Critical percolation on the Hamming graph

Tim Hulshof
Eindhoven University of Technology

Joint work with Lorenzo Federico, Remco van der Hofstad \& Frank den Hollander

November 4, 2016

Percolation

A simple model for geometric random graphs

Definition

Fix a graph $G=(\mathcal{V}, \mathcal{E})$ and $p \in[0,1]$. Remove each edge $e \in \mathcal{E}$ independently with probability p : i.e., percolation is a product measure on $\{0,1\}^{\mathcal{E}}$.

Percolation

A simple model for geometric random graphs

Definition

Fix a graph $G=(\mathcal{V}, \mathcal{E})$ and $p \in[0,1]$. Remove each edge $e \in \mathcal{E}$ independently with probability p : i.e., percolation is a product measure on $\{0,1\}^{\mathcal{E}}$.

Focus of this talk
Percolation on sequences of finite graphs.

Percolation

A simple model for geometric random graphs

Definition

Fix a graph $G=(\mathcal{V}, \mathcal{E})$ and $p \in[0,1]$. Remove each edge $e \in \mathcal{E}$ independently with probability p : i.e., percolation is a product measure on $\{0,1\}^{\mathcal{E}}$.

Focus of this talk
Percolation on sequences of finite graphs.

Example

The Erdős-Rényi random graph: Take $G=K_{n}$ (the complete graph on n vertices). Write $G(n, p)$ for the percolated graph. Study $G(n, p)$ as $n \rightarrow \infty$ (with $p=p(n) \rightarrow 0$).

The ERRG phase transition

A double jump transition
Write \mathcal{C}_{j} fo the j-th largest cluster of $G(n, p)$.

The ERRG phase transition

A double jump transition
Write \mathcal{C}_{j} fo the j-th largest cluster of $G(n, p)$.
For fixed $j \geq 1$,

- If $p<1 / n$ we have $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ whp [subcricital]

The ERRG phase transition

A double jump transition
Write \mathcal{C}_{j} fo the j-th largest cluster of $G(n, p)$.
For fixed $j \geq 1$,

- If $p<1 / n$ we have $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ whp [subcricital]
- If $p>1 / n$ we have $\left|\mathcal{C}_{1}\right|=\Theta(n)$ and $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ for $j \geq 2 \mathrm{whp}$ [supercritical]

The ERRG phase transition

A double jump transition
Write \mathcal{C}_{j} fo the j-th largest cluster of $G(n, p)$.
For fixed $j \geq 1$,

- If $p<1 / n$ we have $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ whp [subcricital]
- If $p=1 / n$ we have $n^{-2 / 3}\left|\mathcal{C}_{j}\right|$ is a tight random variable [critical]
- If $p>1 / n$ we have $\left|\mathcal{C}_{1}\right|=\Theta(n)$ and $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ for $j \geq 2 \mathrm{whp}$ [supercritical]

The ERRG phase transition

A double jump transition

Write \mathcal{C}_{j} fo the j-th largest cluster of $G(n, p)$.
For fixed $j \geq 1$,

- If $p<1 / n$ we have $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ whp [subcricital]
- If $p=1 / n$ we have $n^{-2 / 3}\left|\mathcal{C}_{j}\right|$ is a tight random variable [critical]
- If $p>1 / n$ we have $\left|\mathcal{C}_{1}\right|=\Theta(n)$ and $\left|\mathcal{C}_{j}\right|=\Theta(\log n)$ for $j \geq 2$ whp [supercritical]

The critical window

We can zoom in on the phase transition by choosing $p=\frac{1+\varepsilon_{n}}{n}$ with $\varepsilon_{n} \rightarrow 0$. This shows a much richer structure around criticality. [Too much to discuss in detail here]

Cluster sizes of the critical ERRG

A scaling limit
Theorem [Aldous, 1997]
Fix $\theta \in \mathbb{R}$.

Cluster sizes of the critical ERRG

A scaling limit
Theorem [Aldous, 1997]
Fix $\theta \in \mathbb{R}$. Let $B(t)$ be a Brownian motion and

$$
B^{\theta}(t):=B(t)+\theta t-\frac{t^{2}}{2} \quad(\mathrm{BM} \text { w/ parabolic drift })
$$

Cluster sizes of the critical ERRG

A scaling limit
Theorem [Aldous, 1997]
Fix $\theta \in \mathbb{R}$. Let $B(t)$ be a Brownian motion and

$$
\begin{aligned}
& B^{\theta}(t):=B(t)+\theta t-\frac{t^{2}}{2} \quad(\mathrm{BM} \text { w/ parabolic drift }) \\
& R^{\theta}(t):=B^{\theta}(t)-\inf _{0 \leq u \leq t} B^{\theta}(t) \quad\left(B^{\theta} \text { reflected at } 0\right)
\end{aligned}
$$

Cluster sizes of the critical ERRG

A scaling limit
Theorem [Aldous, 1997]
Fix $\theta \in \mathbb{R}$. Let $B(t)$ be a Brownian motion and

$$
\begin{aligned}
& B^{\theta}(t):=B(t)+\theta t-\frac{t^{2}}{2} \quad(\mathrm{BM} \text { w/ parabolic drift }) \\
& R^{\theta}(t):=B^{\theta}(t)-\inf _{0 \leq u \leq t} B^{\theta}(t) \quad\left(B^{\theta} \text { reflected at } 0\right)
\end{aligned}
$$

and

$$
\left(\gamma_{i}(t)\right)_{i \geq 1}=\text { the excursions of } R^{\theta} \text { ordered s.t. } \gamma_{1}(\theta)>\gamma_{2}(\theta)>\ldots
$$

Cluster sizes of the critical ERRG

A scaling limit
Theorem [Aldous, 1997]
Fix $\theta \in \mathbb{R}$. Let $B(t)$ be a Brownian motion and

$$
\begin{aligned}
& B^{\theta}(t):=B(t)+\theta t-\frac{t^{2}}{2} \quad(\mathrm{BM} \text { w/ parabolic drift }) \\
& R^{\theta}(t):=B^{\theta}(t)-\inf _{0 \leq u \leq t} B^{\theta}(t) \quad\left(B^{\theta} \text { reflected at } 0\right)
\end{aligned}
$$

and

$$
\left(\gamma_{i}(t)\right)_{i \geq 1}=\text { the excursions of } R^{\theta} \text { ordered s.t. } \gamma_{1}(\theta)>\gamma_{2}(\theta)>\ldots
$$

Consider the vector of ordered cluster sizes of $G\left(n, \frac{1+\theta n^{-1 / 3}}{n}\right)$.

Cluster sizes of the critical ERRG

A scaling limit

Theorem [Aldous, 1997]
Fix $\theta \in \mathbb{R}$. Let $B(t)$ be a Brownian motion and

$$
\begin{aligned}
& B^{\theta}(t):=B(t)+\theta t-\frac{t^{2}}{2} \quad(\mathrm{BM} \text { w/ parabolic drift }) \\
& R^{\theta}(t):=B^{\theta}(t)-\inf _{0 \leq u \leq t} B^{\theta}(t) \quad\left(B^{\theta} \text { reflected at } 0\right)
\end{aligned}
$$

and

$$
\left(\gamma_{i}(t)\right)_{i \geq 1}=\text { the excursions of } R^{\theta} \text { ordered s.t. } \gamma_{1}(\theta)>\gamma_{2}(\theta)>\ldots
$$

Consider the vector of ordered cluster sizes of $G\left(n, \frac{1+\theta n^{-1 / 3}}{n}\right)$. Then,

$$
\left(\frac{\left|\mathcal{C}_{i}\right|}{n^{2 / 3}}\right)_{i \geq 1} \xrightarrow{\mathrm{~d}}\left(\gamma_{i}(\theta)\right)_{i \geq 1}
$$

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead

A graph exploration algorithm

Sketch of the proof ($1 / 3$)

(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) - If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) . If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

- If \nexists an active vertex: Go to (1) [explored a component]

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) . If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

- If \nexists an active vertex: Go to (1) [explored a component]
- If \nexists a neutral vertex: Stop [explored the graph]

A graph exploration algorithm

Sketch of the proof ($1 / 3$)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) . If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

- If \nexists an active vertex: Go to (1) [explored a component]
- If \nexists a neutral vertex: Stop [explored the graph]

The exploration process

A graph exploration algorithm

Sketch of the proof ($1 / 3$)

(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) - If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

- If \nexists an active vertex: Go to (1) [explored a component]
- If \nexists a neutral vertex: Stop [explored the graph]

The exploration process
Define the stochastic process

$$
S_{0}=0, \quad S_{t}=S_{i-1}-1+X_{i}
$$

A graph exploration algorithm

Sketch of the proof ($1 / 3$)

(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) - If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

- If \nexists an active vertex: Go to (1) [explored a component]
- If \nexists a neutral vertex: Stop [explored the graph]

The exploration process
Define the stochastic process

$$
S_{0}=0, \quad S_{i}=S_{i-1}-\underset{\substack{1 \\ \text { kill token vertex }}}{+} X_{i}
$$

A graph exploration algorithm

Sketch of the proof (1/3)
(0) Set all vertices to neutral
(1) Put a token at a neutral vertex. Call it v
(2) Set all neutral neighbors of v to active
(3) Set v to dead
(4) - If \exists an active vertex: move token to an active vertex. Call it v. Go to (2)

- If \nexists an active vertex: Go to (1) [explored a component]
- If \nexists a neutral vertex: Stop [explored the graph]

The exploration process
Define the stochastic process

$$
S_{0}=0, \quad S_{i}=S_{i-1}-\quad 1 \quad+\underset{\substack{\uparrow \\ \text { new active vertices }}}{X_{i}}
$$

The exploration process and cluster sizes

Sketch of the proof (2/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. Observe that

- $\min \left\{j: S_{j}=-1\right\}=$ size of first explored cluster

The exploration process and cluster sizes

Sketch of the proof (2/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. Observe that

- $\min \left\{j: S_{j}=-1\right\}=$ size of first explored cluster

If $G\left(n, \frac{1+\theta n^{-1 / 3}}{n}\right)$ has

$$
\left(n^{-1 / 3} S_{t n^{2} / 3}\right)_{t \geq 0} \xrightarrow{\mathrm{~d}}\left(B^{\theta}(t)\right)_{t \geq 0},
$$

then Aldous' Theorem follows (by relatively standard arguments)

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices, p)

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices, $p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right)$

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$
So we get

$$
S_{i} \approx \sum_{j=1}^{i}\left(\operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)-1\right)
$$

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)
Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$
So we get

$$
S_{i} \approx \sum_{j=1}^{i}\left(\operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)-1\right) \approx \operatorname{Poi}\left(i+i \theta n^{-1 / 3}-\frac{i^{2}}{2 n}\right)-i
$$

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)

Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$
So we get

$$
S_{i} \approx \sum_{j=1}^{i}\left(\operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)-1\right) \approx \operatorname{Poi}\left(i+i \theta n^{-1 / 3}-\frac{i^{2}}{2 n}\right)-i
$$

Now set $i=t n^{2 / 3}$ and multiply with $n^{-1 / 3}$:

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)

Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$
So we get

$$
S_{i} \approx \sum_{j=1}^{i}\left(\operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)-1\right) \approx \operatorname{Poi}\left(i+i \theta n^{-1 / 3}-\frac{i^{2}}{2 n}\right)-i
$$

Now set $i=t n^{2 / 3}$ and multiply with $n^{-1 / 3}$:

$$
n^{-1 / 3} S_{t n^{2 / 3}} \approx n^{-1 / 3}\left(\operatorname{Poi}\left(t n^{2 / 3}+t \theta n^{1 / 3}-\frac{1}{2} t^{2} n^{1 / 3}\right)-t n^{2 / 3}\right)
$$

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)

Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$
So we get

$$
S_{i} \approx \sum_{j=1}^{i}\left(\operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)-1\right) \approx \operatorname{Poi}\left(i+i \theta n^{-1 / 3}-\frac{i^{2}}{2 n}\right)-i
$$

Now set $i=t n^{2 / 3}$ and multiply with $n^{-1 / 3}$:

$$
\begin{aligned}
n^{-1 / 3} S_{t n^{2 / 3}} & \approx n^{-1 / 3}\left(\operatorname{Poi}\left(t n^{2 / 3}+t \theta n^{1 / 3}-\frac{1}{2} t^{2} n^{1 / 3}\right)-t n^{2 / 3}\right) \\
& \approx n^{-1 / 3}\left(\operatorname{Poi}\left(t n^{2 / 3}\right)-t n^{2 / 3}\right)+t \theta-\frac{1}{2} t^{2}
\end{aligned}
$$

A scaling limit for $\left(S_{i}\right)_{i \geq 1}$

Sketch of the proof (3/3)

Set $S_{0}=0$ and $S_{i}=S_{i-1}-1+X_{i}$. For $G=G(n, p)$,
$X_{j} \sim \operatorname{Bin}(\#$ neutral vertices,$p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1 / 3}}{n}\right) \approx \operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)$
So we get

$$
S_{i} \approx \sum_{j=1}^{i}\left(\operatorname{Poi}\left(1+\theta n^{-1 / 3}-j / n\right)-1\right) \approx \operatorname{Poi}\left(i+i \theta n^{-1 / 3}-\frac{i^{2}}{2 n}\right)-i
$$

Now set $i=t n^{2 / 3}$ and multiply with $n^{-1 / 3}$:

$$
\begin{aligned}
n^{-1 / 3} S_{t n^{2 / 3}} & \approx n^{-1 / 3}\left(\operatorname{Poi}\left(t n^{2 / 3}+t \theta n^{1 / 3}-\frac{1}{2} t^{2} n^{1 / 3}\right)-t n^{2 / 3}\right) \\
& \approx n^{-1 / 3}\left(\operatorname{Poi}\left(t n^{2 / 3}\right)-t n^{2 / 3}\right)+t \theta-\frac{1}{2} t^{2} \\
& \xrightarrow{\mathrm{~d}} B(t)+t \theta-\frac{1}{2} t^{2}=B^{\theta}(t)
\end{aligned}
$$

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other sparse, high-dimensional random graph models.

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed [Bhamidi, Broutin, Sen \& Wang '14] + much more.

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed [Bhamidi, Broutin, Sen \& Wang '14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and Hamming graphs a lot is known, but mostly about (slightly) sub- and supercritical percolation. The critical window is difficult.

Universality

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other sparse, high-dimensional random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed [Bhamidi, Broutin, Sen \& Wang '14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and Hamming graphs a lot is known, but mostly about (slightly) sub- and supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that K_{n} is highly symmetric and self-similar, which makes everything easier. For instance, if we remove a component of size k from $G(n, p)$, the (conditional) law of what remains is $G(n-k, p)$. This is obviously not true for percolation on any other graph.

The Hamming graph

Definition of the Hamming graph
$H(d, n)$ is defined as the $(d-1)$-fold Cartesian product of K_{n},

$$
H(d, n) \simeq K_{n} \times K_{n} \times \cdots \times K_{n}
$$

$H(d, n)$ has degree $m:=d(n-1)$ and $V:=n^{d}$ vertices.

The critical window

Theorem [FHHH]

For percolation on $H(d, n)$ with degree $m=d(n-1)$ and $d=2,3, \ldots, 6$,

$$
p_{c}^{H(d, n)}=\frac{1}{m}+\frac{2 d^{2}-1}{2(d-1)^{2}} \frac{1}{m^{2}}
$$

is a point inside the critical window.

Critical percolation on the Hamming graph

An ERRG-type scaling limit

Theorem [FHHH]
For percolation on $H(d, n)$ with $d=2,3,4$, fix $\theta \in \mathbb{R}$ and $p=p_{c}^{H(d, n)}\left(1+\theta V^{-1 / 3}\right)$. Then,

$$
\left(\frac{\left|\mathcal{C}_{i}\right|}{V^{2 / 3}}\right)_{i \geq 1} \xrightarrow{\mathrm{~d}}\left(\gamma_{i}(\theta)\right)_{i \geq 1}
$$

Critical percolation on the Hamming graph

An ERRG-type scaling limit

Theorem [FHHH]
For percolation on $H(d, n)$ with $d=2,3,4$, fix $\theta \in \mathbb{R}$ and $p=p_{c}^{H(d, n)}\left(1+\theta V^{-1 / 3}\right)$. Then,

$$
\left(\frac{\left|\mathcal{C}_{i}\right|}{V^{2 / 3}}\right)_{i \geq 1} \xrightarrow{\mathrm{~d}}\left(\gamma_{i}(\theta)\right)_{i \geq 1}
$$

[Exactly the same as the ERRG!]

Critical percolation on the Hamming graph

An ERRG-type scaling limit

Theorem [FHHH]
For percolation on $H(d, n)$ with $d=2,3,4$, fix $\theta \in \mathbb{R}$ and $p=p_{c}^{H(d, n)}\left(1+\theta V^{-1 / 3}\right)$. Then,

$$
\left(\frac{\left|\mathcal{C}_{i}\right|}{V^{2 / 3}}\right)_{i \geq 1} \xrightarrow{\mathrm{~d}}\left(\gamma_{i}(\theta)\right)_{i \geq 1}
$$

[Exactly the same as the ERRG!]

About the proof
The proof uses an exploration process, just like Aldous. But there are two complications:

Critical percolation on the Hamming graph

An ERRG-type scaling limit

Theorem [FHHH]
For percolation on $H(d, n)$ with $d=2,3,4$, fix $\theta \in \mathbb{R}$ and $p=p_{c}^{H(d, n)}\left(1+\theta V^{-1 / 3}\right)$. Then,

$$
\left(\frac{\left|\mathcal{C}_{i}\right|}{V^{2 / 3}}\right)_{i \geq 1} \xrightarrow{\mathrm{~d}}\left(\gamma_{i}(\theta)\right)_{i \geq 1}
$$

[Exactly the same as the ERRG!]

About the proof
The proof uses an exploration process, just like Aldous. But there are two complications:

- Geometry \Rightarrow consecutive steps in the exploration are highly dependent

Critical percolation on the Hamming graph

An ERRG-type scaling limit

Theorem [FHHH]
For percolation on $H(d, n)$ with $d=2,3,4$, fix $\theta \in \mathbb{R}$ and $p=p_{c}^{H(d, n)}\left(1+\theta V^{-1 / 3}\right)$. Then,

$$
\left(\frac{\left|\mathcal{C}_{i}\right|}{V^{2 / 3}}\right)_{i \geq 1} \xrightarrow{\mathrm{~d}}\left(\gamma_{i}(\theta)\right)_{i \geq 1}
$$

[Exactly the same as the ERRG!]

About the proof
The proof uses an exploration process, just like Aldous. But there are two complications:

- Geometry \Rightarrow consecutive steps in the exploration are highly dependent
- Geometry \Rightarrow current cluster is dependent on explored clusters

About the proof

Percolation $=$ killed branching random walks

We describe percolation as a collection of randomly embedded $\operatorname{Bin}(m, p)$-Galton-Watson trees into $H(d, n)$, where particles are killed when they collide or visit a previously visited site. We call them killed branching random walks.

About the proof

Percolation $=$ killed branching random walks
We describe percolation as a collection of randomly embedded $\operatorname{Bin}(m, p)$-Galton-Watson trees into $H(d, n)$, where particles are killed when they collide or visit a previously visited site. We call them killed branching random walks.

Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk

About the proof

Percolation $=$ killed branching random walks
We describe percolation as a collection of randomly embedded $\operatorname{Bin}(m, p)$-Galton-Watson trees into $H(d, n)$, where particles are killed when they collide or visit a previously visited site. We call them killed branching random walks.
Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate

About the proof

Percolation $=$ killed branching random walks
We describe percolation as a collection of randomly embedded $\operatorname{Bin}(m, p)$-Galton-Watson trees into $H(d, n)$, where particles are killed when they collide or visit a previously visited site. We call them killed branching random walks.
Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate
- Intersections between different BRWs are possible to estimate

About the proof

Percolation $=$ killed branching random walks
We describe percolation as a collection of randomly embedded $\operatorname{Bin}(m, p)$-Galton-Watson trees into $H(d, n)$, where particles are killed when they collide or visit a previously visited site. We call them killed branching random walks.
Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate
- Intersections between different BRWs are possible to estimate
- We can explore the GW-trees instead of the clusters

About the proof

```
Percolation = killed branching random walks
```

We describe percolation as a collection of randomly embedded $\operatorname{Bin}(m, p)$-Galton-Watson trees into $H(d, n)$, where particles are killed when they collide or visit a previously visited site. We call them killed branching random walks.

Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate
- Intersections between different BRWs are possible to estimate
- We can explore the GW-trees instead of the clusters

Disadvantage:

- The measure of killed BRW's on $H(d, n)$ is much more complicated than the percolation product measure

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_{n} \gg \log ^{2} n$ generations in the GW-tree. We only activate the boundary.

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_{n} \gg \log ^{2} n$ generations in the GW-tree. We only activate the boundary.

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_{n} \gg \log ^{2} n$ generations in the GW-tree. We only activate the boundary. Advantage:

- Random walk on $H(d, n)$ mixes fast $\left[t_{\text {mix }}(H(d, n))=O(d \log d)\right]$, so the r_{n}-th generation of the BRW is very well mixed \Rightarrow no dependence between large-scale exploration steps

About the proof

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_{n} \gg \log ^{2} n$ generations in the GW-tree. We only activate the boundary.

Advantage:

- Random walk on $H(d, n)$ mixes fast $\left[t_{\text {mix }}(H(d, n))=O(d \log d)\right]$, so the r_{n}-th generation of the BRW is very well mixed \Rightarrow no dependence between large-scale exploration steps
Disadvantage:
- The number of dead vertices is no longer deterministic. But for the right choice of r_{n} (not too large or small) the number concentrates.

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from $G(n, p)$ gives $G(n-k, p)$). On the Hamming graph, this is not true.

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from $G(n, p)$ gives $G(n-k, p)$). On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a randomly chosen vertex hits them.

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from $G(n, p)$ gives $G(n-k, p))$. On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW started from a uniformly random vertex to exploit this fact.

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from $G(n, p)$ gives $G(n-k, p)$). On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW started from a uniformly random vertex to exploit this fact.

Advantage:

- The sticky coupling for BRW on the Hamming graph is very quick: whp only a few vertices do not couple (at most $\log ^{2} n \ll r_{n}$)

About the proof

Reducing dependence between current cluster and explored clusters

A sticky coupling
In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from $G(n, p)$ gives $G(n-k, p))$. On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a randomly chosen vertex hits them.
We use a sticky coupling between the actual BRW exploration and a BRW started from a uniformly random vertex to exploit this fact.

Advantage:

- The sticky coupling for BRW on the Hamming graph is very quick: whp only a few vertices do not couple (at most $\log ^{2} n \ll r_{n}$)
Disadvantage:
- Many different processes and couplings going on at the same time

Thank you

