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• The smart grid cyber layer generates considerable electronic data:

– Power flow sensors, phasor measurement units, smart meters, etc.

• This data can leak information that should be kept secure, or private.

• But, the utility of this data depend on its accessibility.

• How can we characterize this fundamental tradeoff?

Motivation



Information:

A General Formalism

[Sankar-Rajagopalan-Poor, T-IFS’13]



• A sequence of n i.i.d. observations of a vector random variable X = (X1
X2 … XK) with a joint distribution:

  pX (x) = pX1X2…XK
(x1,x2 ,…,xK )

Data Source Model



• A sequence of n i.i.d. observations of a vector random variable X = (X1
X2 … XK) with a joint distribution:

• Variables can be divided into public (revealed) and private (hidden)
variables, typically not disjoint:

  pX (x) = pX1X2…XK
(x1,x2 ,…,xK )

 
kth  entry :Xk = Xr ,k ,Xh,k( )

 
Xr ,k :  revealed

 
Xh,k :  hidden

Data Source Model
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• How can we characterize the tradeoff between utility and
privacy in such a setting?

– Measure utility by distortion of the public variables as revealed by the
data source; and

– Measure privacy by equivocation of the private variables in information
revealed by the source. (Can also use other leakage measures.)

• Then the distortion-equivocation region describes the
tradeoff.

Privacy-Utility Tradeoff



• Encoder maps the original data source to a quantized data source (QDS): 

Distortion-Equivocation Model

   Encoder :Xn →W = QDS1,QDS2 ,…,QDSM{ }
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Utility-Privacy/RDE Regions
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• Categorical data: finite alphabet data 
– e.g.: SSN, zipcode, etc.

Original variable X Distorted variable

Hamming Distortion D : 

Equivocation E :

   

1
2
3

M  E = H (X | X)

 D = Pr(X ≠ X)

Example: Categorical Data

Zero distortion

   

     1

2
3

M

⎧

⎨
⎪⎪

⎩
⎪
⎪

Unit distortion

 !X



water-filling level  ! 

x 

input probability p(x) 

• Optimal input to output mapping: reverse ‘water-filling’

– Only x with p(x) > λ revealed (λ: water-level).

• Eliminates samples with low probabilities (relative to level λ)

– Equivalent to outlier aggregation/suppression

– Such samples reveal the most information

• As D , λ ,revealing fewer samples

Example: Categorical Data



• A data source is divided into private and public variables

• Leads to an equivocation-distortion characterization

• Adding rate: a rate-distortion problem with an equivocation constraint

Summary (General Formalism)



• A data source is divided into private and public variables

• Leads to an equivocation-distortion characterization

• Adding rate: a rate-distortion problem with an equivocation constraint

• We can also consider

• multiple sources (side information)

• other measures of privacy and/or utility

Summary (General Formalism)



Control:

Smart-Meter Privacy

[Sankar-Rajagopolan-Mohajer-Poor,  T-SG’13]

[Tan-Gündüz-Poor, JSAC: SG Series’13]

[Yang-Chen-Zhang-Poor, T-SG’15]



• Smart meter data is useful for price-aware usage, load balancing.

Smart Meter Utility & Privacy



• Smart meter data is useful for price-aware usage, load balancing.

• But, it leaks information about in-home activity.

Smart Meter Utility & Privacy



Model:

A Source-Coding Approach

• hidden Gauss-Markov
• hidden state is in {continuous, intermittent}
• encoding of the meter readings

[Sankar-Rajagopolan-Mohajer-Poor,  T-SG’13]



distortion of usage
versus

information leakage about the intermittent state   

Model:

Tradeoff: 

• hidden Gauss-Markov
• hidden state is in {continuous, intermittent}
• encoding of the meter readings

[Sankar-Rajagopolan-Mohajer-Poor,  T-SG’13]
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distortion of usage
versus

information leakage about the intermittent state   

Model:

Tradeoff: 

• hidden Gauss-Markov
• hidden state is in {continuous, intermittent}
• encoding of the meter readings

Solution: a type of “reverse water-filling”
(i.e., rate-minimizing source coding for Gaussian sources)

[Sankar-Rajagopolan-Mohajer-Poor,  T-SG’13]

A Source-Coding Approach



The following theorem captures our main result.

Theorem 3: The utility-privacy tradeoff for smart meter
measurements modeled as a Gaussian source with memory is
given by the leakage function λ(D) which results from choos-
ing the distribution p (x̂n|xn) as the rate-distortion (without
privacy) optimal distribution.

Proof: The proof follows directly from noting that, for a
given jointly Gaussian distribution of the source and correlated
hidden sequence, pXnY n , the infimum in (8) and (9) is strictly
over the space of conditional distributions of the revealed
sequence given the original source sequence as a result of
the Markov chain relationship Y n − Xn − X̂n. Expanding
the leakage as I(Y n; X̂n) = h(Y n) − h(Y n|X̂n), and using
the fact for correlated Gaussian processes, Yk = αkXk + Zk,
for all k, where {Zk} is a sequence independent of {Xk}
and αk is a constant for each k, one can show that the jointly
Gaussian distribution of Xn and X̂n which minimizes (8) also
minimizes (9).

Remark 2: Theorem 3 simplifies the development of the
RDL region for Gaussian sources with memory for which the
rate-distortion function is known. For Gaussian sources with
memory the rate-distortion function is known and lends itself
to a straightforward practical implementation that we discuss
in the following section.

F. Rate-Distortion for Gaussian Sources with Memory

In general, the rate distortion functions for sources with
memory are not straightforward to compute. However, for
Gaussian sources, the rate-distortion function R(D) (without
the additional privacy constraint) is known and can be obtained
via a transformation of the correlated source sequence Xn

to its eigen-space in which the resulting sequence X̃n is
uncorrelated (and hence, independent for jointly Gaussian
sources); let SX(ω), SY (ω), and SXY (ω) denote the two-
sided power spectral densities (PSDs) of the {Xk} , {Yk},
and {XkYk} processes, respectively [16]. Let φ denote the
Lagrangian parameter for the distortion constraint (4) in the
rate minimization problem. Explicitly denoting the dependence
on the water-level φ, the rate-distortion function Rφ (D) and
the average distortion function D (φ) are given by

Rφ (D) =

∫ π

−π

max

(

0,
1

2
log

SX(ω)

φ

)

dω

2π
(10)

D (φ) =

∫ π

−π

min (SX(ω),φ)
dω

2π
. (11)

Note that the water-level φ is determined by the desired
average distortion D (φ) = D. Thus, R(D) for a Gaussian
source with memory can be expressed as an infinite sum of the
rate-distortion functions for independent Gaussian variables,
one for each angular frequency ω ∈ [−π,π]. The “water-
level” φ captures the average time-domain distortion constraint
across the spectrum such that the distortion for any ω is the
minimum of the water-level and the PSD. The privacy leakage
λ(D (φ)) is then the infinite sum of the information leakage

0 0  
0

0.5

1

1.5

2

2.5

3

ω
π−π

S (ω)

φ

Fig. 1. The PSD of {Xk}. The area below the curve and the horizontal line
is equal to D.

about {Yk} for each ω, and is given by

λ (D (φ)) =

∫ π

−π

1

2
log

(

SY (ω)

SXY (ω)g (ω) + SY (ω)

)

dω

2π
(12)

where g (ω) ≡ (min (SX(ω),φ) − 1) .
Remark 3: The transform domain “water-filling” solution

suggests that in practice the time-series data can be filtered
for a desired level of fidelity (distortion) and privacy (leak-
age) using Fourier transforms. The privacy-preserving rate-
distortion optimal scheme thus reveals only those frequency
components with power above the water-level φ. Furthermore,
at every frequency only the portion of the signal energy which
is above the water level φ is preserved by the minimum-rate
sequence from which the source can be generated with an
average distortion D.

IV. ILLUSTRATION

The following example illustrates our results. We assume
that the private information to be hidden is the measurement
sequence itself, i.e., Yk = Xk, for all k. For the meter
measurements modeled as a stationary Gaussian time series
{Xk} , we choose Xk ∼ N (0, 1) for all k ∈ I, and an
autocorrelation function

cm = E[XkXk+m] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 m = 0,
0.3 m = ±1,
0.4 m = ±2,
0 otherwise.

The power spectral density PSD (frequency domain represen-
tation of the autocorrelation function) of this process is given
by

S(ω) =
∞
∑

m=−∞

cm exp(imω) = 1+0.6 cos(ω)+0.8 cos(2ω),

− π ≤ ω ≤ π. (13)

In order to obtain the rate-distortion function Rφ(D) for this
source, for a given D we have to find the water-level φ
satisfying (11).

Reverse Water-Filling
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A Control Approach

• Consider situations with energy harvesting (e.g., solar or wind) and
rechargeable storage devices (e.g., electric vehicle):

At discrete time i :

•Xi : energy demand of appliances (i.i.d. binary)
•Yi : energy taken from UP
•Zi : harvested energy (i.i.d. binary, indep. of Xi )
•Bi : battery state (≤1)
•the meter reads and reports Yi

•(stochastic) control: (Xi , Zi , Bi-1)          (Yi , Bi )  with Xi ≤ Zi + (Bi - Bi-1) + Yi

[Tan-Gündüz-Poor, JSAC: SG Series’13]



Energy Management Policies

PW
n =
1
n

(Zi +Yi − Xi )
i=1

n

∑

I n = 1
n
I(Xn;Y n )

wasted energy rate:                       
versus

information leakage rate:  
Tradeoff: 
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The Privacy-Utility Tradeoff
• battery introduces memory: closed form expressions are elusive
• numerically compute mutual information
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With No Energy Harvesting

Privacy vs. battery capacity Tradeoff vs. battery capacity
(allow wasted grid energy)



• Two approaches to smart meter privacy:

• source coding at the meter (reverse water filling)

• control with storage and local supply

Summary (Smart Meter Privacy)



• Two approaches to smart meter privacy:

• source coding at the meter (reverse water filling)

• control with storage and local supply

• We can also consider [Yang-Chen-Zhang-Poor, T-SG’15]:

• adaptive control

• jointly consider privacy and cost (exploit price variations)

Summary (Smart Meter Privacy)



Games:

Competitive Privacy

[Belmega-Sankar-Poor, JSTSP’15]
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• Leads to a problem of competitive privacy

• N.A. Grid: interconnected regional transmission organizations (RTOs) which

– need to share state measurements for reliability of state estimation (utility) 

– wish to withhold information for economic competitiveness (privacy)

Motivating Example: Multiple RTOs
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• Noisy measurements at RTO k:

• Cooperation leads to inevitable leakage of state information.

• Utility for RTO k: mean-square error for its own state Xk



  
Yk = Hk ,mXm + Zk

m=1

M

∑ ,  k = 1,2,…,M

mth system state

Competitive Privacy Model

• Noisy measurements at RTO k:

• Cooperation leads to inevitable leakage of state information.

• Utility for RTO k: mean-square error for its own state Xk

• Privacy for RTO k: leakage of information about Xk to other RTOs 



Two-Agent Case

n i.i.d. observations at each RTO:

  

Y1,i = X1,i +α X2,i + Z1,i , i = 1,...,n     

Y2,i = βX1,i + X2,i + Z2,i , i = 1,...,n

Stochastic model:    X j ,i  N (0,1);Z2,i  N (0,σ j
2 );all indep. 
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But, Lj depends on D3-j (not Dj), so how should each agent choose to behave?
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Theorem: Wyner-Ziv coding maximizes privacy (i.e., minimizes L1 and L2) for a
desired utility at each agent (fixed D1 and D2).

But, Lj depends on D3-j (not Dj), so how should each agent choose to behave?

We can study this issue via game theory [Belmega-Sankar-Poor].

n i.i.d. observations at each RTO:

  

Y1,i = X1,i +α X2,i + Z1,i , i = 1,...,n     

Y2,i = βX1,i + X2,i + Z2,i , i = 1,...,n
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2 );all indep. 
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A Common-Goal Game

Nontrivial equilibria exist; the nature of these depends on the value of q.

A common payoff:

  
usys(a1,a2 ) =− L(a1)− L(a2 )+ q

2
log
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a1 + a2

⎛

⎝⎜
⎞

⎠⎟

Enables cooperation in a non-cooperative setting  (a potential game).
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A Multi-Stage Game

With T < ∞, the only Nash equilibrium (subgame perfect equilibrium):

T-stage game, with a discounted payoff for agent j:

But, with T = ∞, any (D1
*, D2

*) satisfying the condition below is also a subgame 
perfect equilibrium for large enough ρ < 1:

  u j (Dj
*, D3− j

* ) >uj (Dj , D3− j ); j = 1,2

  
ρ t−1

t=1

T

∑ uj (aj
(t ) ,a3− j

(t ) )

  (a1
(t )*,a2

(t )* ) = (D2 , D1),∀t



  α = 0.9,β = 0.5,σ 1
2 =σ 2

2 = 0.1, ′wj = 5wj

Minimal Discount Factor for Sustaining 
Non-trivial Equilibria

D1

D2
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• An additional dimension to privacy vs. utility tradeoff is
added when there are multiple competing agents.

• Wyner-Ziv coding gives optimal information exchange.

• Game theory can help in modeling and understanding this
problem:
- one-shot games: prisoner’s dilemma/pricing

- multi-stage games: finite vs. infinite time window

- common-goal games: enables cooperation

Summary (Competitive Privacy)
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• Motivation: privacy-utility tradeoff

• General Formalism: information theoretic formulation

• Smart Meter Privacy: source coding & control approaches

• Competitive Privacy:  game theoretic approach

• Information-, control- and game-theoretic ideas allow fundamental 

examination of privacy issues in smart grid.

Summary



Basic P-U Tradeoff: Other Potential 
Applications

Biometric Systems:  tradeoff 
between security & privacy

E-Commerce:  tradeoff 
between economic benefit
& privacy

Social Networks:  tradeoff 
between sharing & privacy



Other Networks of Interacting Agents, e.g.:

• resource localization in competitive 
environments

• joint sensing with untrustworthy allies

Competitive Privacy: Other Potential 
Applications
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