Z_{k-1})}} = \underbrace{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}_{P(y_{k}|Z_{k-1})}} + \underbrace{\exp\left\{-\frac{(z_{k}-h(x_{k})^{2})}{2\sigma_{o}^{2}}\right\}}}_{P(y_{k}|Z_{k-1})} + \underbrace{\exp\left\{-\frac{(z_{k}-h(x_{k}$$

M.-O. Hongler (EPFL)

 $\begin{cases} dX(t) = F(X(t))dt + \sigma_B dW_t, & system's signal, \\ dZ(t) = h(X(t))dt + \sigma_o dB_t, & system's observation. \end{cases}$

Filtering task: Get $P^*(X_t | \mathcal{Z}_t)$ posterior prob. given the history: $\mathcal{Z}_t := \sigma(Z_s; s \leq t)$.

$$dX_{m}(t) = F(X_{m}(t))dt + \sigma_{B}dW_{m,t} + U_{m}(t)dt, \qquad N \text{ particles with feedback control } U_{m}(t),$$

$$p^{(N)}(x,t)dx = \frac{1}{N} \sum_{m=1}^{N} \mathbb{I}\left(x \leq X_{m}(t) \leq (x+dx)\right), \quad \text{empirical probability density}$$

$$\lim_{N \to \infty} p^{(N)}(x,t)dx = P^{*}(X_{t}|\mathcal{Z}_{t}).$$
FPF filtering algorithm: min $\left(KL\left\{P^{(N)}(x,t) || P^{*}(\hat{x},t)\right\}\right), \quad \text{Kullback-Leibner distance.}$
Cyang, P. G. Metha, S. P. Meyn. "A mean-field control-oriented approach to particle filtering". IEEE Trans. Autom. Contr. (2013).

Leader-follower dynamics vs feedback particles filters - "reverse engineering" approach

Heterogeneous situation: swarm driven by a leader $\vec{X}(t) = (X_1(t), X_2(t), \cdots, X_{(N-1)}(t)),$ $dX_{1}(t) = \begin{bmatrix} f(X_{1}(t)) + U(X_{1}(t), \vec{X}(t), \mathbf{Z}(t)) \\ U(X_{1}(t), \vec{X}(t), \mathbf{Z}(t)) \end{bmatrix} dt + \sigma_{B} dW_{1,t},$ $dX_{2}(t) = \begin{bmatrix} f(X_{2}(t)) + U(X_{2}(t), \vec{X}(t), \mathbf{Z}(t)) \end{bmatrix} dt + \sigma_{B} dW_{2,t},$ \dots \dots $dX_N(t) = \left[f(X_N)(t) + U(X_N(t), \vec{X}(t), \mathbf{Z}(t)) \right] dt + \sigma_B dW_{N,t}$

 $\mathbf{dX}(\mathbf{t}) = \mathbf{f}(\mathbf{X}(\mathbf{t}))\mathbf{dt} + \sigma_{\mathbf{B}}\mathbf{dW}_{\mathbf{t}},$ $dZ(t) = h[X(t)]dt + \sigma_{\varrho} dB_{t},$

leader's dynamics,

information available to followers.

イロト イポト イラト イラト

Swarm dynamics

April 24, 2017 42/54 System \leftrightarrow Leader Feedback particles \leftrightarrow Followers

Observation noise \leftrightarrow Signal delivered to the followers

Followers cooperative task: minimize Kulback "distance" between Pleader and Pswarm

 $P_{\text{leader}} := \text{true prob.}$ density of the position of the leader

 P_{swarm} := empirical prob. density of the positions of the (N-1) followers

∜

Stochastic optimal control problem \rightarrow explicitly soluble variational problem

MO.	Hongler	(EPFL)
-----	---------	--------

Optimal control algorithm - explicit control $U(X_k(t), \vec{X}(t), Z(t))$

$$U(X_{k}(t), \vec{X}(t), Z(t)) = \nu(X_{k}(t), \vec{X}(t), Z(t)) \stackrel{\text{Straton.}}{\frown} \left\{ dZ(t) - \left[\frac{1}{2} h(X_{k}(t)) + \hat{h}(t) \right) \right] \right\}$$

$$\nu(x(t), \vec{X}(t), Z(t)) = \frac{1}{\sigma_{\sigma}^{2} P(y,t \mid \mathcal{Z}(t))} \int_{-\infty}^{x} dy \left\{ \hat{h}(t) - h(y) \right\} P(y, t \mid \mathcal{Z}(t)),$$

$$\hat{h}(t) = \int_{\mathbb{R}} h(x, t) P(x, t \mid \mathcal{Z}(t)) dx,$$

$$P(x, t \mid \mathcal{Z}(t)) dx := P^{*}(X_{t} \mid \mathcal{Z}_{t}) \qquad \text{filtererd conditional probability density.}$$

- $P(x, t \mid Z(t))$ known explicitly, (finite dimensional filters) \Rightarrow solvable leader-follower dynamics
- The swarm density (tightness) is controlled by σ_o , (i.e. strength of the observation noise)

Fully solvable class of dynamics

a) Linear drift; (Ornstein - Uhlenbeck (OU)+ linear observation \Rightarrow Kalman filters).

b) Nonlinear drift: $\left(\left[f(x)^2 + \frac{d}{dx}f(x)\right] = Ax^2 + Bx + C\right)$ (V. Benes, Stochastics (1981) and MOH, Physica D (1981)).

M.-O. Hongler (EPFL)

Part II - (continued)

Inhomogeneous swarms infiltrated by a (controllable) complice, (shill).

э

Heterogeneous swarms infiltrated by a complice

イロト イヨト イヨト イヨト

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 46 / 54

Scalar dynamics - Ranked Brownian Motions - "Hybrid-Atlas" model, (T. Ichiba et al. (2011))

$$dX_{i}(t) = \left(\sum_{\substack{k=1\\ranked-based interaction}}^{N} g_{k} 1_{Q_{k}(i)} \{X(t)\} + \gamma_{i} + \gamma\right) dt + \sigma_{i} dW_{i}(t), \qquad \begin{cases} X_{i}(0) = x_{i}, \\ 1 \le i \le N. \end{cases}$$

$$X_{i}(t) \qquad \text{position of agent } i$$

$$g_{k} \qquad \text{rank-dependent constant drift} \\ (X_{i}(t) \text{ occupies rank } k \text{ at time } t) \qquad (\text{set } \sum_{k=1}^{N} [g_{k} + \gamma_{k}] + \gamma_{k} + \gamma_{k}$$

 γ_i constant agent-dependent drift

 γ constant drift

set $\sum_{k=1}^{\infty} [g_k + \gamma_k] = 0$) \Downarrow

 γ : average barycentric speed of the swarm.

d $W_i(t)$ WGN (mutually indep. for i = 1, 2, ..., N)

T. Ichiba, V. Papathanakos, A. Banner, I. Karatzas and R. Fernholz. "Hybrid Atals models". Ann. Appl. Probab. (2011).

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 47 / 54

Theorem: (T. Ichiba et al., 2011):

1. Swarm tightness condition.

$$\sum_{k=1}^{m} \left[g_k + \gamma_{p(l)} \right] < 0, \qquad \begin{pmatrix} p = (p(1), ..., p(N)) \in \Sigma_N \\ 1 \le m \le N-1 \end{pmatrix}$$

 Σ_N set of permutations of the N agents

2. Stationary measure for the (N-1) gaps between agents $\Psi(z), z \in \mathbb{R}^{N-1}_+$.

$$\psi(z) = \underbrace{\left(\sum_{p \in \Sigma_N} \prod_{k=1}^{N-1} \lambda_{p,k}^{-1}\right)^{-1}}_{p \in \Sigma_N} \exp\left(-\langle \lambda_p, z \rangle\right)$$

normalization factor

$$\lambda_p = (\lambda_{p,k})_{k=1}^{N-1} \qquad \qquad \lambda_{p,k} = \frac{-4\sum_{l=1}^k \left(g_l + \gamma_{p(l)}\right)}{\sigma_k^2 + \sigma_{k+1}^2}.$$

M.-O. Hongler (EPFL)

Swarm of (N-1) identical agents infiltrated by a single super-diffusive fellow

- (N-1) Brownian agents driven constant drift (-g) and by WGN's.
- One "Shill" agent (i = 1) driven by drift (N 1)g and by super-diffusive noise.

Specific choice of of the control parameters in the "Hybrid-Atlas" model

• $\gamma_i \equiv 0,$.

•
$$g_k = \begin{cases} -g, & 1 \le k < N, \\ (N-1)g, & k = N. \end{cases}$$

 $\left(\sum_{k=1}^{l} g_k < 0 \quad \text{for} \quad l = 1, 2, \dots, (N-1) \quad \Rightarrow \quad \text{swarm tightness cond. for BM agents}\right)$

Dynamic mean preserving spread (MPS) noise - super-diffusive, (ballistic) noise source

$$dZ(t) = \beta \tanh[\beta Z(t)] dt + dW_t \quad \Leftrightarrow \quad P(z, t|z_0) = \frac{1}{2\sqrt{2\pi t}} \left\{ e^{-\frac{[(z-z_0)+\beta t]^2}{2t}} + e^{-\frac{[(z-z_0)-\beta t]^2}{2t}} \right\}$$

alternative 1 representation

 $Z(t) = \beta \beta dt + dW_t$, β a Bernouli random variable

- L. C. G. Roger and J. Pitman. "Markov functions", Annals of Probab. (1981).
- MOH "Exact solutions for a class of nonlinear Fokker-Planck equations", Phys. Letters A. (1979).
- J.-L. Arcand, D. Rinaldo and MOH "Dynamic Mean Preserving Spreads", Preprint Graduate institute Geneva, (2016).

Heterogenous swarm driven by a shill with MPS noise

$$dX_{1}(t) = \left(\sum_{k=1}^{N} g_{k} 1_{Q_{k}(1)} \{X(t)\} + \gamma_{1} + \gamma\right) dt + dZ_{1}(t), \qquad X_{1}(t) = x_{1,0},$$

$$dX_{i}(t) = \left(\sum_{k=1}^{N} g_{k} 1_{Q_{k}(i)} \{X(t)\} + \gamma_{i} + \gamma\right) dt + dW_{i}(t), \qquad \begin{cases} X_{i}(0) = x_{i,0}, \\ 2 \le i < N. \end{cases}$$
alternative a)
$$dX_{i}(t) = \left(\sum_{k=1}^{N} g_{k} 1_{Q_{k}(1)} \{X(t)\} + \gamma_{1} + \beta + \gamma\right) dt + dW_{1}(t),$$

$$dX_{i}(t) = \left(\sum_{k=1}^{N} g_{k} 1_{Q_{k}(i)} \{X(t)\} + \gamma_{i} + \gamma\right) dt + dW_{i}(t),$$

$$\int dX_{i}(t) = \left(\sum_{k=1}^{N} g_{k} 1_{Q_{k}(i)} \{X(t)\} + \gamma_{i} + \gamma\right) dt + dW_{i}(t),$$

alternative b)

$$dX_{i}(t) = \left(\sum_{k=1}^{N} g_{k} 1_{Q_{k}(i)} \{X(t)\} + \gamma_{i} + \gamma\right) dt + dW_{i}.(t)$$

M.-O. Hongler (EPFL)

April 24, 2017 51 / 54

<ロ> <四> <四> <四> <四> <四</p>

Tight, "semi-tight" and unstable regimes $(\beta_c^+ \le \beta < \beta_c^-)$

 \Downarrow Stability character depends on the realisation of β defining the dZ (t)

Tight regime

"Semi-tight"regime

Unstable regime

End position distributions (t = 10, N = 3 and g = 1):

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 52 / 54

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

R. Filliger, O. Gallay and MOH, "Local versus nonlocal barycentric interaction in 1D agents' dynamics", Math, Biosciences and Engineering **11**(2), (2014).

O. Gallay, F. Hashemi and MOH, "*Mean-field games versus exogenous strategies for economic growth*", submitted to J. Economic Th. (2016), also (on ArXiv).

R. Filliger and MOH "On Jump-Diffusive Driving Noise Sources - Some Explicit Results and Applications", Methodology and Computing in Applied Probability, (2017).

G. Sartoretti and MOH *"Interacting Brownian swarms: Some analytical results"*, Entropy **18**(1), (2016).

J.-L. Arcand, D. Rinaldo and MOH *"Dynamic Mean Preserving Spreads"*, Preprint - Graduate institute - Geneva, (2016), (on ArXiv).

G. Sartoretti, R. Filliger and MOH, *"The estimation problem and heterogenous swarms of autonomous agents"*, Stochastic Modeling Techniques and Data Analysis - Proceed. Conf., (2014).

< 日 > < 同 > < 回 > < 回 > < □ > <

Main coauthors and "Brainstorming" team

Roger Filliger-(Bern Applied Univ.)

Guillaume Sartoretti-(Robotics - Carnegie Mellon Univ.)

Olivier Gallay-(HEC-Univ. Lausanne)

Jean-Louis Arcand-(Graduate Inst. Geneva- Economy)

MOH-(EPF-Lausanne)

Fariba Hashemi-(Karolinska Inst. and ETHZ - Economy)

M.-O. Hongler (EPFL)

Swarm dynamics

April 24, 2017 54 / 54