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The dynamics (formally):

-Forn>1letX,={1,...,n—1}
- We denote the process by {n; : t > 0} which has state space

Q= OSI
- The infinitesimal generator £, = L,0 + L, is given on
f:Q,— R, by
n—2
(Laof)m) = 3 (Farott) = £(m)
se=ll

n
xe{1,n—1}

where for x = 0,1, cx(n) = {rx(l =n(x))+ (1 - rx)n(x)},
n=a«aandr,=20.



Invariant measures

- If @ = B = p the Bernoulli product measures are invariant:

vp{n : n(x) =1} = p.

- If a # B the stationary measure uss is not known.

Questions:

Hydrodynamics? Studied by Baldasso et al.
Fluctuations? When 6 = 0, studied by Landim et al.

What about 0 > 07
Here we give the answer for 6 = 1.
The other cases remain open.

What about non-nearest neighbor jumps?
What is known?




Hydrodynamic Limit:

e For n € Qp let W?(U C/U) Zx 1 ntnz( ) x/n(du)‘

e Fix pg : [0,1] — [0, 1] and p, such that for every § > 0 and
every continuous function f : [0,1] — R,

n—1 1
%Z:lf(%)n(x) %Hoo/o f(u) po(u)du, (1)

wrt g Then for any t > 0, 7] — p(t, u)du, as n — oo, where
p(t, u) evolves according to the heat equation

atp(tv U) = al%p(t? U)

with different type of boundary conditions depending on the
value of 6.



Hydrodynamic Equations:

e O < 1: The heat equation with Dirichlet boundary conditions

Oep(t,u) = 02p(t, u), fort >0, ue(0,1),
p(t,0)=a p(t,1)=p, fort>D0.

e 0 = 1: The heat equation with Robin boundary conditions

Oep(t, u) = 02p(t,u), fort >0, ue(0,1),
Oup(t,0) = p(t,0) —a, fort>0,
Oup(t,1) = — p(t,1), fort>0.

e 0 > 1: The heat equation with Neumann boundary conditions

Oep(t,u) = 02p(t, u), for t >0, ue(0,1),
Oup(t,0) = dyp(t,1) =0, fort>0.



Fluctuations: the case 0 = 1.

Definition (The space of test functions)

Let S denote the set of functions f € C*°([0, 1]) such that for any
k € NU {0} it holds that

07<THF(0) = 02¢F(0) and OFFFIF(1) = —dFFF(1).

Definition (Density fluctuation field)

We define the density fluctuation field )" as the time-trajectory of
linear functionals acting on functions f € S as

1 n—1

VE(F) = = 32 ) (e () — By e (X))

x=1



What are the conditions on the initial state x,?

- For each n € N, the measure p, is associated to a
measurable profile pg : [0,1] — [0, 1] in the sense of (1).

- There exists a constant C; > 0 not depending on n such
that for pg(x) = Ej,[no(x)]
G
n X
L x| < ==
max | pg(x) = po(3)| <

- There exists a constant C; > 0 not depending on n such
that for

©0(x,¥) = Ep, [n(x)n(y)] — po(x)po(y)

it holds that

G

n
< —.
oM eyl < =



Non-equilibrium fluctuations: the case 0 = 1.

For each n > 1, let @, be the probability measure on
D([0, T],S’) induced by V" and pp,.
Theorem (Non-equilibrium fluctuations)

The sequence of measures {Q,}nen is tight on D([0, T],S’) and
all limit points Q are p.m. concentrated on paths ). satisfying

Ve(f) = Yo(Tef) + Wi(f),

for any f € S. Above T; : S — S is the semigroup associated to
the hydrodynamic equation with o = 3 = 0, and W,(f) is a mean
zero Gaussian variable of variance [; ]\VTt,,f\\%2(pr)dr, where
p(t, u) is the solution of the hydrodynamic equation, and

x(u) = u(1l — u). Moreover, Yo and W; are uncorrelated in the

sense that EQ{yo(f) Wt(g)} = 0forall f,ges.



Above, for r > 0

(f,8)12(p) =[x — (1 —2a)p(r,0)] £(0)g(0)
+[8—(1—28)n(r,1)] f(1)g(1)

+-j£12x<p(r,u>>f(u)g(u)du.

Definition
Let A : S — S be the Laplacian operator which is defined on
feSas
O2f(u), if ue(0,1),
Af(u) = { 92f(0T), if u=0,
02f(17), ifu=1.

Above, 92f(aT) denotes the side limits at the point a. The
definition of the operator V : § — C*°[0, 1] is analogous.



Theorem (Ornstein-Uhlenbeck limit)

Assume that the sequence of initial density fields {){}nen
converges, as n — oo, to a mean-zero Gaussian field )y with
covariance given on f,g € S by

lim B, [8(YE(8)] = E [Yo(AMa(e)] = olf.g).

Then, the sequence {Qn}nen converges, as n — oo, to a
generalized Ornstein-Uhlenbeck process, which is the formal
solution of the equation:

0:r = AVedt+\/2x(pe) VW,

where W, is a space-time white noise of unit variance. As a
consequence, the covariance of the limit field ); is given on
f,geS by

E[yt(f)ys(g)] = ()’(th, ng) +/0 <VthrfaVTsfrg>L2(pr)dr'



Corollary (Local Gibbs state)

Fix a Lipschitz profile po : [0,1] — [0, 1] and suppose to start the
process from a Bernoulli product measure given by

pnin i n(x) = 1} = po(%). Then, the previous theorem remains in
force and the covariance in this case is given on f,g € S by

EDO@ = [ x(pou)) Fw)ae) do
+/OS<VTt,f,VT5rg>L2(pr)dr,

where p(t, u) is the solution of the hydrodynamic equation with
initial condition given by po(-).



Stationary fluctuations: the case 6 = 1.

Theorem (Stationary fluctuations)

Suppose to start the process from ss with o # 3. Then, V"
converges to the centered Gaussian field )) with covariance given
onf,geS by:

EL V@] = [ 1) (u)s(u) du
- (55 [ 18 wlstw) a

2(26 + a)(26 — 1) /Oﬁf(l)Ttg(l) dt
e 0

L AB+20)(20 - 1) /'O%f(O)Ttg(O) dt,
3 Jo

with p(u) = (‘FT“) u+ ‘3+32“, which is the stationary solution of
the hydrodynamic equation.



How do we prove the results?

Two things to do:
- Tightness;

- Characterization of limit points.

Let us focus on the second point.



Associated martingale.

Let ¢ : [0,1] — R be a test function and note that

M2(8) = Yi($) — Yo($) - /0 2LV ($) ds
is a martingale where
PLYI(¢) = Z 0(%) (nera(x) = p2(x) ) ds

+Vn [vm )= 6(2)] (nere (1) — p2(1))
+V/n [$(252) + V7 6(1)] (mare(n — 1) = p(n — 1)) .

Note that the second term at the right hand side of the previous
expression is Y(Ap¢). Above, we have used the notation

Vig(x) = n|s()=¢(%)| and V,é(x) = n[e(%)-e(5)] -




The empirical profile.

Fix an initial measure u, in Q,. For x € X, and t > 0, let
pIx) = By [ema(x)]
We extend this definition to the boundary by setting
pf(0) = aand pf(n) = B, forallt >0.

A simple computation shows that pf(-) is a solution of the
discrete equation given by

8tp?(X) = (n2Bnpg)(X)7 XEZ,,, tZO,
pf(0) =a, t>0,
pE(n) =GN

where the operator B, acts on functions f : ¥, U {0,n} — R as

Zﬁxy y)—f(x)), forxeX,,



where

1, if [y—x|=1land x,y € %,,
gg,y: %7 ifX:]_,y:Oandxzn_]_7y:n7
0, otherwise.
Proposition

Let p{(-) be as above. Then, there exists C > 0 which does not
depend on n such that

n C
PEx+1) =Pt <

for all x € {1,...,n—2}, uniformly in t > 0.



The correlation estimate.

Definition (Two-point correlation function)

For each x,y € ,, x <y, and t € [0, T], we define the two-point
correlation function as

i (x,y) = B[ ()nen2 (v)] = pi (x5 (y) 5
where p{ is as above. Moreover, for x =0 or y = n, we set
ei(x,y) =0,

Proposition
There exists C > 0 such that

sup max |of(x,y)| <
t>0 (x,¥)EVa

S || @)

where V,, = {(x,y); x,y e N0 < x <y < n}.



If jumps are arbitrarily big? (Joint with C. Bernardin and B.

Oviedo (University of Nice))

Let v > 2 and p(-) be a translation invariant transition
probability given at z € Z by

Sy
s { e 20

0, z=0,
h 2 S ar tric it ;
where ¢, = ———. Since p(-) is symmetric it is mean zero,
T C(v+1)
that is:
Z zp(z) =0
zEZ

and since 7 > 2 we define its variance by

O',2Y = Zz2p(z) < 00.
z€Z



The infinitesimal generator:

Ln=Lno+ Lnr+ Lpe where

(Lnof)(n Z p(x = y)[f(e*¥n) — f(n)],

X, YEX

(Laef)(n) = 5 Z p(x = y)ex(m: )[f(o™n) — f(n)],
XEX,
y<0

(L)) = — Z p(x = y)ex(n: B)F (o™n) — F(n)]

XEY,
y>n

where

cx(n) == [(1 = m)re + (1 — r)nx)] -



Hydrodynamic Equations:

e O < 1: The heat equation with Dirichlet boundary conditions

dep(t,u) = 2 - 02p(t,u), fort>0,ue(0,1),
p(t,0) =« p(t,l) =l for g0’

e § = 1: The heat equation with Robin boundary conditions
Bepl(t,u) = % Z-02p(t, u), for t >0, ue(0,1),
8up(t,0)—02((, 0)—a), fort>0,

Aup(t,1) = 22(8 — p(t,1)), for t > 0.
Above m =3 -4 yp(y)-
e § > 1: The heat equation with Neumann boundary conditions
Oep(t, u) = = 2 02p(t, u), fort >0, ue(0,1),
Oup(t,0) = Bup(t, 1)=0, fort>0.



What about v € (1,2)?

This is in progress. So far we know that for v € (1,2) and 6 = 0,
we get the fractional heat equation with Dirichlet boundary
conditions:

Aep(t,u) = —(=A)?p(t,u), fort>0,uec(0,1),
p(t,0)=a p(t,1)=7, for t > 0,

where the fractional Laplacian (—A)Y/2 of exponent /2 is
defined on the set of functions f : R — R such that

L]
/mW’du<m

by
(AN e I|m/ 1,_ u‘>5 ) fly )dy

e—0 u| 1+y
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