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Percolation
A simple model for geometric random graphs

Definition
Fix a graph G = (V,E) and p ∈ [0, 1]. Remove each edge e ∈ E independently
with probability p: i.e., percolation is a product measure on {0, 1}E .

Focus of this talk
Percolation on sequences of finite graphs.

Example
The Erdős-Rényi random graph: Take G = Kn (the complete graph on n
vertices). Write G(n, p) for the percolated graph. Study G(n, p) as n→∞
(with p = p(n)→ 0).
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The ERRG phase transition

A double jump transition
Write Cj fo the j-th largest cluster of G(n, p).

For fixed j ≥ 1,
• If p < 1/n we have ∣Cj∣ = Θ(logn) whp [subcricital]
• If p = 1/n we have n−2/3∣Cj∣ is a tight random variable [critical]
• If p > 1/n we have ∣C1∣ = Θ(n) and ∣Cj∣ = Θ(logn) for j ≥ 2 whp
[supercritical]

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

3 / 22



The ERRG phase transition

A double jump transition
Write Cj fo the j-th largest cluster of G(n, p).

For fixed j ≥ 1,
• If p < 1/n we have ∣Cj∣ = Θ(logn) whp [subcricital]

• If p = 1/n we have n−2/3∣Cj∣ is a tight random variable [critical]
• If p > 1/n we have ∣C1∣ = Θ(n) and ∣Cj∣ = Θ(logn) for j ≥ 2 whp
[supercritical]

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

3 / 22



The ERRG phase transition

A double jump transition
Write Cj fo the j-th largest cluster of G(n, p).

For fixed j ≥ 1,
• If p < 1/n we have ∣Cj∣ = Θ(logn) whp [subcricital]

• If p = 1/n we have n−2/3∣Cj∣ is a tight random variable [critical]

• If p > 1/n we have ∣C1∣ = Θ(n) and ∣Cj∣ = Θ(logn) for j ≥ 2 whp
[supercritical]

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

3 / 22



The ERRG phase transition

A double jump transition
Write Cj fo the j-th largest cluster of G(n, p).

For fixed j ≥ 1,
• If p < 1/n we have ∣Cj∣ = Θ(logn) whp [subcricital]
• If p = 1/n we have n−2/3∣Cj∣ is a tight random variable [critical]
• If p > 1/n we have ∣C1∣ = Θ(n) and ∣Cj∣ = Θ(logn) for j ≥ 2 whp
[supercritical]

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

3 / 22



The ERRG phase transition

A double jump transition
Write Cj fo the j-th largest cluster of G(n, p).

For fixed j ≥ 1,
• If p < 1/n we have ∣Cj∣ = Θ(logn) whp [subcricital]
• If p = 1/n we have n−2/3∣Cj∣ is a tight random variable [critical]
• If p > 1/n we have ∣C1∣ = Θ(n) and ∣Cj∣ = Θ(logn) for j ≥ 2 whp
[supercritical]

The critical window
We can zoom in on the phase transition by choosing p = 1+εn

n with εn → 0.
This shows a much richer structure around criticality. [Too much to discuss
in detail here]

3 / 22







Cluster sizes of the critical ERRG
A scaling limit

Theorem [Aldous, 1997]
Fix θ ∈ R.

Let B(t) be a Brownian motion and

Bθ(t) ∶= B(t) + θt − t2

2
(BM w/ parabolic drift)

Rθ(t) ∶= Bθ(t) − inf
0≤u≤t

Bθ(t) (Bθ reflected at 0)

and

(γi(t))i≥1 = the excursions of Rθ ordered s.t. γ1(θ) > γ2(θ) > . . .

Consider the vector of ordered cluster sizes of G(n, 1+θn
−1/3

n ). Then,

( ∣Ci∣
n2/3
)
i≥1

dÐ→ (γi(θ))i≥1
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A graph exploration algorithm
Sketch of the proof (1/3)

(0) Set all vertices to neutral

(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) • If ∃ an active vertex: move token to an active vertex. Call it v. Go to (2)

• If ∄ an active vertex: Go to (1) [explored a component]
• If ∄ a neutral vertex: Stop [explored the graph]

The exploration process
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The exploration process and cluster sizes
Sketch of the proof (2/3)

Set S0 = 0 and Si = Si−1 − 1 + Xi. Observe that
• min{j ∶ Sj = −1} = size of first explored cluster

0
−1
−2

St

size of first cluster size of second cluster

If G(n, 1+θn
−1/3

n ) has

(n−1/3Stn2/3)t≥0
dÐ→ (Bθ(t))t≥0,

then Aldous’ Theorem follows (by relatively standard arguments)
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A scaling limit for (Si)i≥1
Sketch of the proof (3/3)

Set S0 = 0 and Si = Si−1 − 1 + Xi. For G = G(n, p),

Xj ∼ Bin(# neutral vertices, p)

≈ Bin(n−j, 1 + θn
−1/3

n
) ≈ Poi(1+θn−1/3−j/n)

So we get

Si ≈
i
∑
j=1
(Poi(1 + θn−1/3 − j/n) − 1)

≈ Poi(i + iθn−1/3 − i2

2n
) − i

Now set i = tn2/3 and multiply with n−1/3:

n−1/3Stn2/3 ≈ n−1/3 (Poi(tn2/3 + tθn1/3 − 1
2 t

2n1/3) − tn2/3)

≈ n−1/3 (Poi(tn2/3) − tn2/3) + tθ − 1
2 t

2

dÐ→ B(t) + tθ − 1
2 t

2 = Bθ(t)
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Universality

The ERRG universality class
It is conjectured that the ERRG phase transition also holds for many other
sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed
[Bhamidi, Broutin, Sen &Wang ’14] +much more.

For percolation on hypercubes, expanders, high-dimensional tori and
Hamming graphs a lot is known, but mostly about (slightly) sub- and
supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that Kn is
highly symmetric and self-similar, which makes everything easier. For
instance, if we remove a component of size k from G(n, p), the (conditional)
law of what remains is G(n − k, p). This is obviously not true for percolation
on any other graph.
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The main difficulty in going from the ERRG to geometric graphs is that Kn is
highly symmetric and self-similar, which makes everything easier. For
instance, if we remove a component of size k from G(n, p), the (conditional)
law of what remains is G(n − k, p). This is obviously not true for percolation
on any other graph.
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TheHamming graph
Definition of the Hamming graph
H(d,n) is defined as the (d − 1)-fold Cartesian product of Kn,

H(d,n) ≃ Kn × Kn × ⋅ ⋅ ⋅ × Kn

H(d,n) has degreem ∶= d(n − 1) and V ∶= nd vertices.
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The critical window

Theorem [FHHH]
For percolation on H(d,n) with degreem = d(n − 1) and d = 2, 3, . . . , 6,

pH(d,n)c = 1
m
+ 2d2 − 1
2(d − 1)2

1
m2

is a point inside the critical window.
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Critical percolation on the Hamming graph
An ERRG-type scaling limit

Theorem [FHHH]
For percolation on H(d,n) with d = 2, 3, 4, fix θ ∈ R and
p = pH(d,n)c (1 + θV−1/3). Then,

( ∣Ci∣
V2/3 )

i≥1

dÐ→ (γi(θ))i≥1

[Exactly the same as the ERRG!]

About the proof
The proof uses an exploration process, just like Aldous. But there are two
complications:

• Geometry⇒ consecutive steps in the exploration are highly dependent
• Geometry⇒ current cluster is dependent on explored clusters
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About the proof
Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d,n), where particles are killed when
they collide or visit a previously visited site. We call them killed branching
random walks.
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About the proof
Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded
Bin(m, p)-Galton-Watson trees into H(d,n), where particles are killed when
they collide or visit a previously visited site. We call them killed branching
random walks.
Advantages:

• The path between two particles in a (not killed) BRW has the same law
as a simple random walk

• Self-intersections of BRW are fairly easy to estimate
• Intersections between different BRWs are possible to estimate
• We can explore the GW-trees instead of the clusters

Disadvantage:
• Themeasure of killed BRW’s onH(d,n) is much more complicated than
the percolation product measure
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About the proof
Reducing dependence between exploration steps

A two-scale exploration
In Aldous’ ERRG exploration process, we activate the direct neighbors. On
the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first rn ≫ log2 n
generations in the GW-tree. We only activate the boundary. . .
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the Hamming graph, this gives too much dependence. Instead, we explore a
large chunk of the cluster at once, corresponding to the first rn ≫ log2 n
generations in the GW-tree. We only activate the boundary.
Advantage:

• Random walk on H(d,n)mixes fast [tmix(H(d,n)) = O(d logd)], so the
rn-th generation of the BRW is very well mixed⇒ no dependence
between large-scale exploration steps
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• Random walk on H(d,n)mixes fast [tmix(H(d,n)) = O(d logd)], so the
rn-th generation of the BRW is very well mixed⇒ no dependence
between large-scale exploration steps

Disadvantage:
• The number of dead vertices is no longer deterministic. But for the right
choice of rn (not too large or small) the number concentrates.
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About the proof
Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n − k, p)). On the Hamming graph, this is not true.

But the
geometry of the explored clusters does not matter for the probability that a
BRW started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
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About the proof
Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous’ ERRG exploration process, the geometry of the already explored
clusters does not matter much (removing a cluster of size k from G(n, p)
gives G(n− k, p)). On the Hamming graph, this is not true. But the geometry
of the explored clusters does not matter for the probability that a BRW
started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW
started from a uniformly random vertex to exploit this fact.
Advantage:

• The sticky coupling for BRW on the Hamming graph is very quick: whp
only a few vertices do not couple (at most log2 n≪ rn)

Disadvantage:
• Many different processes and couplings going on at the same time
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Thank you
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