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Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT

1. Elementary probability

2. Conditional probability

3. Discrete random variables

4. Continuous random variables

5. Joint distributions

6. Expectation, covariance

7. Law of Large Numbers, Central Limit Theorem
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Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Sample sp. Probability Equally l.

1. Elementary probability
Sample space
Probability
Equally likely outcomes

Objectives:
◮ To define events and sample spaces, describe them in

simple examples
◮ To list the axioms of probability, and use them to prove

simple results
◮ To use counting arguments to calculate probabilities when

there are equally likely outcomes
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Sample space

◮ We always consider an experiment. Ω will denote the set of
all possible outcomes of this experiment.
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Sample space

◮ We always consider an experiment. Ω will denote the set of
all possible outcomes of this experiment.

◮ An event will be a collection of possible outcomes.
Therefore, and event E will be considered a subset of Ω:
E ⊆ Ω.

◮ Sometimes Ω is too large, and not all its subsets can be
defined as events. This is where measure theory helps...

◮ It makes perfect sense to define the union E ∪ F and the
intersection E ∩ F of two events, E and F .
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Sample space

E F

E ∪ F

Ω
E F

E ∩ F

Ω

Notation: sometimes E ∪ F = E + F , E ∩ F = EF .
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2. The union and the intersection

Inspired by the above:

Remark
The union E ∪ F of events E and F always means E OR F .
The intersection E ∩ F of events E and F always means E
AND F .

Similarly:

Remark
The union

⋃

i Ei of events Ei always means at least one of the
Ei ’s.
The intersection

⋂

i Ei of events Ei always means each of the
Ei ’s.
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2. The union and the intersection

Definition
If E ∩ F = ∅, then we say that the events E and F are
mutually exclusive events.

If the events E1, E2, . . . satisfy Ei ∩ Ej = ∅ whenever i 6= j , then
we say that the Ei ’s are mutually exclusive events.

Mutually exclusive events cannot happen at the same time.
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3. Inclusion and implication

Remark
If the event E is a subset of the event F , E ⊆ F , then the
occurrence of E implies that of F .
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4. Complementary events

Definition
The complement of an event E is Ec : = Ω− E . This is the
event that E does not occur.

E

Ec

Ω

Notice: E ∩ Ec = ∅, E ∪ Ec = Ω.

Notation: sometimes Ec = Ē = E∗.
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5. Simple properties of events

Commutativity: E ∪ F = F ∪ E ,
E ∩ F = F ∩ E .

9 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Sample sp. Probability Equally l.

5. Simple properties of events
Associativity: E ∪ (F ∪G) = (E ∪ F ) ∪G = E ∪ F ∪G,

E F

G

E ∩ (F ∩G) = (E ∩ F ) ∩G = E ∩ F ∩G.

E F

G
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5. Simple properties of events
Distributivity: (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G),

E F

G

E F

G
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5. Simple properties of events

De Morgan’s Law: (E ∪ F )c = Ec ∩ F c.

E F E F
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Probability

Finally, we can now define what probability is.

Definition (axioms of probability)
The probability P on a sample space Ω assigns numbers to
events of Ω in such a way, that:

1. the probability of any event is non-negative: P{E} ≥ 0;

2. the probability of the sample space is one: P{Ω} = 1;

3. for any finitely or countably infinitely many mutually
exclusive events E1, E2, . . .,

P
{

⋃

i

Ei

}

=
∑

i

P{Ei}.
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Probability

Notation:

n
⋃

i=1

Ei = E1 ∪ E2 ∪ · · · ∪ En , or

∞
⋃

i=1

Ei = E1 ∪ E2 ∪ . . . ,

n
∑

i=1

P{Ei} = P{E1}+ P{E2}+ · · ·+ P{En} , or

∞
∑

i=1

P{Ei} = P{E1}+ P{E2}+ . . . .
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A few simple facts

Proposition
For any event, P{Ec} = 1− P{E}.

Corollary

We have P{∅} = P{Ωc} = 1− P{Ω} = 1− 1 = 0.

For any event E, P{E} = 1− P{Ec} ≤ 1.
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A few simple facts

Proposition (Inclusion-exclusion principle)
For any events E and F, P{E ∪F} = P{E}+P{F}−P{E ∩F}.

Proposition (Boole’s inequality)
For any events E1, E2, . . . , En,

P
{

n
⋃

i=1

Ei

}

≤
n

∑

i=1

P{Ei}.

16 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Sample sp. Probability Equally l.

A few simple facts

Proposition (Inclusion-exclusion principle)
For any events E , F , G,

P{E ∪ F ∪G} = P{E}+ P{F}+ P{G}
− P{E ∩ F} − P{E ∩G} − P{F ∩G}
+ P{E ∩ F ∩G}.
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A few simple facts

Proposition
If E ⊆ F, then P{F − E} = P{F} − P{E}.

Corollary
If E ⊆ F, then P{E} ≤ P{F}.
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Equally likely outcomes
A very special but important case is when the sample space is
finite: |Ω| = N <∞, and each outcome of our experiment has
equal probability. Then necessarily this probability equals 1

N :

P{ω} = 1
N

∀ω ∈ Ω.

Definition
These outcomes ω ∈ Ω are also called elementary events.

Let E ⊆ Ω be an event that consists of k elementary events:
|E | = k . Then

P{E} = |E ||Ω| =
k
N
.

We thus see why counting will be important.
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Equally likely outcomes

Example
An urn contains n balls, one of which is red, all others are
black. We draw k balls at random (without replacement). What
is the chance that the red ball will be drawn?

Solution (without order)
As before, Ω will be k-combinations of the n balls, and our
event E is picking the red ball plus k − 1 other balls. Thus,

P{E} = |E ||Ω| =
(1

1

)

·
(n−1

k−1

)

(n
k

) =
(n − 1)! · k ! · (n − k)!

(k − 1)! · (n − 1− k + 1)! · n! =
k
n
.

The answer is so simple, there must be something behind
this. . .
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Equally likely outcomes

Solution (less combinatorics, more probability)

Imagine the draws in order, and let Ei be the event that our i th

draw is the red ball, i = 1, . . . , k . Clearly, each ball has equal
chance of being drawn at a given time, thus P{Ei} = 1

n for each
i . Also, these events are mutually exclusive as there is only one
red ball in the urn. Finally, we are looking for the union of these
events, being that the red ball is drawn at one of our trials. With
all this, the answer is

P
{

k
⋃

i=1

Ei

}

=
k

∑

i=1

P{Ei} =
k

∑

i=1

1
n
=

k
n
.
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Equally likely outcomes

Solution (the elegant one)
We slightly extend our probability space, and we consider
random permutations of all of the n balls. We imagine that the
balls at the first k positions will be drawn. Clearly, this is a
uniform random choice of k balls, realising our original problem.
Now, the red ball will be drawn if and only if it’s within the first k
slots. As it has equal chance of being anywhere, the answer is
k
n .

A second (third) look at the problem sometimes saves a lot of
work.
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Equally likely outcomes

Example
Three married couples are seated randomly around a round
table. What is the chance that no husband sits next to his wife?

Solution
Firstly, define the sample space as the set of
circular permutations of the 6 people. This is the same as
ordinary permutations, except that configurations that can be
rotated into each other are not distinguished. There are
|Ω| = 5! circular permutations of the 6 people.
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Equally likely outcomes

Solution (. . . cont’d)
Next, we define Ei as the event that Couple i sit next to each
other, i = 1, 2, 3. We use De Morgan’s Law and
inclusion-exclusion to find the probability that no husband sits
next to his wife:

P
{

3
⋂

i=1

Ec
i

}

= P
{(

3
⋃

i=1

Ei

)c}

= 1− P
{

3
⋃

i=1

Ei

}

= 1− P{E1} − P{E2} − P{E3}
+ P{E1 ∩ E2}+ P{E1 ∩ E3}+ P{E2 ∩ E3}
− P{E1 ∩ E2 ∩ E3}.
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Equally likely outcomes
Solution (. . . cont’d)
Start with E1 ∩ E2 ∩ E3: each couple is together. We have 2!
relative orders of the 3 couples, then 23 for husband-wife or
wife-husband within each couple. Therefore
P{E1 ∩ E2 ∩ E3} = 2!·23

5! = 2
15 .

Then for E1 ∩ E2 we say that there are 4 “objects”: the two
couples and two remaining people. These can be arranged in
3! different ways, then 22 for the orders within the couples:
P{E1 ∩ E2} = 3!·22

5! = 1
5 , and of course the other

two-intersections are similar.
Finally, for E1 we have one couple and four people, a total of 5
objects, P{E1} = 4!·2

5! = 2
5 , and the same for the other

singletons.
Combining, the answer is 1− 2

5 − 2
5 − 2

5 + 1
5 + 1

5 + 1
5 − 2

15 = 4
15 .
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2. Conditional probability
Conditional probability

Objectives:
◮ To understand what conditioning means, reduce the

sample space
◮ To use the conditional probability, Law of Total Probability

and Bayes’ Theorem
◮ To understand and use independence and conditional

independence
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2. The formal definition

Definition
Let F be an event with P{F} > 0 (we’ll assume this from now
on). Then the conditional probability of E , given F is defined as

P{E |F} : = P{E ∩ F}
P{F} .

Definition
The event F that is given to us is also called a
reduced sample space. We can simply work in this set to figure
out the conditional probabilities given this event.
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3. It’s well-behaved

Proposition
The conditional probability P{· |F} is a proper probability (it
satisfies the axioms):

1. the conditional probability of any event is non-negative:
P{E |F} ≥ 0;

2. the conditional probability of the sample space is one:
P{Ω |F} = 1;

3. for any finitely or countably infinitely many mutually
exclusive events E1, E2, . . .,

P
{

⋃

i

Ei |F
}

=
∑

i

P{Ei |F}.
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3. It’s well-behaved

Corollary
All statements remain valid for P{· |F}. E.g.
◮ P{Ec |F} = 1− P{E |F}.
◮ P{∅ |F} = 0.
◮ P{E |F} = 1− P{Ec |F} ≤ 1.
◮ P{E ∪G |F} = P{E |F}+ P{G |F} − P{E ∩G |F}.
◮ If E ⊆ G, then P{G − E |F} = P{G |F} − P{E |F}.
◮ If E ⊆ G, then P{E |F} ≤ P{G |F}.

Remark
BUT: Don’t change the condition! E.g., P{E |F} and P{E |F c}
have nothing to do with each other.
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3. It’s well-behaved
Example (Monty Hall problem)
We have three doors. Behind one of them is a car, behind the
others, goats.

1. You pick a door (assume it’s 1 WLOG).

2. Monty opens another door with a goat behind it (e.g., 3).

3. Now you pick one of the two closed doors (repeat your
choice, or switch to the other one).

4. Whatever is behind this door is yours.

Would you repeat your choice or switch?

(http://en.wikipedia.org/wiki/File:Monty open door.svg )
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3. It’s well-behaved

Wrong answer: The car is behind either door 1 or 2 now, so the
chance is 1

2 – 1
2 .

Define E = {car is behind door 1}, F = {door 3 has a goat}.
Then

P{E |F} = P{E ∩ F}
P{F} =

1/3
2/3

=
1
2
. ←WRONG answer.

What’s the problem?
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3. It’s well-behaved

Correct answer: define G = {Monty has opened door 3}. This
is exactly what’s given! Then

P{E |G} = P{E ∩G}
P{G} =

1/3 · 1/2
1/2

=
1
3

(symmetry).

What is going on here?

32 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Cond.

3. It’s well-behaved

F = {door 3 has a goat}, G = {Monty has opened door 3}.

G ⊆ F , but G 6= F !

P{E |F} = 1
2
,

P{E |G} = 1
3
.

Remember: Don’t change the condition!

Simple alternate argument for 1
3 :  
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3. Discrete random variables
Mass function
Expectation, variance
Bernoulli, Binomial
Poisson
Geometric

Objectives:
◮ To build a mathematical model for discrete random

variables
◮ To define and get familiar with the probability mass

function, expectation and variance of such variables
◮ To get experience in working with some of the basic

distributions (Bernoulli, Binomial, Poisson, Geometric)
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Random variables

The best way of thinking about random variables is just to
consider them as random numbers.

But random means that there must be some kind of experiment
behind these numbers. They actually fit well in our framework:

Definition
A random variable is a function from the sample space Ω to the
real numbers R.

The usual notation for random variables is X , Y , Z , etc., we
often don’t mark them as functions: X (ω), Y (ω), Z (ω), etc.
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Discrete random variables

Definition
A random variable X that can take on finitely or countably
infinitely many possible values is called discrete.
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Mass function
The distribution of a random variable will be the object of
central importance to us.

Definition
Let X be a discrete random variable with possible values
x1, x2, . . . . The probability mass function (pmf), or distribution of
a random variable tells us the probabilities of these possible
values:

pX (xi) = P{X = xi},
for all possible xi ’s.

Often the possible values are just integers, xi = i , and we can
just write pX (i) for the mass function.
We also omit the subscript X if it’s clear which random variable
we are considering and simply put p(i).
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Mass function

Proposition
For any discrete random variable X,

p(xi) ≥ 0, and
∑

i

p(xi) = 1.

Remark
Vice versa: any function p which is only non-zero in countably
many xi values, and which has the above properties, is a
probability mass function. There is a sample space and a
random variable that realises this mass function.
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Expectation, variance

Once we have a random variable, we would like to quantify its
typical behaviour in some sense. Two of the most often used
quantities for this are the expectation and the variance.
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1. Expectation

Definition
The expectation, or mean, or expected value of a discrete
random variable X is defined as

EX : =
∑

i

xi · p(xi),

provided that this sum exists.

Remark
The expectation is nothing else than a weighted average of the
possible values xi with weights p(xi). A center of mass, in other
words.

p(x1) p(x2) p(x3) p(x4)

x1 x2 x3 x4E(X)
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1. Expectation

Example
Let X be a positive integer random variable with mass function

p(i) =
6
π2 ·

1
i2

i = 1, 2, . . . .

Its expectation is

EX =
∞
∑

i=1

i · p(i) =
∞
∑

i=1

6
π2 ·

1
i
=∞.

That’s fine, don’t worry.
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1. Expectation
Example
Let X be an integer valued random variable with mass function

p(i) =
3
π2 ·

1
i2

whenever i 6= 0.

Its expectation is

EX =
∞
∑

i=−∞
i 6=0

i · p(i) =
∞
∑

i=−∞
i 6=0

3
π2 ·

1
i
= ooops!

This expectation does not exist.  

For most cases we’ll have nice finite expectations. In fact, we’ll
assume that from now on.
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2. A few properties of expectation

Proposition (expectation of a function of a r.v.)
Let X be a discrete random variable, and g : R→ R function.
Then

Eg(X ) =
∑

i

g(xi) · p(xi),

if exists. . .
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2. A few properties of expectation

Corollary (linearity of expectations, first version)
Let X be a discrete random variable, a and b fixed real
numbers. Then

E(aX + b) = a · EX + b.
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2. A few properties of expectation
Definition (moments)

Let n be a positive integer. The nth moment of a random
variable X is defined as

EX n.

The nth absolute moment of X is

E|X |n.

Remark
Our notation in this definition and in the future will be

EX n : = E(X n) 6= (EX )n !!
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3. Variance

Definition (variance, standard deviation)
The variance and the standard deviation of a random variable
are defined as VarX : = E(X − EX )2 and SD X : =

√
VarX .
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4. A few properties of the variance

Proposition (an equivalent form of the variance)

For any X, VarX = EX 2 − (EX )2.

Corollary

For any X, EX 2 ≥ (EX )2, with equality only if X = const. a.s.

New notation a.s. (almost surely) means with probability one.
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4. A few properties of the variance

Example (an important one)
The variance of the indicator variable X of the event E is

VarX = EX 2−(EX )2 = 12 ·P{E}−(P{E})2 = P{E}·(1−P{E})

and the standard deviation is SD X =
√

P{E} · (1− P{E}).
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4. A few properties of the variance

Proposition (nonlinearity of the variance)
Let X be a random variable, a and b fixed real numbers. Then

Var(aX + b) = a2 · VarX .

Notice the square on a2 and also that, in particular,
Var(X + b) = VarX = Var(−X ): the variance is invariant to
shifting the random variable by a constant b or to reflecting it.
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Bernoulli, Binomial

In this part we’ll get to know the Bernoulli and the Binomial
distributions.

The setting will be that a fixed number of independent trials will
be made, each succeeding with probability p. We will be
counting the number of successes.
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1. Definition

Definition
Suppose that n independent trials are performed, each
succeeding with probability p. Let X count the number of
successes within the n trials. Then X has the
Binomial distribution with parameters n and p or, in short,
X ∼ Binom(n, p).

The special case of n = 1 is called the
Bernoulli distribution with parameter p.

Notice that the Bernoulli distribution is just another name for the
indicator variable from before.

51 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Mass fct E, var Binom Poi Geom

2. Mass function

Proposition
Let X ∼ Binom(n, p). Then X = 0, 1, . . . , n, and its mass
function is

p(i) = P{X = i} =
(

n
i

)

pi(1− p)n−i , i = 0, 1, . . . , n.

In particular, the Bernoulli(p) variable can take on values 0 or 1,
with respective probabilities

p(0) = 1− p, p(1) = p.
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2. Mass function

Remark
That the above is indeed a mass function we verify via the
Binomial Theorem (p(i) ≥ 0 is clear):

n
∑

i=0

p(i) =
n

∑

i=0

(

n
i

)

pi(1− p)n−i = [p + (1− p)]n = 1.
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3. Expectation, variance

Proposition
Let X ∼ Binom(n, p). Then

EX = np, and VarX = np(1− p).

Proof.
We first need to calculate

EX =
∑

i

i · p(i) =
n

∑

i=0

i ·
(

n
i

)

pi(1− p)n−i .

To handle this, here is a cute trick: i = d
dt t

i
∣

∣

t=1.  
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3. Expectation, variance

Proof.

EX =
n

∑

i=0

(

n
i

)

i · pi(1− p)n−i

=
n

∑

i=0

(

n
i

)

d
dt

t i |t=1 · pi(1− p)n−i

=
d
dt

(

n
∑

i=0

(

n
i

)

(tp)i(1− p)n−i
)
∣

∣

∣

t=1

=
d
dt
(tp + 1− p)n|t=1 = n(tp + 1− p)n−1 · p|t=1 = np.
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3. Expectation, variance
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3. Expectation, variance

Proof.
For the variance we’ll need the second moment too. Observe
first

i(i − 1) =
d2

dt2 t i |t=1.

 

This enables us to compute the second factorial moment
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3. Expectation, variance

Proof.

E[X (X − 1)] =
n

∑

i=0

(

n
i

)

i(i − 1) · pi(1− p)n−i

=
n

∑

i=0

(

n
i

)

d2

dt2 t i |t=1 · pi(1− p)n−i

=
d2

dt2

(

n
∑

i=0

(

n
i

)

t i · pi(1− p)n−i
)∣

∣

∣

t=1

=
d2

dt2 (tp + 1− p)n|t=1

= n(n − 1)(tp + 1− p)n−2 · p2|t=1 = n(n − 1)p2.
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3. Expectation, variance

Proof.

VarX = EX 2 − (EX )2

= E(X 2 − X ) + EX − (EX )2

= E[X (X − 1)] + EX − (EX )2

= n(n − 1)p2 + np − (np)2 = np(1− p).
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3. Expectation, variance
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Poisson

The Poisson distribution is of central importance in Probability.
We won’t see immediately why, we’ll just start with defining its
distribution. Later we’ll see how it comes from the Binomial.
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1. Mass function

Definition
Fix a positive real number λ. The random variable X is
Poisson distributed with parameter λ, in short X ∼ Poi(λ), if it is
non-negative integer valued, and its mass function is

p(i) = P{X = i} = e−λ · λ
i

i!
, i = 0, 1, 2, . . .

We have already seen in an example that this is indeed a mass
function.

Ok, nice, but why this distribution?
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2. Poisson approximation of Binomial

Proposition
Fix λ > 0, and suppose that Yn ∼ Binom(n, p) with p = p(n) in
such a way that n · p → λ. Then the distribution of Yn converges
to Poisson(λ):

∀i ≥ 0 P{Yn = i} −→
n→∞

e−λλ
i

i!
.

That is, take Y ∼ Binom(n, p) with large n, small p, such that
np ≃ λ. Then Y is approximately Poisson(λ) distributed.
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3. Expectation, variance

Proposition
For X ∼ Poi(λ), EX = VarX = λ.

Recall np and np(1− p) for the Binomial. . .

Proof.

EX =
∞
∑

i=0

ip(i) =
∞
∑

i=1

i · e−λλ
i

i!

= λ
∞
∑

i=1

e−λ λi−1

(i − 1)!
= λ

∞
∑

j=0

e−λλ
j

j!
= λ.
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3. Expectation, variance

Proof.
For the variance, start with the second factorial moment again:

E[X (X − 1)] =
∞
∑

i=0

i(i − 1)p(i) =
∞
∑

i=2

i(i − 1) · e−λλ
i

i!

= λ2
∞
∑

i=2

e−λ λi−2

(i − 2)!
= λ2

∞
∑

j=0

e−λλ
j

j!
= λ2.

VarX = EX 2 − (EX )2

= E(X 2 − X ) + EX − (EX )2

= E[X (X − 1)] + EX − (EX )2

= λ2 + λ− λ2 = λ.
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3. Expectation, variance
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Geometric

In this setting we again perform independent trials. However,
the question we ask is now different: we’ll be waiting for the first
success.
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1. Mass function
Definition
Suppose that independent trials, each succeeding with
probability p, are repeated until the first success. The total
number X of trials made has the Geometric(p) distribution (in
short, X ∼ Geom(p)).

Proposition
X can take on positive integers, with probabilities
p(i) = (1− p)i−1 · p, i = 1, 2, . . ..

That this is a mass function, we verify by p(i) ≥ 0 and

∞
∑

i=1

p(i) =
∞
∑

i=1

(1− p)i−1 · p =
p

1− (1− p)
= 1.
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1. Mass function

Remark
For a Geometric(p) random variable and any k ≥ 1 we have
P{X ≥ k} = (1− p)k−1 (we have at least k − 1 failures).

Corollary
The Geometric random variable is (discrete) memoryless: for
every k ≥ 1, n ≥ 0

P{X ≥ n + k |X > n} = P{X ≥ k}.
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2. Expectation, variance

Proposition
For a Geometric(p) random variable X,

EX =
1
p
, VarX =

1− p
p2 .
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2. Expectation, variance

Proof.

EX =
∞
∑

i=1

i · (1− p)i−1p =
∞
∑

i=0

i · (1− p)i−1p

=
∞
∑

i=0

d
dt

t i |t=1 · (1− p)i−1p =
d
dt

(

∞
∑

i=0

t i · (1− p)i−1p
)∣

∣

∣

t=1

=
p

1− p
· d

dt
1

1− (1− p)t

∣

∣

∣

t=1

=
p

1− p
· 1− p
(1− (1− p))2 =

1
p
.

Variance:  
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4. Continuous random variables
Distribution, density
Uniform
Exponential
Normal
Transformations

Objectives:
◮ To build a mathematical model of continuous random

variables
◮ To define and get familiar with the cumulative distribution

function, probability density function, expectation and
variance of such variables

◮ To get experience in working with some of the basic
distributions (Uniform, Exponential, Normal)

◮ To find the distribution of a function of a random variable
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Distribution function

Definition
The cumulative distribution function (cdf) of a random variable
X is given by

F : R→ [0, 1], x 7→ F (x) = P{X ≤ x}.

Notice that this function is well defined for any random variable.

Remark
The distribution function contains all relevant information about
the distribution of our random variable. E.g., for any fixed a < b,

P{a < X ≤ b} = P{X ≤ b} − P{X ≤ a} = F (b)− F (a).
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Distribution function

Example
Flip a coin three times, and let X be the number of Heads
obtained. Its distribution function is given by

0 1 2 3
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2/8
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4/8

5/8

6/8

7/8

8/8

0

F (x)

x
◦
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• ◦
•

p(0) = 1/8

p(1) = 3/8

p(2) = 3/8

p(3) = 1/8
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Distribution function

Definition
A random variable with piecewise constant distribution function
is called discrete. Its mass function values equal to the jump
sizes in the distribution function.

And this is equivalent to our earlier definition (taking on
countably many possible values).
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Distribution function

Proposition
A cumulative distribution function F
◮ is non-decreasing;
◮ has limit limx→−∞ F (x) = 0 on the left;
◮ has limit limx→∞ F (x) = 1 on the right;
◮ is continuous from the right.

 

Vice versa: any function F with the above properties is a
cumulative distribution function. There is a sample space and a
random variable on it that realises this distribution function.
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1. Density function

Definition
Suppose that a random variable has its distribution function in
the form of

F (a) =
∫ a

−∞
f (x) dx , (∀a ∈ R)

with a function f ≥ 0. Then the distribution is called
(absolutely) continuous, and f is the
probability density function (pdf).

We’ll assume that X is continuous for the rest of this chapter.
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1. Density function

Proposition
A probability density function f
◮ is non-negative;
◮ has total integral

∫∞
−∞ f (x) dx = 1.

 

Vice versa: any function f with the above properties is a
probability density function. There is a sample space and a
continuous random variable on it that realises this density.

75 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Distr. Uniform Exponential Normal Transf.

2. Properties of the density function

Proposition
For any* subset B ⊆ R,

P{X ∈ B} =
∫

B
f (x) dx .

 

Corollary
Indeed, for a continuous random variable X,

P{X = a} =
∫

{a}

f (x) dx = 0 (∀a ∈ R).
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2. Properties of the density function

Corollary
For a small ε,

P{X ∈ (a, a + ε]} =
∫ a+ε

a
f (x) dx ≃ f (a) · ε.

There is no particular value that X can take on with positive
chance. We can only talk about intervals, and the density tells
us the likelihood that X is around a point a.
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2. Properties of the density function

Corollary
To get to the density from a(n absolutely continuous!)
distribution function,

f (a) =
dF (a)

da
(a.e. a ∈ R).

New notation a.e. (almost every): for all but a zero-measure set
of numbers, so it’s no problem for any integrals.
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3. Expectation, variance

The way of defining the expectation will be no surprise for
anyone (c.f. the discrete case):

Definition
The expected value of a continuous random variable X is
defined by

EX =

∫ ∞

−∞
x · f (x) dx ,

if the integral exists.
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3. Expectation, variance
In a way similar to the discrete case,

Proposition
Let X be a continuous random variable, and g an R→ R

function. Then

Eg(X ) =

∫ ∞

−∞
g(x) · f (x) dx

if exists.

From here we can define moments, absolute moments

EX n =

∫ ∞

−∞
xn · f (x) dx , E|X |n =

∫ ∞

−∞
|x |n · f (x) dx ,

variance VarX = E(X − EX )2 = EX 2 − (EX )2 and standard
deviation SD X =

√
VarX as in the discrete case. These enjoy

the same properties as before.
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Uniform

We are given real numbers α < β, and wish to define a random
variable X that’s equally likely to fall anywhere in this interval.
Thinking about the definitions, we can do that by assuming a
constant density on this interval.
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1. Density, distribution function

Definition
Fix α < β reals. We say that X has the
uniform distribution over the interval (α, β), in short,
X ∼ U(α, β), if its density is given by

f (x) =







1
β − α

, if x ∈ (α, β),

0, otherwise.

Notice that this is exactly the value of the constant that makes
this a density.
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1. Density, distribution function
Integrating this density,

F (x) =



















0, if x ≤ α,

x − α

β − α
, if α ≤ x ≤ β,

1, if β ≤ x .

x

x
F (x)

f (x)

α β

α β

0

0

1
β−α

1
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1. Density, distribution function

Remark
If X ∼ U(α, β), and α < a < b < β, then

P{a < X ≤ b} =
∫ b

a
f (x) dx =

b − a
β − α

.

Probabilities are computed by proportions of lengths.
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2. Expectation, variance

Proposition
For X ∼ U(α, β),

EX =
α+ β

2
, VarX =

(β − α)2

12
.

“12” is the only non-trivial part of this formula.  

Proof.

EX =

∫ ∞

−∞
xf (x) dx =

∫ β

α

x
β − α

dx =
β2

2 − α2

2

β − α
=

α+ β

2
.
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2. Expectation, variance

Proof.

EX 2 =

∫ ∞

−∞
x2f (x) dx =

∫ β

α

x2

β − α
dx

=
1
3
· β

3 − α3

β − α
=

β2 + αβ + α2

3
,

hence

VarX = EX 2 − (EX )2 =
β2 + αβ + α2

3
− (α+ β)2

4

=
β2 − 2αβ + α2

12
=

(β − α)2

12
.
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Exponential

The Exponential is a very special distribution because of its
memoryless property. It is often considered as a waiting time,
and is widely used in the theory of stochastic processes.
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1. Density, distribution function
Definition
Fix a positive parameter λ. X is said to have the
Exponential distribution with parameter λ or, in short,
X ∼ Exp(λ), if its density is given by

f (x) =

{

0, if x ≤ 0,

λe−λx , if x ≥ 0.

Remark
Its distribution function can easily be integrated from the
density:

F (x) =

{

0, if x ≤ 0,

1− e−λx , if x ≥ 0.

88 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Distr. Uniform Exponential Normal Transf.

1. Density, distribution function

x

x
f (x)

F (x)

0

0

1

F (x) = 1− e−λx ; f (x) = λe−λx .

89 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Distr. Uniform Exponential Normal Transf.

2. Expectation, variance

Proposition
For X ∼ Exp(λ),

EX =
1
λ
; VarX =

1
λ2 .

Thinking about X as a waiting time, we now see that λ
describes how fast the event we wait for happens. Therefore λ
is also called the rate of the exponential waiting time.
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2. Expectation, variance

Proof.
We need to compute

EX =

∫ ∞

0
xλe−λx dx and EX 2 =

∫ ∞

0
x2λe−λx dx

using integration by parts.  
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Normal

The Normal, or Gaussian, is a very nice distribution on its own,
but we won’t see why it is useful until a bit later.
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1. Density, distribution function

Definition
Let µ ∈ R, σ > 0 be real parameters. X has the
Normal distribution with parameters µ and σ2 or, in short
X ∼ N (µ, σ2), if its density is given by

f (x) =
1√

2π · σ
· e−

(x−µ)2

2σ2 (x ∈ R).

To prove that this is a density, 2-dim. polar coordinates are
needed, anyone interested come and see me after class.
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1. Density, distribution function

x

f (x)

µ− 3σ µ− 2σ µ− σ µ µ+ σ µ+ 2σ µ+ 3σ

Definition

The case µ = 0, σ2 = 1 is called standard normal distribution
(N (0, 1)). Its density is denoted by ϕ, and its distribution
function by Φ:

ϕ(x) =
1√
2π
· e−x2/2, Φ(x) =

∫ x

−∞

1√
2π
· e−y2/2 dy (x ∈ R).
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1. Density, distribution function

Remark
The standard normal distribution function

Φ(x) =
∫ x

−∞

1√
2π
· e−y2/2 dy

has no closed form, its values will be looked up in tables.

Next we’ll establish some tools that will enable us to use such
tables to find probabilities of normal random variables.
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2. Symmetry

Proposition
For any z ∈ R,

Φ(−z) = 1− Φ(z).

That’s why most tables only have entries for positive values of z.
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3. Linear transformations

Proposition

Let X ∼ N (µ, σ2), and α, β ∈ R fixed numbers. Then
αX + β ∼ N (αµ+ β, α2σ2).
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3. Linear transformations

Corollary

If X ∼ N (µ, σ2), then its standardised version X−µ
σ ∼ N (0, 1).

Just use α = 1
σ and β = −µ

σ .

98 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Distr. Uniform Exponential Normal Transf.

4. Expectation and variance

Proposition
If X ∼ N (0, 1) is standard normal, then its mean is 0 and its
variance is 1.

Proof.
That the mean is zero follows from symmetry. For the variance
we need to calculate

EX 2 =

∫ ∞

−∞

x2
√

2π
· e−x2/2 dx

using integration by parts.  
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4. Expectation and variance

Corollary

If X ∼ N (µ, σ2), then its mean is µ and its variance is σ2.

Proof.

EX = σ · E
(X − µ

σ

)

+ µ = 0 + µ = µ,

VarX = σ2 · Var
(X − µ

σ

)

= σ2 · 1 = σ2

as X−µ
σ is standard.

N (µ, σ2) is also said to be the normal distribution with mean µ,
variance σ2.
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Transformations

Let X be a random variable, and g(X ) a function of it. If X is
discrete then the distribution of g(X ) is rather straightforward.
In the continuous case the question is more interesting.

We have in fact seen an example before: an affine
transformation g(x) = ax + b of Normal keeps it Normal.
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Transformations

Example
A torch, pointing in a random direction downwards, is 1 yard
high above the origin of an infinite table. What is the distribution
of the position of the lightened point on the table?
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Transformations

Solution
Let Θ ∼ U(− π/2, π/2) be the angle between the torch and
vertical. The lightbeam touches the table at X = tanΘ. Its
distribution function and density are

FX (x) = P{X < x} = P{tanΘ < x} = P{Θ < arctan x}

= FΘ( arctan x) =
arctan x − (− π/2)
π/2− (− π/2)

=
1
π

arctan x +
1
2
,

fX (x) =
1
π
· 1

1 + x2 .

This distribution is called standard Cauchy.
What is its expectation. . . ?
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Transformations

There is a general formula along the same lines:

Proposition
Let X be a continuous random variable with density fX , and g a
continuously differentiable function with nonzero derivative.
Then the density of Y = g(X ) is given by

fY (y) =
fX
(

g−1(y)
)

∣

∣g′
(

g−1(y)
)
∣

∣

.

Proving this can be done in a way very similar to the scheme
above.

The scheme is important.
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5. Joint distributions
Joint distributions
Independence, convolutions

Objectives:
◮ To build a mathematical model for several random

variables on a common probability space
◮ To get familiar with joint, marginal and conditional discrete

distributions
◮ To understand discrete convolutions
◮ To get familiar with the Gamma distribution (via a

continuous convolution)
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Joint distributions

Often an experiment can result in several random quantities at
the same time. In this case we have several random variables
defined on a common probability space. Their relations can be
far from trivial, and are described by joint distributions. Here
we’ll familiarise ourselves with the basics of joint distributions.

For most part we restrict our attention to the discrete case, as
the jointly continuous case would require multivariable calculus
and more time.

At the end of this chapter we introduce the Gamma distribution,
purely motivated by joint distributions.
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1. Joint mass function
Most examples will involve two random variables, but
everything can be generalised for more of them.

Definition
Suppose two discrete random variables X and Y are defined
on a common probability space, and can take on values
x1, x2, . . . and y1, y2, . . ., respectively. The
joint probability mass function of them is defined as

p(xi , yj) = P{X = xi , Y = yj}, i = 1, 2, . . . , j = 1, 2, . . . .

This function contains all information about the joint distribution
of X and Y .
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1. Joint mass function

Definition
The marginal mass functions are

pX (xi) : = P{X = xi}, and pY (yj) : = P{Y = yj}.

It is clear from the Law of Total Probability that

Proposition

pX (xi) =
∑

j

p(xi , yj), and pY (yj) =
∑

i

p(xi , yj).
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1. Joint mass function

Proposition
Any joint mass function satisfies
◮ p(x , y) ≥ 0, ∀x , y ∈ R;
◮

∑

i, j p(xi , yj) = 1.

Vice versa: any function p which is only non-zero in countably
many (xi , yj) values, and which has the above properties, is a
joint probability mass function. There is a sample space and
random variables that realise this joint mass function.
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2. Conditional mass function

Definition
Suppose pY (yj) > 0. The
conditional mass function of X , given Y = yj is defined by

pX |Y (x | yj) : = P{X = x |Y = yj} =
p(x , yj)

pY (yj)
.

As the conditional probability was a proper probability, this is a
proper mass function: ∀x , yj ,

pX |Y (x | yj) ≥ 0,
∑

i

pX |Y (xi | yj) = 1.
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Independence, convolutions

An important special case of joint distributions is the one of
independent variables: whatever the value of some of them is,
it does not influence the distribution of the others. We’ll make
this precise in this part, and then use it to determine the
distribution of the sum of independent variables.

As a slight generalisation and application, we’ll also introduce
the Gamma distribution.
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1. Independent r.v.’s

Definition
Random variables X and Y are independent, if events
formulated with them are so. That is, if for every A, B ⊆ R

P{X ∈ A, Y ∈ B} = P{X ∈ A} · P{Y ∈ B}.

Similarly, random variables X1, X2, . . . are independent, if
events formulated with them are so. That is, if for every
Ai1 , Ai2 , . . . , Ain ⊆ R

P{Xi1 ∈ Ai1 , Xi2 ∈ Ai2 , . . . Xin ∈ Ain}
= P{Xi1 ∈ Ai1} · P{Xi2 ∈ Ai2} · · ·P{Xin ∈ Ain}.

Recall mutual independence for events...
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1. Independent r.v.’s

Remark
People use the abbreviation i.i.d. for independent and
identically distributed random variables.

Proposition
Two random variables X and Y are independent if and only if
their joint mass function factorises into the product of the
marginals:

p(xi , yj) = pX (xi) · pY (yj), (∀xi , yj).
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1. Independent r.v.’s

Example (marking of the Poisson random variable)
Suppose that the number of customers entering the post office
is of Poi(λ) distribution. Assume also that each person,
independently of each other, is female with probability p and
male with probability 1− p. Let us find the joint distribution of
the number X of females and Y of males.

Solution
Everything we can ask for is described by the joint mass
function. To compute it, we are going to make a strange
conditioning:

p(i , j) = P{X = i , Y = j}
= P{X = i , Y = j |X + Y = i + j} · P{X + Y = i + j}.
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1. Independent r.v.’s

Solution (. . . cont’d)
The reason for this step is that we can now make use of the
information given. First, the total number of people,
X + Y ∼ Poi(λ), hence

P{X + Y = i + j} = e−λ · λi+j

(i + j)!
.
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1. Independent r.v.’s

Solution (. . . cont’d)
Second, given the total number X + Y of people, each of them
is independently female with probability p, or male with
probability 1− p. Thus, given X + Y = i + j ,
(X |X + Y = i + j) ∼ Binom(i + j , p). Therefore,

P{X = i , Y = j |X + Y = i + j} = P{X = i |X + Y = i + j}

=

(

i + j
i

)

pi(1− p)j .

As a preparation for what’s coming later, we can summarise the
above as (X |X + Y ) ∼ Binom(X + Y , p).
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1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).
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functions from here.
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= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)
Combining,

p(i , j) =
(

i + j
i

)

pi(1− p)j · e−λ λi+j

(i + j)!
= e−λpi(1− p)j · λ

i · λj

i! · j! .

What does this tell us? It’s incriminating that the right hand-side
is of product form: p(i , j) = f (i) · g(j). We need to group
constants in a proper way to see product of marginal mass
functions from here.

p(i , j) = e−λp (λp)i

i!
· e−λ(1−p) (λ(1− p))j

j!
= pPoi(λp)(i) · pPoi(λ(1−p))(j).

117 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Joint Indep

1. Independent r.v.’s

Solution (. . . cont’d)

p(i , j) = pPoi(λp)(i) · pPoi(λ(1−p))(j).

It follows that
◮ X ∼ Poi(λp);
◮ Y ∼ Poi(λ(1− p));
◮ X and Y are independent.
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1. Independent r.v.’s

Solution (. . . cont’d)

p(i , j) = pPoi(λp)(i) · pPoi(λ(1−p))(j).

It follows that
◮ X ∼ Poi(λp);
◮ Y ∼ Poi(λ(1− p));
◮ X and Y are independent. Surprise!

This is a particular feature of the Poisson distribution (and, in
your further studies, the Poisson process).
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2. Discrete convolution

We restrict ourselves now to integer valued random variables.
Let X and Y be such, and also independent. What is the
distribution of their sum?

Proposition
Let X and Y be independent, integer valued random variables
with respective mass functions pX and pY . Then

pX+Y (k) =
∞
∑

i=−∞

pX (k − i) · pY (i), (∀k ∈ Z).

This formula is called the discrete convolution of the mass
functions pX and pY .
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2. Discrete convolution

Example
Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent. Then

pX+Y (k) =
∞
∑

i=−∞

pX (k − i) · pY (i) =
k

∑

i=0

e−λ λk−i

(k − i)!
· e−µµ

i

i!

= e−(λ+µ) 1
k !

k
∑

i=0

(

k
i

)

· λk−i · µi = e−(λ+µ) (λ+ µ)k

k !
,

from where we conclude X + Y ∼ Poi(λ+ µ).
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2. Discrete convolution

Example
Let X , Y be i.i.d. Geom(p) variables. Then

pX+Y (k) =
∞
∑

i=−∞

pX (k − i) · pY (i)

=

k−1
∑

i=1

(1− p)k−i−1p · (1− p)i−1p

= (k − 1) · (1− p)k−2p2,

X + Y is not Geometric.

(It’s actually called Negative Binomial. . . )
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2. Discrete convolution

Example (of course. . . )
Let X ∼ Binom(n, p) and Y ∼ Binom(m, p) be independent
(notice the same p!). Then X + Y ∼ Binom(n + m, p):

pX+Y (k) =
k

∑

i=0

(

n
k − i

)

pk−i(1− p)n−k+i ·
(

m
i

)

pi(1− p)m−i

= pk · (1− p)m+n−k
k

∑

i=0

(

n
k − i

)

·
(

m
i

)

.

Now,
k

∑

i=0

(

n
k − i

)

·
(

m
i

)

=

(

n + m
k

)

 ,

thus pX+Y (k) =
(n+m

k

)

pk · (1− p)m+n−k , and we are done.
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6. Expectation, covariance
Properties of expectations
Covariance

Objectives:
◮ To explore further properties of expectations of a single

and multiple variables
◮ To define covariance, and use it for computing variances of

sums
◮ To explore and use conditional expectations
◮ To define and use moment generating functions
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Properties of expectations

Recall the respective definitions

EX =
∑

i

xip(xi) or EX =

∫ ∞

−∞
xf (x) dx

for the discrete and continuous cases. In this chapter we’ll
explore properties of expected values. We’ll always assume
that the expectations we talk about exist. Most proofs will be
done for the discrete case, but everything in this chapter is very
general even beyond discrete and continuous. . .
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1. A simple monotonicity property

Proposition
Suppose that a ≤ X ≤ b a.s. Then a ≤ EX ≤ b.

Recall: a.s. means with probability one.
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2. Expectation of functions of variables

Proposition
Suppose that X and Y are discrete random variables, and
g : R× R→ R function. Then

Eg(X , Y ) =
∑

i, j

g(xi , yj) · p(xi , yj).

There is a very analogous formula for continuous random
variables, using joint densities, beyond the scope of this unit.

A similar formula holds for functions of 3, 4, etc. random
variables.
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3. Expectation of sums and differences

Corollary (a very important one)
Let X and Y be any random variables. Then

E(X + Y ) = EX + EY and E(X − Y ) = EX − EY .
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3. Expectation of sums and differences

Corollary
Let X and Y be such that X ≤ Y a.s. Then EX ≤ EY.
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3. Expectation of sums and differences

Example (sample mean)
Let X1, X2, . . . , Xn be identically distributed random variables
with mean µ. Their sample mean is

X̄ : =
1
n

n
∑

i=1

Xi .

Its expectation is

EX̄ = E
1
n

n
∑

i=1

Xi =
1
n

E
n

∑

i=1

Xi =
1
n

n
∑

i=1

EXi =
1
n

n
∑

i=1

µ = µ.
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3. Expectation of sums and differences

Example
Let N be a non-negative integer random variable, and

Xi : =

{

1, if N ≥ i ,

0, if N < i .

Then

∞
∑

i=1

Xi =
N
∑

i=1

Xi +
∞
∑

i=N+1

Xi =
N
∑

i=1

1 +
∞
∑

i=N+1

0 = N,

E
∞
∑

i=1

Xi =

∞
∑

i=1

EXi =

∞
∑

i=1

P{N ≥ i} = EN.
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Covariance

In this part we investigate the relation of independence to
expected values. It will give us some (not perfect) way of
measuring independence.

Again, we assume that all the expectations we talk about exist.
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1. Independence

We start with a simple observation:

Proposition
Let X and Y be independent random variables, and g, h
functions. Then

E
(

g(X ) · h(Y )
)

= Eg(X ) · Eh(Y ).
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2. Covariance

Then, the following is a natural object to measure
independence:

Definition
The covariance of the random variables X and Y is

Cov(X , Y ) = E[(X − EX ) · (Y − EY )].

Before exploring its properties, notice

Cov(X , Y ) = EXY − EX · EY .
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2. Covariance

Remark
From either forms

Cov(X , Y ) = E[(X − EX ) · (Y − EY )] = EXY − EX · EY

it is clear that for independent random variables,

Cov(X , Y ) = 0.
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2. Covariance

Example
This is not true the other way around: let

X : =



























−1, with prob.
1
3
,

0, with prob.
1
3
,

1, with prob.
1
3
,

Y : =

{

0, if X 6= 0,

1, if X = 0.

Then X · Y = 0 and EX = 0, thus Cov(X , Y ) = 0, but these
variables are clearly not independent.
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2. Covariance

Proposition (properties of covariance)
Fix ai , b, cj , d real numbers. Covariance is
◮ positive semidefinite: Cov(X , X ) = VarX ≥ 0,
◮ symmetric: Cov(X , Y ) = Cov(Y , X ),
◮ almost bilinear:

Cov
(

∑

i

aiXi + b,
∑

j

cjYj + d
)

=
∑

i, j

aicjCov(Xi , Yj).
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3. Variance

Now we can answer a long overdue question: what happens to
the variance of sums or random variables?

Proposition (variance of sums)
Let X1, X2, . . . , Xn be random variables. Then

Var
n

∑

i=1

Xi =

n
∑

i=1

VarXi + 2
∑

1≤i<j≤n

Cov(Xi , Xj).

In particular, variances of independent random variables are
additive.

No additivity, however, of variances in general.
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3. Variance

Remark
Notice that for independent variables,

Var(X − Y ) = VarX + VarY .
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3. Variance

Example (variance of the sample mean)

Suppose that Xi ’s are i.i.d., each of variance σ2. Recall the
definition

X̄ : =
1
n

n
∑

i=1

Xi

of the sample mean. Its variance is

VarX̄ = Var
(1

n

n
∑

i=1

Xi

)

=
1
n2 Var

(

n
∑

i=1

Xi

)

=
1
n2

n
∑

i=1

VarXi =
1
n2 · nσ

2 =
σ2

n
.

Decreases with n, that’s why we like sample averages.
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3. Variance

Example (unbiased sample variance)
Suppose we are given the values of X1, X2, . . . Xn of an i.i.d.
sequence of random variables with mean µ and variance σ2.
We know that the sample mean X̄
◮ has mean µ, and
◮ small variance (σ

2

n ).

Therefore it serves as a good estimator for the value of µ. But
what should we use to estimate the variance σ2? This quantity
is the unbiased sample variance:

S2 : =
1

n − 1

n
∑

i=1

(Xi − X̄ )2.
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3. Variance

Example (unbiased sample variance)
We’ll compute its expected value (and take it for granted that it
doesn’t fluctuate much):

ES2 = E
( 1

n − 1

n
∑

i=1

(Xi − X̄ )2
)

=
1

n − 1

n
∑

i=1

E(Xi − X̄ )2

=
n

n − 1
E(X1 − X̄ )2

by symmetry. Next notice that
E(X1 − X̄ ) = EX1 − EX̄ = µ− µ = 0, therefore

E(X1 − X̄ )2 = Var(X1 − X̄ ) = VarX1 + VarX̄ − 2Cov(X1, X̄ ).
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3. Variance

Example (unbiased sample variance)

From here, VarX1 = σ2, VarX̄ = σ2

n , only need to calculate

Cov(X1, X̄ ) = Cov
(

X1,
1
n

∑

j

Xj

)

=
1
n

Cov
(

X1,
∑

j

Xj

)

=
1
n

∑

j

Cov
(

X1, Xj

)

=
1
n

Cov(X1, X1) =
σ2

n
.

Putting everything together,

ES2 =
n

n − 1

(

σ2 +
σ2

n
− 2

σ2

n

)

=
n

n − 1
(n − 1)σ2

n
= σ2.

142 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance

3. Variance

Example (unbiased sample variance)

From here, VarX1 = σ2, VarX̄ = σ2

n , only need to calculate

Cov(X1, X̄ ) = Cov
(

X1,
1
n

∑

j

Xj

)

=
1
n

Cov
(

X1,
∑

j

Xj

)

=
1
n

∑

j

Cov
(

X1, Xj

)

=
1
n

Cov(X1, X1) =
σ2

n
.

Putting everything together,

ES2 =
n

n − 1

(

σ2 +
σ2

n
− 2

σ2

n

)

=
n

n − 1
(n − 1)σ2

n
= σ2.

142 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance

3. Variance

Example (unbiased sample variance)

From here, VarX1 = σ2, VarX̄ = σ2

n , only need to calculate

Cov(X1, X̄ ) = Cov
(

X1,
1
n

∑

j

Xj

)

=
1
n

Cov
(

X1,
∑

j

Xj

)

=
1
n

∑

j

Cov
(

X1, Xj

)

=
1
n

Cov(X1, X1) =
σ2

n
.

Putting everything together,

ES2 =
n

n − 1

(

σ2 +
σ2

n
− 2

σ2

n

)

=
n

n − 1
(n − 1)σ2

n
= σ2.

142 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Properties Covariance

3. Variance

Example (unbiased sample variance)

From here, VarX1 = σ2, VarX̄ = σ2

n , only need to calculate

Cov(X1, X̄ ) = Cov
(

X1,
1
n

∑

j

Xj

)

=
1
n

Cov
(

X1,
∑

j

Xj

)

=
1
n

∑

j

Cov
(

X1, Xj

)

=
1
n

Cov(X1, X1) =
σ2

n
.

Putting everything together,

ES2 =
n

n − 1

(

σ2 +
σ2

n
− 2

σ2

n

)

=
n

n − 1
(n − 1)σ2

n
= σ2.

142 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev CLT

7. Law of Large Numbers, Central Limit Theorem
Markov’s, Chebyshev’s inequality
Central Limit Theorem

Objectives:
◮ To get familiar with general inequalities like Markov’s and

Chebyshev’s
◮ To (almost) prove and use the Weak Law of Large

Numbers
◮ To (almost) prove and use the Central Limit Theorem
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Markov’s, Chebyshev’s inequality

Knowing a distribution of a random variable makes it possible to
compute its moments. Vice-versa, knowing a few moments
gives some bounds on certain probabilities. We’ll explore such
bounds in this part.

Our bounds here will be very general, and that makes them
very useful in theoretical considerations. The price to pay is
that they are often not sharp enough for practical applications.

144 / 153



Prob. Cond. Discr. Cont. Joint E, cov LLN, CLT Chebyshev CLT

1. Markov’s inequality

Theorem (Markov’s inequality)
Let X be a non-negative random variable. Then for all a > 0
reals,

P{X ≥ a} ≤ EX
a

.

Of course this inequality is useless for a ≤ EX .
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2. Chebyshev’s inequality

Theorem (Chebyshev’s inequality)

Let X be a random variable with mean µ and variance σ2 both
finite. Then for all b > 0 reals,

P{|X − µ| ≥ b} ≤ VarX
b2 .

Of course this inequality is useless for b ≤ SD X .
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3. Examples

Example (it’s not sharp)

Let X ∼ U(0, 10). Then µ = 5 and VarX = 102

12 , and
Chebyshev’s inequality tells us

P{|X − 5| ≥ 4} ≤ VarX
42 =

102

12 · 42 =
25
48
≃ 0.52.

This is certainly valid, but the truth is

P{|X − 5| ≥ 4} = P{X ≤ 1}+ P{X ≥ 9} = 1
10

+
1

10
= 0.2.
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3. Examples

Example (it’s not sharp)

Let X ∼ N (µ, σ2). According to Chebyshev’s inequality

P{|X − µ| ≥ 2σ} ≤ VarX
(2σ)2 =

σ2

4σ2 = 0.25,

while in fact

P{|X − µ| ≥ 2σ} = P
{X − µ

σ
≤ −2

}

+ P
{X − µ

σ
≥ 2

}

= Φ(−2) + 1− Φ(2) = 2− 2Φ(2) ≃ 0.0456.
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4. A turbo version

While Markov’s inequality is not sharp in many cases, there are
many ways of strengthening it. Here is a commonly used
argument called Chernoff bound. Let X be any random variable
with finite moment generating function M. Then for any c ∈ R

and λ > 0,

P{X ≥ c} = P
{

eλX ≥ eλc} ≤ EeλX

eλc = e−λcM(λ),

where Markov’s inequality was applied on eλX ≥ 0. Minimising
the right hand-side in λ can give rather sharp estimates in
many cases.
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Central Limit Theorem

The WLLN tells us that the sample mean of an i.i.d. sequence
is close to the expectation of the variables. A second, finer
approach will be the Central Limit Theorem. It will tell us the
order of magnitude of the distance between the sample mean
and the true mean of our random variables.
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Central Limit Theorem

Theorem (Central Limit Theorem (CLT))
Let X1, X2, . . . be i.i.d. random variables with both their mean µ
and variance σ2 finite. Then for every real a < b,

P
{

a <
X1 + X2 + · · ·+ Xn − nµ√

n σ
≤ b

}

−→
n→∞

Φ(b)− Φ(a).

Remark

Notice the mean nµ and standard deviation
√

n σ of the sum
X1 + X2 + · · ·+ Xn.
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Central Limit Theorem
Example
The number of students who apply to a course is X ∼ Poi(100).
Estimate the probability that more than 120 apply.

Solution
Working with sums of 121 terms with huge factorials is not very
good for one’s health. Try CLT instead. But: where are the i.i.d.
random variables?
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Central Limit Theorem
Example
The number of students who apply to a course is X ∼ Poi(100).
Estimate the probability that more than 120 apply.

Solution
Working with sums of 121 terms with huge factorials is not very
good for one’s health. Try CLT instead. But: where are the i.i.d.
random variables?

Recall that the Poisson has the nice convolution property. Thus,

X d
=

100
∑

i=1

Xi ,

where Xi ’s are i.i.d. Poi(1). These are completely hypothetical
variables, they are nowhere present in the problem.
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Central Limit Theorem

Solution (. . . cont’d)
Then (EXi = 1, VarXi = 1):

P{X > 120} = P
{

100
∑

i=1

Xi > 120
}

= P
{

100
∑

i=1

Xi > 120.5
}

= P
{

100
∑

i=1
Xi − 100 · 1
√

100 · 1
>

120.5− 100 · 1√
100 · 1

}

≃ 1− Φ(2.05) ≃ 0.0202.
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