Order of current variance in the simple exclusion process

Márton Balázs
(University of Wisconsin - Madison) (Budapest University of Technology and Economics)
Joint work with
Timo Seppäläinen
(University of Wisconsin - Madison)
Prague, December 4, 2006.

1. ASEP: Interacting particles
2. ASEP: Surface growth
3. Growth fluctuations
4. The second class particle
5. The upper bound
6. The lower bound
7. Open questions
8. ASEP: Interacting particles

9. ASEP: Interacting particles

\circ	0	\bullet	\bullet	\bullet	0	\bullet	0
-3	-2	-1	0	1	2	3	4
Bernoulli (ϱ) distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

0	0	\bullet	\bullet	$0 \bullet$	0	\bullet	0
1	1	1	1	1	1	1	1
							-2
Bernoulli (ϱ) distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

\circ	0	\bullet	\bullet	0	\bullet	\bullet	0
-3	-2	-1	0	1	2	3	4
Bernoulli (ϱ) distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

\bullet	0	\bullet	\bullet	0	\bullet	0	0
-3	-2	-1	0	1	2	3	4
Bernoulli (() distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

\bullet	0	\bullet	\bullet	0	\bullet	0	0
-3	-2	-1	0	1	2	3	4
Bernoulli (() distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

\bullet	0	\bullet	0	\bullet	0	\bullet	0
1	0						
-3	-2	-1	0	1	2	3	4
Bernoulli (ϱ) distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

\bullet	$0 \bullet$	0	\bullet	0	\bullet	0	0
1	1	1	1	1	1	1	1
Bernoulli (ϱ) distribution							

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

\bullet	\bullet	0	\bullet	0	\bullet	0	0
-3	-2	-1	0	1	2	3	4

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.

1. ASEP: Interacting particles

Particles try to jump
to the right with rate p, to the left with rate $q=1-p<p$.

The jump is suppressed if the destination site is occupied by another particle.
The Bernoulli(ϱ) distribution is time-stationary for any ($0 \leq \varrho \leq 1$).
Any translation-invariant stationary distribution is a mixture of Bernoullis.

Hydrodynamics (briefly)
Let T and X be some large-scale time and space parameters.

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$.

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies, with $a:=p-q$,

$$
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X} a[\varrho(1-\varrho)]=0 \quad \text { (inviscid Burgers) }
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies, with $a:=p-q$,

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X} a[\varrho(1-\varrho)] & =0 \\
\frac{\partial}{\partial T} \varrho+a[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho & =0
\end{array} \quad \text { (while smooth Burgers) }\right)
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters. \rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies, with $a:=p-q$,

$$
\begin{aligned}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X} a[\varrho(1-\varrho)]= & 0 \\
\frac{\partial}{\partial T} \varrho+a[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho= & \text { (inviscid Burgers) } \\
& \frac{\mathrm{d}}{\mathrm{~d} T} \varrho(\text { while smooth }) \\
& (T, X(T))=0
\end{aligned}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters. \rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies, with $a:=p-q$,

$$
\begin{array}{cl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X} a[\varrho(1-\varrho)]=0 & \text { (inviscid Burgers) } \\
\frac{\partial}{\partial T} \varrho+a[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho=0 & \text { (while smooth) } \\
\frac{\partial}{\partial T} \varrho+\frac{\mathbf{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters. \rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$. (Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies, with $a:=p-q$,

$$
\begin{array}{cl}
\frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X} a[\varrho(1-\varrho)]=0 & \text { (inviscid Burgers) } \\
\frac{\partial}{\partial T} \varrho+a[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho=0 & \text { (while smooth) } \\
\frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{array}
$$

Hydrodynamics (briefly)

Let T and X be some large-scale time and space parameters.
\rightsquigarrow Set initially $\varrho=\varrho(T=0, X)$ to be the density at position $x=X / \varepsilon$.
(Changes on the large scale.)
$\rightsquigarrow \varrho(T, X)$ is the density of particles after a long time $t=T / \varepsilon$ at position $x=X / \varepsilon$. It satisfies, with $a:=p-q$,

$$
\begin{aligned}
& \frac{\partial}{\partial T} \varrho+\frac{\partial}{\partial X} a[\varrho(1-\varrho)]=0 \\
& \frac{\partial}{\partial T} \varrho+a[1-2 \varrho] \cdot \frac{\partial}{\partial X} \varrho=0 \\
& \text { (inviscid Burgers) } \\
& \frac{\partial}{\partial T} \varrho+\frac{\mathrm{d} X(T)}{\mathrm{d} T} \cdot \frac{\partial}{\partial X} \varrho=\frac{\mathrm{d}}{\mathrm{~d} T} \varrho(T, X(T))=0
\end{aligned}
$$

\rightsquigarrow The characteristic speed $C(\varrho):=a[1-2 \varrho]$.
(ϱ is constant along $\dot{X}(T)=C(\varrho)$.)
2. ASEP: Surface growth

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ net number of particles passed above x.
2. ASEP: Surface growth

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ net number of particles passed above x.
2. ASEP: Surface growth

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ net number of particles passed above x.
2. ASEP: Surface growth

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ net number of particles passed above x.
2. ASEP: Surface growth

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ net number of particles passed above x.
2. ASEP: Surface growth

$h_{x}(t)=$ height of the surface above x.
$h_{x}(t)-h_{x}(0)=$ net number of particles passed above x.
$h_{V t}(t)=$ net number of particles passed through the moving window at $V t \quad(V \in \mathbb{R})$.

3. Growth fluctuations

3. Growth fluctuations

3. Growth fluctuations

3. Growth fluctuations

3. Growth fluctuations

Ferrari - Fontes 1994: $\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=$ const $\cdot|V-C(\varrho)|$
\rightsquigarrow Initial fluctuations are transported along the characteristics.
3. Growth fluctuations

Ferrari - Fontes 1994: $\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{V t}(t)\right)}{t}=$ const $\cdot|V-C(\varrho)|$
\rightsquigarrow Initial fluctuations are transported along the characteristics.
\rightsquigarrow How about $V=C(\varrho)$?
3. Growth fluctuations

Conjecture:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}=[\text { sg. non trivial }]
$$

3. Growth fluctuations

Conjecture:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}=[\text { sg. non trivial }]
$$

Theorem (B., Seppäläinen): For any $0<\varrho<1$, and any $q<p$,

$$
\begin{aligned}
0 & <\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}} \\
& \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}<\infty .
\end{aligned}
$$

3. Growth fluctuations

Conjecture:

$$
\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}=[\text { sg. non trivial }]
$$

Theorem (B., Seppäläinen): For any $0<\varrho<1$, and any $q<p$,

$$
\begin{aligned}
0 & <\liminf _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}} \\
& \leq \limsup _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}<\infty
\end{aligned}
$$

Corollary: The corresponding scaling of the diffusivity is also proved.
3. Growth fluctuations

Limit distributions (not yet controlling the second moment) in terms of the Tracy-Widom distribution (GUE random matrices) were found by Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the totally asymmetric exclusion (TASEP: $p=1, q=$ $0)$.
3. Growth fluctuations

Limit distributions (not yet controlling the second moment) in terms of the Tracy-Widom distribution (GUE random matrices) were found by Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the totally asymmetric exclusion (TASEP: $p=1, q=$ $0)$.

Method was: Last passage percolation, heavy combinatorics and asymptotic analysis.
3. Growth fluctuations

Limit distributions (not yet controlling the second moment) in terms of the Tracy-Widom distribution (GUE random matrices) were found by Baik, Deift and Johansson 1999, Johansson 2000, and Ferrari and Spohn 2006 for the totally asymmetric exclusion (TASEP: $p=1, q=$ $0)$.

Method was: Last passage percolation, heavy combinatorics and asymptotic analysis.
\rightsquigarrow We needed to get rid of these tools. Premises: Cator and Groeneboom 2006 (Hammersley's process), B., Cator and Seppäläinen 2006 (TASEP, last passage).
4. The second class particle

4. The second class particle

Bernoulli(ϱ) distribution except for 0
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved $=$ the second class particle. Its location at time t is $Q(t)$.
4. The second class particle

Bernoulli(ϱ) distribution except for 0

Coupling: A single discrepancy is always conserved $=$ the second class particle. Its location at time t is $Q(t)$.

The second class particle is a highly nontrivial object. For example, the Bernoulli(ϱ) distribution is not stationary as seen by the second class particle.
4. The second class particle

Theorem:

$$
\mathbf{E}(Q(t))=C(\varrho) t
$$

(characteristic speed),
4. The second class particle

Theorem:

$$
\mathbf{E}(Q(t))=C(\varrho) t
$$

(characteristic speed), and

$$
\operatorname{Var}\left(h_{V t}(t)\right)=\text { const } \cdot \mathbf{E}|V t-Q(t)| .
$$

4. The second class particle

Theorem:

$$
\mathbf{E}(Q(t))=C(\varrho) t
$$

(characteristic speed), and

$$
\operatorname{Var}\left(h_{V t}(t)\right)=\text { const } \cdot \mathbf{E}|V t-Q(t)| .
$$

Method of proof: martingale arguments, time-reversal, and conservation of particles.
4. The second class particle

Theorem:

$$
\mathbf{E}(Q(t))=C(\varrho) t
$$

(characteristic speed), and

$$
\operatorname{Var}\left(h_{V t}(t)\right)=\text { const } \cdot \mathbf{E}|V t-Q(t)| .
$$

Method of proof: martingale arguments, time-reversal, and conservation of particles.

The proof is based on ideas of Bálint Tóth, he said these ideas were standard.

Main idea for prooving $t^{1 / 3}$ scaling:

The coupling measure

Let $\lambda<\varrho$, and

$$
\mu\binom{0}{\mathrm{o}}=1-\varrho, \quad \mu\binom{\bullet}{0}=\varrho-\lambda, \quad \mu\binom{\bullet}{\bullet}=\lambda
$$

The coupling measure

Let $\lambda<\varrho$, and

$$
\mu\binom{0}{\mathrm{o}}=1-\varrho, \quad \mu\binom{\bullet}{0}=\varrho-\lambda, \quad \mu\binom{\bullet}{\bullet}=\lambda
$$

Then the "upper" marginal is Bernoulli((), and the "lower" marginal is Bernoulli (λ).

According to the product of μ 's:

According to the product of μ 's:

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.

According to the product of μ 's:

$h_{V t}(t)-h_{V t}(t)=$ the net number of \uparrow 's passed through the moving window at $V t \quad(V \in \mathbb{R})$.
5. The upper bound

5. The upper bound

Connect $Q(t)$
5. The upper bound

Connect $Q(t)$ with the \uparrow 's
5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings):
5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings): $\mathbf{P}\{Q(t)$ is too large $\}$
5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings):
$\mathbf{P}\{Q(t)$ is too large $\} \leq \mathbf{P}\{$ too many \uparrow 's have crossed $C(\varrho) t\}$
5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings):
$\mathbf{P}\{Q(t)$ is too large $\} \leq \mathbf{P}\{$ too many \uparrow 's have crossed $C(\varrho) t\}$

$$
\leq \mathbf{P}\left\{h_{C(\varrho) t}(t)-h_{C(\varrho) t}(t) \text { is too large }\right\} .
$$

5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings):
$\mathbf{P}\{Q(t)$ is too large $\} \leq \mathbf{P}\{$ too many \uparrow 's have crossed $C(\varrho) t\}$

$$
\leq \mathbf{P}\left\{h_{C(\varrho) t}(t)-h_{C(\varrho) t}(t) \text { is too large }(\lambda)\right\} .
$$

5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings):
$\mathbf{P}\{Q(t)$ is too large $\} \leq \mathbf{P}\{$ too many \uparrow 's have crossed $C(\varrho) t\}$

$$
\leq \mathbf{P}\left\{h_{C(\varrho) t}(t)-h_{C(\varrho) t}(t) \text { is too large }(\lambda)\right\} .
$$

Optimize "too large (λ) " in λ,
5. The upper bound

Connect $Q(t)$ with the \uparrow 's (this needs nontrivial couplings):
$\mathbf{P}\{Q(t)$ is too large $\} \leq \mathbf{P}\{$ too many \uparrow 's have crossed $C(\varrho) t\}$

$$
\leq \mathbf{P}\left\{h_{C(\varrho) t}(t)-h_{C(\varrho) t}(t) \text { is too } \operatorname{large}(\lambda)\right\} .
$$

Optimize "too large (λ) " in λ, use Chebyshev's inequality and relate $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$ to $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$.

The computations result in

$$
\mathbf{P}\{Q(t)-C(\varrho) t \geq u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot \operatorname{Var}\left(h_{C(\varrho) t}(t)\right)
$$

The computations result in (remember $\mathbb{E}(Q(t))=C(\varrho) t)$

$$
\mathbf{P}\{Q(t)-C(\varrho) t \geq u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot \operatorname{Var}\left(h_{C(\varrho) t}(t)\right)
$$

The computations result in (remember $\mathbb{E}(Q(t))=C(\varrho) t)$

$$
\begin{aligned}
\mathbf{P}\{Q(t)-C(\varrho) t \geq u\} & \leq c \cdot \frac{t^{2}}{u^{4}} \cdot \operatorname{Var}\left(h_{C(\varrho) t}(t)\right) \\
& \stackrel{\text { Thm }}{=} c \cdot \frac{t^{2}}{u^{4}} \cdot \mathbf{E}|Q(t)-C(\varrho) t| .
\end{aligned}
$$

The computations result in (remember $\mathbb{E}(Q(t))=C(\varrho) t)$

$$
\begin{aligned}
\mathbf{P}\{Q(t)-C(\varrho) t \geq u\} & \leq c \cdot \frac{t^{2}}{u^{4}} \cdot \operatorname{Var}\left(h_{C(\varrho) t}(t)\right) \\
& \stackrel{\text { Thm }}{=} c \cdot \frac{t^{2}}{u^{4}} \cdot \mathbf{E}|Q(t)-C(\varrho) t|
\end{aligned}
$$

With

$$
\widetilde{Q}(t):=Q(t)-C(\varrho) t \quad \text { and } \quad E:=\mathbf{E}|\widetilde{Q}(t)|
$$

we have (with a similar lower deviation bound)

$$
\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E
$$

The computations result in (remember $\mathbb{E}(Q(t))=C(\varrho) t)$

$$
\begin{aligned}
\mathbf{P}\{Q(t)-C(\varrho) t \geq u\} & \leq c \cdot \frac{t^{2}}{u^{4}} \cdot \operatorname{Var}\left(h_{C(\varrho) t}(t)\right) \\
& \stackrel{\text { Thm }}{=} c \cdot \frac{t^{2}}{u^{4}} \cdot \mathbf{E}|Q(t)-C(\varrho) t|
\end{aligned}
$$

With

$$
\widetilde{Q}(t):=Q(t)-C(\varrho) t \quad \text { and } \quad E:=\mathbf{E}|\widetilde{Q}(t)|
$$

we have (with a similar lower deviation bound)

$$
\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E
$$

Claim: this already implies the $t^{2 / 3}$ upper bound:

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

$$
E=\mathbf{E}|\widetilde{Q}(t)|=\int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>u\} \mathrm{d} u
$$

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

$$
\begin{aligned}
E=\mathbf{E}|\widetilde{Q}(t)| & =\int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>u\} \mathrm{d} u \\
& =E \int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v
\end{aligned}
$$

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

$$
\begin{aligned}
E=\mathbf{E}|\widetilde{Q}(t)| & =\int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>u\} \mathrm{d} u \\
& =E \int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v \\
& \leq E \int_{1 / 2}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v+\frac{1}{2} E
\end{aligned}
$$

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

$$
\begin{aligned}
E=\mathbf{E}|\widetilde{Q}(t)| & =\int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>u\} \mathrm{d} u \\
& =E \int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v \\
& \leq E \int_{1 / 2}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v+\frac{1}{2} E \\
& \leq c \cdot \frac{t^{2}}{E^{2}}+\frac{1}{2} E,
\end{aligned}
$$

that is, $E^{3} \leq c \cdot t^{2}$.

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

$$
\begin{aligned}
E=\mathbf{E}|\widetilde{Q}(t)| & =\int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>u\} \mathrm{d} u \\
& =E \int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v \\
& \leq E \int_{1 / 2}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v+\frac{1}{2} E \\
& \leq c \cdot \frac{t^{2}}{E^{2}}+\frac{1}{2} E,
\end{aligned}
$$

that is, $E^{3} \leq c \cdot t^{2}$.
$\operatorname{Var}\left(h_{C(\varrho) t}(t)\right) \stackrel{\top h m}{=}$ const. $\cdot \mathbf{E}|Q(t)-C(\varrho) t|$

We had $\mathbf{P}\{|\widetilde{Q}(t)|>u\} \leq c \cdot \frac{t^{2}}{u^{4}} \cdot E$.

$$
\begin{aligned}
E=\mathbf{E}|\widetilde{Q}(t)| & =\int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>u\} \mathrm{d} u \\
& =E \int_{0}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v \\
& \leq E \int_{1 / 2}^{\infty} \mathbf{P}\{|\widetilde{Q}(t)|>v E\} \mathrm{d} v+\frac{1}{2} E \\
& \leq c \cdot \frac{t^{2}}{E^{2}}+\frac{1}{2} E,
\end{aligned}
$$

that is, $E^{3} \leq c \cdot t^{2}$.

$$
\begin{aligned}
\operatorname{Var}\left(h_{C(\varrho) t}(t)\right) & \stackrel{\text { Thm }}{=} \text { const. } \cdot \mathbf{E}|Q(t)-C(\varrho) t| \\
& =\text { const. } \cdot E \leq c \cdot t^{2 / 3} .
\end{aligned}
$$

6. The lower bound

7. The lower bound

Let $Q^{a}(0)=a<0$.
6. The lower bound

Let $Q^{a}(0)=a<0$.
6. The lower bound

Let $Q^{a}(0)=a<0$. If $Q^{a}(t) \leq C(\varrho) t$, then the \uparrow 's have not crossed the path $C(\varrho) t$ from left to right:

$$
\mathbf{P}\left\{Q^{a}(t) \leq C(\varrho) t\right\} \leq \mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

6. The lower bound

Let $Q^{a}(0)=a<0$. If $Q^{a}(t) \leq C(\varrho) t$, then the \uparrow 's have not crossed the path $C(\varrho) t$ from left to right:

$$
\mathbf{P}\left\{Q^{a}(t) \leq C(\varrho) t\right\} \leq \mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

Therefore:

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\}
$$

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\}
$$

\rightsquigarrow Set a so that $\mathbf{E}\left(Q^{a}(t)\right)<C(\varrho) t$,

\rightsquigarrow Set a so that $\mathbf{E}\left(Q^{a}(t)\right)<C(\varrho) t$,
$\rightsquigarrow \mathbf{E}\left(h_{C(\varrho) t}(t)\right)-\mathbf{E}\left(h_{C(\varrho) t}(t)\right) \sim t(\varrho-\lambda)^{2}>0$ would be the case, if ζ was Bernoulli (ϱ) distributed.

\rightsquigarrow Set a so that $\mathbf{E}\left(Q^{a}(t)\right)<C(\varrho) t$,
$\left.\rightsquigarrow \mathbf{E}\left(h_{C(\varrho) t}(t)\right)-\mathbf{E}\left(h_{C(\varrho) t} t\right)\right) \sim t(\varrho-\lambda)^{2}>0$ would be the case, if ζ was Bernoulli($\left(\right.$) distributed. Instead, $\mathbf{E}\left(h_{C(\varrho) t}(t)\right)$ will have a harmless Radon-Nikodym factor.

\rightsquigarrow Set a so that $\mathbf{E}\left(Q^{a}(t)\right)<C(\varrho) t$,
$\rightsquigarrow \mathbf{E}\left(h_{C(\varrho) t}(t)\right)-\mathbf{E}\left(h_{C(\varrho) t}(t)\right) \sim t(\varrho-\lambda)^{2}>0$ would be the case, if ζ was Bernoulli (ϱ) distributed. Instead, $\mathbf{E}\left(h_{C(\varrho) t}(t)\right)$ will have a harmless Radon-Nikodym factor.
\Rightarrow Both probabilities are deviation probabilities.

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\}
$$

Apply Markov's inequality on the first, Chebyshev's on the second probability (use again the connection between $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$ and $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$).

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

Apply Markov's inequality on the first, Chebyshev's on the second probability (use again the connection between $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$ and $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$).

The correct scaling of the parameters is: $\varrho-\lambda \sim t^{-1 / 3}, \quad a \sim-t^{2 / 3}$.

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

Apply Markov's inequality on the first, Chebyshev's on the second probability (use again the connection between $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$ and $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$).

The correct scaling of the parameters is: $\varrho-\lambda \sim t^{-1 / 3}, \quad a \sim-t^{2 / 3}$. In this case

$$
1 \leq c_{1} \cdot \frac{\mathbf{E}\left(\left|\widetilde{Q^{a}}(t)\right|\right)}{t^{2 / 3}}+c_{2} \cdot \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}
$$

$$
1 \leq \mathbf{P}\left\{Q^{a}(t)>C(\varrho) t\right\}+\mathbf{P}\left\{h_{C(\varrho) t}(t)<h_{C(\varrho) t}(t)\right\} .
$$

Apply Markov's inequality on the first, Chebyshev's on the second probability (use again the connection between $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$ and $\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)$).

The correct scaling of the parameters is: $\varrho-\lambda \sim t^{-1 / 3}, \quad a \sim-t^{2 / 3}$. In this case

$$
\begin{aligned}
& 1 \leq c_{1} \cdot \frac{\mathbf{E}\left(\left|\widetilde{Q^{a}}(t)\right|\right)}{t^{2 / 3}}+c_{2} \cdot \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}} \\
& \stackrel{\top h m}{=} c \cdot \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}} .
\end{aligned}
$$

7. Open questions

$$
\mathbf{E}|\widetilde{Q}(t)|^{1} \longrightarrow \mathbf{E}\left|\widetilde{h}_{C(\varrho) t} t(t)\right|^{2}
$$

7. Open questions

8. Open questions

9. Open questions

10. Open questions

11. Open questions
\rightarrow What is the limit $\lim _{t \rightarrow \infty} \frac{\left.\operatorname{Var}\left(h_{C(O) t} t\right)\right)}{t^{2 / 3}}=$? What does it have to do with Gaussian random matrices? (Difficult.)
12. Open questions
\rightarrow What is the limit $\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}=$? What does it have to do with Gaussian random matrices? (Difficult.)
\rightarrow Other processes (zero range, Bricklayers', ...)?
13. Open questions
\rightarrow What is the limit $\lim _{t \rightarrow \infty} \frac{\operatorname{Var}\left(h_{C(\varrho) t}(t)\right)}{t^{2 / 3}}=$? What does it have to do with Gaussian random matrices? (Difficult.)
\rightarrow Other processes (zero range, Bricklayers', ...)?
\rightarrow Some processes (e.g. symmetric simple exclusion, linear rate zero range) show $t^{1 / 4}$ scaling (with Gaussian limits), rather than $t^{1 / 3}$. Where is the borderline? Are there other scalings as well?

Thank you.

