Tim Hulshof Eindhoven University of Technology

Joint work with Lorenzo Federico, Remco van der Hofstad & Frank den Hollander

November 4, 2016

Percolation

A simple model for geometric random graphs

Definition

Fix a graph $G = (\mathcal{V}, \mathcal{E})$ and $p \in [0, 1]$. Remove each edge $e \in \mathcal{E}$ independently with probability p: i.e., percolation is a product measure on $\{0, 1\}^{\mathcal{E}}$.

Percolation

A simple model for geometric random graphs

Definition

Fix a graph $G = (\mathcal{V}, \mathcal{E})$ and $p \in [0, 1]$. Remove each edge $e \in \mathcal{E}$ independently with probability p: i.e., percolation is a product measure on $\{0, 1\}^{\mathcal{E}}$.

Focus of this talk

Percolation on sequences of finite graphs.

Percolation

A simple model for geometric random graphs

Definition

Fix a graph $G = (\mathcal{V}, \mathcal{E})$ and $p \in [0, 1]$. Remove each edge $e \in \mathcal{E}$ independently with probability p: i.e., percolation is a product measure on $\{0, 1\}^{\mathcal{E}}$.

Focus of this talk

Percolation on sequences of finite graphs.

Example

The *Erdős-Rényi random graph:* Take $G = K_n$ (the complete graph on n vertices). Write G(n, p) for the percolated graph. Study G(n, p) as $n \to \infty$ (with $p = p(n) \to 0$).

A double jump transition Write C_j fo the *j*-th largest cluster of G(n, p).

A double jump transition

Write C_j fo the *j*-th largest cluster of G(n, p).

For fixed $j \ge 1$,

• If p < 1/n we have $|C_j| = \Theta(\log n)$ whp [subcricital]

A double jump transition

Write C_j fo the *j*-th largest cluster of G(n, p).

For fixed $j \ge 1$,

- If p < 1/n we have $|C_j| = \Theta(\log n)$ whp [subcricital]
- If p > 1/n we have $|C_1| = \Theta(n)$ and $|C_j| = \Theta(\log n)$ for $j \ge 2$ whp [supercritical]

A double jump transition

Write C_j fo the *j*-th largest cluster of G(n, p).

For fixed $j \ge 1$,

- If p < 1/n we have $|C_j| = \Theta(\log n)$ whp [subcricital]
- If p = 1/n we have $n^{-2/3}|C_j|$ is a tight random variable [critical]
- If p > 1/n we have $|C_1| = \Theta(n)$ and $|C_j| = \Theta(\log n)$ for $j \ge 2$ whp [supercritical]

A double jump transition

Write C_j fo the *j*-th largest cluster of G(n, p).

For fixed $j \ge 1$,

- If p < 1/n we have $|C_j| = \Theta(\log n)$ whp [subcricital]
- If p = 1/n we have $n^{-2/3}|C_j|$ is a tight random variable [critical]
- If p > 1/n we have $|C_1| = \Theta(n)$ and $|C_j| = \Theta(\log n)$ for $j \ge 2$ whp [supercritical]

The critical window

We can zoom in on the phase transition by choosing $p = \frac{1+\varepsilon_n}{n}$ with $\varepsilon_n \to 0$. This shows a much richer structure around criticality. [Too much to discuss in detail here]

A scaling limit

Theorem [Aldous, 1997] Fix $\theta \in \mathbb{R}$.

A scaling limit

Theorem [Aldous, 1997] Fix $\theta \in \mathbb{R}$. Let B(t) be a Brownian motion and

$$B^{\theta}(t) \coloneqq B(t) + \theta t - \frac{t^2}{2}$$
 (BM w/ parabolic drift)

A scaling limit

Theorem [Aldous, 1997] Fix $\theta \in \mathbb{R}$. Let B(t) be a Brownian motion and

 $B^{\theta}(t) := B(t) + \theta t - \frac{t^2}{2} \qquad (BM \text{ w/ parabolic drift})$ $R^{\theta}(t) := B^{\theta}(t) - \inf_{0 \le t \le t} B^{\theta}(t) \qquad (B^{\theta} \text{ reflected at } 0)$

A scaling limit

Theorem [Aldous, 1997] Fix $\theta \in \mathbb{R}$. Let B(t) be a Brownian motion and

 $B^{\theta}(t) := B(t) + \theta t - \frac{t^2}{2} \qquad (BM \text{ w/ parabolic drift})$ $R^{\theta}(t) := B^{\theta}(t) - \inf_{0 \le u \le t} B^{\theta}(t) \qquad (B^{\theta} \text{ reflected at } 0)$

and

 $(\gamma_i(t))_{i\geq 1}$ = the excursions of R^{θ} ordered s.t. $\gamma_1(\theta) > \gamma_2(\theta) > \dots$

A scaling limit

Theorem [Aldous, 1997] Fix $\theta \in \mathbb{R}$. Let B(t) be a Brownian motion and

 $B^{\theta}(t) := B(t) + \theta t - \frac{t^2}{2} \qquad (BM \text{ w/ parabolic drift})$ $R^{\theta}(t) := B^{\theta}(t) - \inf_{0 \le t \le t} B^{\theta}(t) \qquad (B^{\theta} \text{ reflected at } 0)$

and

 $(\gamma_i(t))_{i\geq 1}$ = the excursions of \mathbb{R}^{θ} ordered s.t. $\gamma_1(\theta) > \gamma_2(\theta) > \dots$

Consider the vector of ordered cluster sizes of $G(n, \frac{1+\theta n^{-1/3}}{n})$.

A scaling limit

Theorem [Aldous, 1997] Fix $\theta \in \mathbb{R}$. Let B(t) be a Brownian motion and

 $B^{\theta}(t) := B(t) + \theta t - \frac{t^2}{2} \qquad (BM \text{ w/ parabolic drift})$ $R^{\theta}(t) := B^{\theta}(t) - \inf_{0 \le t \le t} B^{\theta}(t) \qquad (B^{\theta} \text{ reflected at } 0)$

and

$$(\gamma_i(t))_{i\geq 1}$$
 = the excursions of R^{θ} ordered s.t. $\gamma_1(\theta) > \gamma_2(\theta) > \dots$

Consider the vector of ordered cluster sizes of $G(n, \frac{1+\theta n^{-1/3}}{n})$. Then,

$$\left(\frac{|\mathcal{C}_i|}{n^{2/3}}\right)_{i\geq 1} \stackrel{\mathrm{d}}{\longrightarrow} (\gamma_i(\theta))_{i\geq 1}$$

Sketch of the proof (1/3)

(0) Set all vertices to neutral

- (0) Set all vertices to neutral
- (1) Put a token at a neutral vertex. Call it v

- (0) Set all vertices to *neutral*
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*

- (0) Set all vertices to neutral
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead

- (0) Set all vertices to neutral
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)

- (0) Set all vertices to neutral
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)
 - If ∄ an active vertex: Go to (1) [explored a component]

- (0) Set all vertices to *neutral*
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)
 - If ∄ an active vertex: Go to (1) [explored a component]
 - If ∄ a neutral vertex: Stop [explored the graph]

- (0) Set all vertices to *neutral*
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)
 - If ∄ an active vertex: Go to (1) [explored a component]
 - If ∄ a neutral vertex: Stop [explored the graph]
- The exploration process

Sketch of the proof (1/3)

- (0) Set all vertices to *neutral*
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)
 - If ∄ an active vertex: Go to (1) [explored a component]
 - If ∄ a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

$$S_0 = 0,$$
 $S_t = S_{i-1} - 1 + X_i$

Sketch of the proof (1/3)

- (0) Set all vertices to neutral
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)
 - If ∄ an active vertex: Go to (1) [explored a component]
 - If ∄ a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

$$S_0 = 0,$$
 $S_i = S_{i-1} - 1 + X_i$
kill token vertex

Sketch of the proof (1/3)

- (0) Set all vertices to neutral
- (1) Put a token at a neutral vertex. Call it v
- (2) Set all neutral neighbors of *v* to *active*
- (3) Set v to dead
- (4) If \exists an active vertex: move token to an active vertex. Call it *v*. Go to (2)
 - If ∄ an active vertex: Go to (1) [explored a component]
 - If ∄ a neutral vertex: Stop [explored the graph]

The exploration process

Define the stochastic process

$$S_0 = 0,$$
 $S_i = S_{i-1} - 1 + X_i$
new active vertice:

The exploration process and cluster sizes

Sketch of the proof (2/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. Observe that

• $\min\{j: S_j = -1\}$ = size of first explored cluster

The exploration process and cluster sizes

Sketch of the proof (2/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. Observe that

• $\min\{j : S_j = -1\}$ = size of first explored cluster

If $G(n, \frac{1+\theta n^{-1/3}}{n})$ has

$$\left(n^{-1/3}S_{tn^{2/3}}\right)_{t\geq 0} \stackrel{\mathrm{d}}{\longrightarrow} (B^{\theta}(t))_{t\geq 0},$$

then Aldous' Theorem follows (by relatively standard arguments)

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

 $X_j \sim Bin(\# neutral vertices, p)$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \text{Bin}(\# \text{ neutral vertices}, p) \approx \text{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right)$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \text{Bin}(\# \text{ neutral vertices}, p) \approx \text{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \text{Poi}(1+\theta n^{-1/3}-j/n)$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \text{Bin}(\# \text{ neutral vertices}, p) \approx \text{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \text{Poi}(1+\theta n^{-1/3}-j/n)$$

So we get

$$S_i \approx \sum_{j=1}^{i} \left(\mathsf{Poi}(1 + \theta n^{-1/3} - j/n) - 1 \right)$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \operatorname{Bin}(\# \operatorname{neutral vertices}, p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \operatorname{Poi}(1+\theta n^{-1/3}-j/n)$$

So we get

$$S_i \approx \sum_{j=1}^{i} \left(\mathsf{Poi}(1 + \theta n^{-1/3} - j/n) - 1 \right) \approx \mathsf{Poi}\left(i + i\theta n^{-1/3} - \frac{i^2}{2n} \right) - i$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \operatorname{Bin}(\# \operatorname{neutral vertices}, p) \approx \operatorname{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \operatorname{Poi}(1+\theta n^{-1/3}-j/n)$$

So we get

$$S_i \approx \sum_{j=1}^{i} \left(\mathsf{Poi}(1 + \theta n^{-1/3} - j/n) - 1 \right) \approx \mathsf{Poi}\left(i + i\theta n^{-1/3} - \frac{i^2}{2n}\right) - i$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \text{Bin}(\# \text{ neutral vertices}, p) \approx \text{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \text{Poi}(1+\theta n^{-1/3}-j/n)$$

So we get

$$S_i \approx \sum_{j=1}^{i} \left(\mathsf{Poi}(1 + \theta n^{-1/3} - j/n) - 1 \right) \approx \mathsf{Poi}\left(i + i\theta n^{-1/3} - \frac{i^2}{2n}\right) - i$$

$$n^{-1/3}S_{tn^{2/3}} \approx n^{-1/3} \left(\mathsf{Poi}(tn^{2/3} + t\theta n^{1/3} - \frac{1}{2}t^2n^{1/3}) - tn^{2/3} \right)$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \text{Bin}(\# \text{ neutral vertices}, p) \approx \text{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \text{Poi}(1+\theta n^{-1/3}-j/n)$$

So we get

$$S_i \approx \sum_{j=1}^{i} \left(\mathsf{Poi}(1 + \theta n^{-1/3} - j/n) - 1 \right) \approx \mathsf{Poi}\left(i + i\theta n^{-1/3} - \frac{i^2}{2n}\right) - i$$

$$n^{-1/3}S_{tn^{2/3}} \approx n^{-1/3} \left(\mathsf{Poi}(tn^{2/3} + t\theta n^{1/3} - \frac{1}{2}t^2n^{1/3}) - tn^{2/3} \right) \\ \approx n^{-1/3} \left(\mathsf{Poi}(tn^{2/3}) - tn^{2/3} \right) + t\theta - \frac{1}{2}t^2$$

Sketch of the proof (3/3)

Set $S_0 = 0$ and $S_i = S_{i-1} - 1 + X_i$. For G = G(n, p),

$$X_j \sim \text{Bin}(\# \text{ neutral vertices}, p) \approx \text{Bin}\left(n-j, \frac{1+\theta n^{-1/3}}{n}\right) \approx \text{Poi}(1+\theta n^{-1/3}-j/n)$$

So we get

$$S_i \approx \sum_{j=1}^{i} \left(\mathsf{Poi}(1 + \theta n^{-1/3} - j/n) - 1 \right) \approx \mathsf{Poi}\left(i + i\theta n^{-1/3} - \frac{i^2}{2n}\right) - i$$

$$n^{-1/3}S_{tn^{2/3}} \approx n^{-1/3} \left(\mathsf{Poi}(tn^{2/3} + t\theta n^{1/3} - \frac{1}{2}t^2n^{1/3}) - tn^{2/3} \right) \\ \approx n^{-1/3} \left(\mathsf{Poi}(tn^{2/3}) - tn^{2/3} \right) + t\theta - \frac{1}{2}t^2 \\ \xrightarrow{d} B(t) + t\theta - \frac{1}{2}t^2 = B^{\theta}(t) \square$$

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other *sparse, high-dimensional* random graph models.

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other *sparse, high-dimensional* random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed [Bhamidi, Broutin, Sen & Wang '14] + much more.

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other *sparse, high-dimensional* random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed [Bhamidi, Broutin, Sen & Wang '14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and Hamming graphs a lot is known, but mostly about (slightly) sub- and supercritical percolation. The critical window is difficult.

The ERRG universality class

It is conjectured that the ERRG phase transition also holds for many other *sparse, high-dimensional* random graph models.

For Rank-1 inhomogeneous random graphs (a.o.) most parts are confirmed [Bhamidi, Broutin, Sen & Wang '14] + much more.

For percolation on hypercubes, expanders, high-dimensional tori and Hamming graphs a lot is known, but mostly about (slightly) sub- and supercritical percolation. The critical window is difficult.

The main difficulty in going from the ERRG to geometric graphs is that K_n is highly *symmetric* and *self-similar*, which makes everything easier. For instance, if we remove a component of size k from G(n, p), the (conditional) law of what remains is G(n - k, p). This is obviously not true for percolation on any other graph.

The Hamming graph

Definition of the Hamming graph

H(d, n) is defined as the (d-1)-fold Cartesian product of K_n ,

 $H(d,n)\simeq K_n\times K_n\times \cdots \times K_n$

H(d, n) has degree m := d(n - 1) and $V := n^d$ vertices.

The critical window

Theorem [FHHH]

For percolation on H(d, n) with degree m = d(n-1) and d = 2, 3, ..., 6,

$$p_c^{H(d,n)} = \frac{1}{m} + \frac{2d^2 - 1}{2(d-1)^2} \frac{1}{m^2}$$

is a point inside the critical window.

An ERRG-type scaling limit

Theorem [FHHH]

For percolation on H(d, n) with d = 2, 3, 4, fix $\theta \in \mathbb{R}$ and $p = p_c^{H(d,n)}(1 + \theta V^{-1/3})$. Then,

$$\left(\frac{|\mathcal{C}_i|}{V^{2/3}}\right)_{i\geq 1} \stackrel{\mathrm{d}}{\longrightarrow} (\gamma_i(\theta))_{i\geq 1}$$

An ERRG-type scaling limit

Theorem [FHHH]

For percolation on H(d, n) with d = 2, 3, 4, fix $\theta \in \mathbb{R}$ and $p = p_c^{H(d,n)}(1 + \theta V^{-1/3})$. Then,

$$\left(\frac{|\mathcal{C}_i|}{V^{2/3}}\right)_{i\geq 1} \stackrel{\mathrm{d}}{\longrightarrow} (\gamma_i(\theta))_{i\geq 1}$$

[Exactly the same as the ERRG!]

An ERRG-type scaling limit

Theorem [FHHH]

For percolation on H(d, n) with d = 2, 3, 4, fix $\theta \in \mathbb{R}$ and $p = p_c^{H(d,n)}(1 + \theta V^{-1/3})$. Then,

$$\left(\frac{|\mathcal{C}_i|}{V^{2/3}}\right)_{i\geq 1} \stackrel{\mathrm{d}}{\longrightarrow} (\gamma_i(\theta))_{i\geq 1}$$

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two complications:

An ERRG-type scaling limit

Theorem [FHHH]

For percolation on H(d, n) with d = 2, 3, 4, fix $\theta \in \mathbb{R}$ and $p = p_c^{H(d,n)}(1 + \theta V^{-1/3})$. Then,

$$\left(\frac{|\mathcal{C}_i|}{V^{2/3}}\right)_{i\geq 1} \stackrel{\mathrm{d}}{\longrightarrow} (\gamma_i(\theta))_{i\geq 1}$$

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two complications:

• Geometry \Rightarrow consecutive steps in the exploration are highly dependent

An ERRG-type scaling limit

Theorem [FHHH]

For percolation on H(d, n) with d = 2, 3, 4, fix $\theta \in \mathbb{R}$ and $p = p_c^{H(d,n)}(1 + \theta V^{-1/3})$. Then,

$$\left(\frac{|\mathcal{C}_i|}{V^{2/3}}\right)_{i\geq 1} \stackrel{\mathrm{d}}{\longrightarrow} (\gamma_i(\theta))_{i\geq 1}$$

[Exactly the same as the ERRG!]

About the proof

The proof uses an exploration process, just like Aldous. But there are two complications:

- Geometry \Rightarrow consecutive steps in the exploration are highly dependent
- Geometry \Rightarrow current cluster is dependent on explored clusters

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when they collide or visit a previously visited site. We call them *killed branching random walks*.

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when they collide or visit a previously visited site. We call them *killed branching random walks*.

Advantages:

• The path between two particles in a (not killed) BRW has the same law as a simple random walk

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when they collide or visit a previously visited site. We call them *killed branching random walks*.

Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when they collide or visit a previously visited site. We call them *killed branching random walks*.

Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate
- Intersections between different BRWs are possible to estimate

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when they collide or visit a previously visited site. We call them *killed branching random walks*.

Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate
- Intersections between different BRWs are possible to estimate
- We can explore the GW-trees instead of the clusters

Percolation = killed branching random walks

We describe percolation as a collection of randomly embedded Bin(m, p)-Galton-Watson trees into H(d, n), where particles are killed when they collide or visit a previously visited site. We call them *killed branching random walks*.

Advantages:

- The path between two particles in a (not killed) BRW has the same law as a simple random walk
- Self-intersections of BRW are fairly easy to estimate
- Intersections between different BRWs are possible to estimate
- We can explore the GW-trees instead of the clusters

Disadvantage:

• The measure of killed BRW's on H(d, n) is much more complicated than the percolation product measure

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_n \gg \log^2 n$ generations in the GW-tree. We only activate the boundary.

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_n \gg \log^2 n$ generations in the GW-tree. We only activate the boundary.

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_n \gg \log^2 n$ generations in the GW-tree. We only activate the boundary.

Advantage:

Random walk on *H*(*d*, *n*) mixes fast [*t*_{mix}(*H*(*d*, *n*)) = *O*(*d* log *d*)], so the *r_n*-th generation of the BRW is very well mixed ⇒ no dependence between large-scale exploration steps

Reducing dependence between exploration steps

A two-scale exploration

In Aldous' ERRG exploration process, we activate the direct neighbors. On the Hamming graph, this gives too much dependence. Instead, we explore a large chunk of the cluster at once, corresponding to the first $r_n \gg \log^2 n$ generations in the GW-tree. We only activate the boundary.

Advantage:

Random walk on *H*(*d*, *n*) mixes fast [*t*_{mix}(*H*(*d*, *n*)) = *O*(*d* log *d*)], so the *r_n*-th generation of the BRW is very well mixed ⇒ no dependence between large-scale exploration steps

Disadvantage:

• The number of dead vertices is no longer deterministic. But for the right choice of r_n (not too large or small) the number concentrates.

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from G(n,p) gives G(n - k, p)). On the Hamming graph, this is not true.

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from G(n, p) gives G(n - k, p)). On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a *randomly chosen vertex* hits them.

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from G(n, p) gives G(n - k, p)). On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a *randomly chosen vertex* hits them.

We use a *sticky coupling* between the actual BRW exploration and a BRW started from a uniformly random vertex to exploit this fact.

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from G(n, p) gives G(n - k, p)). On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a *randomly chosen vertex* hits them. We use a *sticky coupling* between the actual BRW exploration and a BRW started from a uniformly random vertex to exploit this fact.

Advantage:

• The sticky coupling for BRW on the Hamming graph is very quick: whp only a few vertices do not couple (at most $\log^2 n \ll r_n$)

Reducing dependence between current cluster and explored clusters

A sticky coupling

In Aldous' ERRG exploration process, the geometry of the already explored clusters does not matter much (removing a cluster of size k from G(n, p) gives G(n - k, p)). On the Hamming graph, this is not true. But the geometry of the explored clusters does not matter for the probability that a BRW started from a *randomly chosen vertex* hits them. We use a *sticky coupling* between the actual BRW exploration and a BRW started from a uniformly random vertex to exploit this fact.

Advantage:

• The sticky coupling for BRW on the Hamming graph is very quick: whp only a few vertices do not couple (at most $\log^2 n \ll r_n$)

Disadvantage:

• Many different processes and couplings going on at the same time

Thank you

