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Modelling choices

Contamination:

unidirectional (independent, directed edges &;_,;
and &;_,; between any two adjacent vertices i ~ j),
or

symmetric (undirected edges &;).
Open edges:

independent Bernoulli variables, or

locally correlated 0—1 random variables.
Contamination:

confined to neighbours, or

it might propagate via a series of open edges.
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The process
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The strategy

UNI

Process: index set / (n; :=|l]), colours ¢ € {1,2,...,n:}
vi=Xx'v\/ X, Y e{o1}
Jijeri
Goal: estimate 6 = (1',...,A" u) from the data
(Y )icteet1 2,0}

Objective: the method of simulated moments (MSM) is
strongly consistent.

We prove a strong law of large numbers (SLLN) with
weakly dependent variables.

To upper bound dependence (i.e. correlations bw.
vertices), we use the FKG and BK inequalities of
percolation theory.
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The method of simulated moments (MSM)

Data # = (%), originates from a distribution which is
parameterised by the unknown 6, € © (the true parameter
value).

Moments: K is some np-dimensional function of the
individual observations Y;. k(6) := Eg[K(Y})]

Identifiability: Eg[K(#)]=k(60) <= 6=6
MSM: k(0) is not available in analytical form but there exists

an unbiased estimator E(U,-s, 0). (UP)icrsef1,..ns) IS SOME
source of randomness, typically vectors of independent U[0, 1].

Q € R"'m*m is a symmetric, positive definite matrix;
a(n) = nTQn a quadratic form. The MSM estimator is

. 1 1 &
0 =argmina | — —
el ge@ n ,;’ Ns Z?
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The method of simulated moments (MSM)
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Proposition

Q € R"m*"m js symmetric, positive definite; a(n) = nTQn.

The MSM estimator is
. i il
Ohne,n, : = argmin o —Z K(%)——ZK(U,-S,O) .
0c0 Ny A Ns s34

ns is fixed and n, tends to infinity, and the almost sure
convergence guaranteed by the SLLN

nj—roo

1
— Y K(U7,6) —  k(6)
i

is uniform in 6 € © for every s, é,,s,,,, is strongly consistent (i.e.
é,,s,,,, converges to 6y almost surely).
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Application to our percolation model

Variables (Y/) are neither identically distributed (boundary!) nor
independent. — SLLN is not a given.

Moments we use: Y/, Y/Y/ fori~j

Identifiability:

If (A1,...,A%) = h € {0,1}"%, then for any choice of u, (Y;);c/ is
identically h.

Similarly, if (u=1and (A’ >0 <= hy =1)), then (Y);c/ is
identically h (with high probability as n; — o).
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MSM for the percolation model
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Theorem (Main result)

L= {(ij)elxI|in~ji<j};
Q € R?7%2N js symmetric, positive definite; a(n) = nTQn a quadratic form.

For triangular lattice: © a compact subset of ([0,1]7% \ {0,1}") x [0,1/5].
(For the square lattice case, replace 1/5 with 1/3.)
When ns is fixed and n; — oo, then

(”ll Ziel (%e - l E”S Y’.[)s))ee{t Ne}
T Epet (@ Y = AT YY) et

g}é_ V(s
= argmin & E 2251_ )56{1,,

éns,n, I =argmin o
6cO (

60 )
s te{l,.n

is strongly consistent.
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Goal: strong law of large numbers (SLLN)

FREIBURG

Goal: as n; — oo, for i ~ j, almost surely, uniformly in 6 € ©, §
— Z Y/ —EBoY/
//el
and Y VY —Ee[YY/].
‘ 2‘ (i j)el>

This would ensure that almost surely, uniformly in 6 € ©,

jl_ Lyls yts
(g s Lsit Y )é€{1 ..... ne} Ha( (Bay Y/ Eey)fe{h Ne} )

(BaY/ Y1 Bl Y1)
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Goal: strong law of large numbers (SLLN)

Goal: as n; — oo, for i ~ j, almost surely, uniformly in 6 € ©,

—Yv/i- EgY/ —0
n,% n,%
and i Z ,- j Z Eg[Y,-ZYjZ]—>O.
|12|(,'J)€/ |12| (i j)el

This would ensure that almost surely, uniformly in 6 € ©,

Ns l,s
o ( Z Y )Ze{1 ..... ne} —
Ns (.S
( Z Z te{1,...nc}
1y, {_EoY!
. (n/ Liel (Eﬂoj Z EoY] ))/ ;1, o} — 0
(“2‘ Yiij)eh (Eeo[Y Y 1-Eo[Y;Y; ]))56{17,..,%} "
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Strong law of large numbers (SLLN)

Proposition (SLLN for our percolation model)
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Let © be a compact subset of [0,1]" x [0,1/5]
(triangular lattice: u < 1/5; square lattice: u < 1/3).
If'Y is generated with parameter value 6 € ©, then

1
— (Y Y -YEeY/|] — O

almost surely, uniformly in 6 € ©.

Proof
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Strong law of large numbers (SLLN)

Proposition (SLLN for our percolation model)
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Let © be a compact subset of [0,1]" x [0,1/5]
(triangular lattice: u < 1/5; square lattice: u < 1/3).
If'Y is generated with parameter value 6 € ©, then

1
— (Y Y -YEeY/|] — O
almost surely, uniformly in 6 € ©.

Proof

Let Y; := Y/ for fixed £ € {1,...,nc}.

Let a > 1. Define the lacunary sequence kj, := [a"].
Let Sk =YK, V.
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Strong law of large numbers (SLLN)

By Chebyshov’s inequality for the 6(ky) for every k, = [a"] where the
supremum on the compact set © is achieved, for every € > 0,

i (sup 7;]58'(" > £> = i P (’Sk”(e(kn))l:EG(k”)Sk” > s)
n=1 6cO n n=1 n
< SUpeee VarSkn
a n=1 £2kr21
< lz i lSupflVarY,
€2 1 kA 9€@i=1

+;2 Z Zup Y. (E[Y;Yj]-EYEY)).

n 0€@1<j<j<k,
If this is finite, then by the Borel-Cantelli lemma, as n — o,

Sk, —ESy

sup o 21 =0 as.

0cO

June 2016 Bence Mélykuti — http://research.melykuti.be 13/25



Strong law of large numbers (SLLN)

oo

1 1 2
—ZZ 2supZVarY + 3 Z 2sup Y (ElY}Y]-EY,EY;) O
kn 0€0 j=1 kn 0€0 1<i<j<k,

O
[
=2
T}
[
)
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Strong law of large numbers (SLLN)
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1 TZaT
—22—2 upZVarY+ 22 2sup Y (ElYiY]-EY,EY;) O
€ n= 1kn 0€0 j=1 kn 96@1</<j<kn
h,_/
<kn

Lemma

If1 < a, ky =[a"], then
|
)y Ky <

n=1
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Strong law of large numbers (SLLN)

_— =

— sup) VarY;+— sup (E[Y;Y;]-EY;EY))

g2 r; kn ee@,z’ €2 Z k,% ee@1</§<k,, Y Y
— o

Lemma

If1 < a, ky =[a"], then
> 1

n=1

Lemma

As n — o, jt holds

sup =0(n).

0€O

Y. (ElY;Y]]-EY;EY))

1<i<j<n
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Quantifying (in)dependence of faraway vertices

- Geoffrey Grimmett; Percolation, Springer, 1999.
Probability space ({0,1}°,.%,P) (|S| < Xo);
events .#: o-algebra generated by the finite-dimensional cylinder sets;
the measure is a product measure P = [Jscg Vs,

vs is given by (p(s)) 5. € [0,1]° via

vs(o(s)=1) =p(s), vs(o(s)=0)=1—p(s)

for sample vectors (o(s)), g € {0,1}S.
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Quantifying (in)dependence of faraway vertices

Geoffrey Grimmett; Percolation, Springer, 1999.

Probability space ({0,1}°,.%,P) (|S| < Xo);
events .#: o-algebra generated by the finite-dimensional cylinder sets;
the measure is a product measure P = [[scs Vs,

vs is given by (p(s)) 5. € [0,1]° via

vs(o(s)=1) =p(s), vs(o(s)=0)=1—p(s)

for sample vectors (®(s)), g € {0,1 }S.

seS

A colour £ € {1,...,nc} is already fixed.
Insert a loop edge for every vertex, p(s) := AL.
For edges of the lattice, p(s) := u.

An event A € .Z is increasing : <= ((w <o, wcA =0 c A).

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If A,B € .# are increasing events, then P(ANB) > P(A)P(B).
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Some percolation theory

An event A € . is increasing : <= ((a) <o, weA) =o' e A).

Leteq,es,...,en be N distinct edges, A, B € .# two increasing events which
depend on the states of these N edges o = (w(ey),...,m(ey)) only.

J(w):={ej|ic{1,....N}, w(e;) =1}
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Some percolation theory
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An event A € . is increasing : <= ((a) <o, weA) =o' e A).

Leteq,es,...,en be N distinct edges, A, B € .# two increasing events which
depend on the states of these N edges o = (w(ey),...,m(ey)) only.
J(w):={ej|ic{1,....N}, w(e;) =1}

For A, B increasing, A and B occur disjointly:
AoB:={we {0,1}° | there exists an H C J(w) such that ' determined by
J(@') = H belongs to A, and o” determined by J(@") = J(®) \ H belongs to B}.
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Quantifying (in)dependence of faraway vertices
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Lemma

As n — oo, jt holds

sup

Y (E[V;Y]]-EYEY))
6O

1<i<j<n

=0(n).

In the lattice graph extended with loop edges, the event {Y; = 1} is increasing.

By the [EINERIITBEIY :

If A,B € Z are increasing events, then P(ANB) > P(A)P(B).

E[Y;Y;]-EY;EY; =P(Y;Y; =1) —P(Y; =1)P(Y; = 1) > 0.
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Quantifying (in)dependence of faraway vertices
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We have

E[Y;Y;] ~EY;EY; =P(Y;¥; = 1)~ P(Y; = )P(Y; = 1) > O.

AU BK inequality ;

If A,B € Z are increasing events, then P(A o B) < P(A)P(B).
P(Y;Y;=1)=P(Y;=1)P(Y;=1) =P({Y; =1} o{Y; =1}) = P(Y; = 1)P(Y; = 1)
+P({VY = 11\ (Y= 1}e{Y; = 1})
BK
<P({YY; =1\ {Yi=1}o{y;=1}).

Cooccurrence of {Y; = 1} and {Y; = 1} which is not disjoint is one where j and
j are in the same component:

{Yivi=11\{Yi=1}o{Yj=1} c{i =]}
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Quantifying (in)dependence of faraway vertices

Goal: on the triangular lattice, for every € > 0, uniformly for u €[0,1/5 — €],
Y Pli«j)=0(n)
1<i<j<n

¥ = {paths (i.e. self-avoiding walks) on the triangular lattice with length k
and beginning in a fixed vertex i}

Wi <6x 55
E[#paths from /] = i Y k= i|7/k|uk< i6><5k’1uk=6u ! < oo
k=1 - = 1-5u
1 yeHi k=1 k=1

By allowing any paths on the infinite lattice D /,

Y Rie)s Y Y ¥ uf

1<i<j<n 1<i<n k=1 jis endpoint
of ye ¥k
6
< X 1 %”'
1</<n —oH
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In summary

As n — oo, by the FKG and BK inequalities,

sup| Y (EIY;Yj]-EYEY)) = 6(n).
0€0 |1<i<j<n
Hence for k, = [a"],
> —E
p(&m Sty —ESky >8)<<m.
n=1 CISC] n

Further, consider k, <n; < k,,1. Then

1
m(Z”‘Z%”>53°

iel iel

almost surely, uniformly in 6 € ©, where © is a compact subset of [0, 1]" x [0,1/5]
(u < 1/8 for the square lattice).
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In summary

As n — oo, by the FKG and BK inequalities,

sup

Y. (EIY;}Y]-EYiEY)) =
6O

1<i<j<n

o(n).

Hence for k, = [a"],

Sk, —ESk,

i P (sup
n

n=1 6€©

>8)<°°.

Further, consider k, <n; < k,,1. Then
Y Vi —Y Eo Yf> — 0
</el iel =

almost surely, uniformly in 6 € ©, where © is a compact subset of [0, 1]7% x [0,1/5]
(u < 1/3 for the square lattice). For the strong consistence of 6y, p,, repeat for

/4 [AVZ
12<Z Yivi- ¥ Ee[v,.m> 0

()€l
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Implementation
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ne = 3 colours. Set a(n) = nTQn by

(ge_ nls):g; w,s)
(fz B 'J? Lol Z&S)zeg ..... ne}

Common random numbers for different 6 = (A1,..., A% u) € ©.
Method 1: (U,f‘s),(V,/S.) ~U[0, 1]  (e{1,...;nc},se{1,....ns},i€l,(i,j) € )

x“-—{1 if Uj® < AL 5§__{1 if VS <,
= 5

! 0 otherwise, 0 otherwise.

Method 2: (6'$) ~ U[Sp, ], (¢%) ~ U[S ] (Ce{l,...nc}se{l,....ns})

X0 {1 o' <Al e {1 i 75((1.) < Lulla| .

i 0 otherwise, 0 otherwise.
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Results

ny =25 x 25 = 625 vertices (|/>| = 1776)

pM1)

dM1)

pM2)

dM2)

Ns  Nopt  Hmax ) Ns,N; Ns,Ny Agm2)
ns,n
10 10 0.1 0.1 0.1287 28.7% 0.1223 22.3% 0.0126
0.05 | 0.0597 19.4% 0.0605 21%
0.07 | 0.0614 12.29% 0.0587 16.14%
0.06 | 0.0428 28.67% 0.0436 27.33%
n; =500 x 500 = 250,000 vertices (|/»| = 748,001)
Ns  Nop  tma O | ONp)  d™MD VR gD g,
ns.ny
2 3 0.04 0.083 | 0.0295 1.67% 0.0293 2.33% 0.0011
0.04 | 0.0402 0.5% 0.0401 0.25%
0.05 | 0.0522 4.4% 0.0520 4%
0.02 | 0.0192 4% 0.0195 2.5%
d is the relative bias: ’1 e 90’ x 100%
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Summary

_Em
Model chosen: symmetric (undirected edges &;); edges are =i
independent Bernoulli variables; contamination propagates

via a series of open edges.

Method of simulated moments is strongly consistent as
n; — o but ng bounded.

Unusual: sample is large but neither independent nor
identically distributed.
Proof method:
The method of simulated moments (MSM) is strongly
consistent.

Proved a strong law of large numbers (SLLN) with weakly
dependent variables.

FKG and BK inequalities of percolation theory used to
upper bound dependence (i.e. correlations bw. vertices).
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Open problems

Confidence intervals? Under regularity conditions (the estimator is
continuously differentiable with respect to 6), ﬁ(éns,n, —6p) is
asymptotically normal with known limiting variance.
It is possible to choose Q optimally, i.e. to minimise this asymptotic
variance.

Beyond estimating u, estimate the proportion of vertices which are in a
non-trivial component.

Largest u for which SLLN holds? (cf. 1/5 for triangular, 1/3 for square
lattice) Will this MSM work in the entire subcritical regime?

Maximum likelihood estimation; computing the probability of a
configuration (and esp. of an animal).

Model fit? Locally positively correlated open edges might be needed;
e.g. Ising model for the edges (increases degrees of freedom by 1).
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