UNI

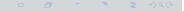
Parameter estimation in a subcritical percolation model with colouring

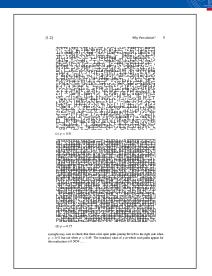
Albert-Ludwigs-Universität Freiburg

Bence Mélykúti

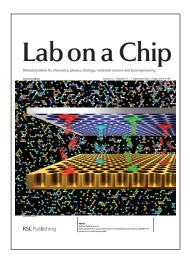
jointly with Felix Beck; arXiv:1604.08908 [math.ST]

Centre for Biological Systems Analysis (ZBSA) June 2016

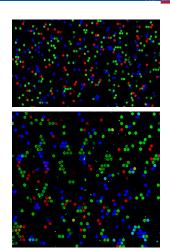




Cross-contamination rate estimation for digital PCR in lab-on-a-chip microfluidic devices



Hoffmann et al.; Lab on a Chip, 12, 3049-3054, 2012.



Rath; MSc thesis, Univ. of Freiburg, 2014.

- (i) unidirectional (independent, directed edges $\xi_{i \to j}$ and $\xi_{j \to i}$ between any two adjacent vertices $i \sim j$), or
- (ii) symmetric (undirected edges ξ_{ij}).

Open edges:

- (1) independent Bernoulli variables, or
- (2) locally correlated 0–1 random variables.

Contamination:

- (A) confined to neighbours, or
- (B) it might propagate via a series of open edges.

Contamination:

- (i) unidirectional (independent, directed edges $\xi_{i \to j}$ and $\xi_{j \to i}$ between any two adjacent vertices $i \sim j$), or
- (ii) symmetric (undirected edges ξ_{ij}).

Open edges:

- (1) independent Bernoulli variables, or
- (2) locally correlated 0–1 random variables.

Contamination:

- (A) confined to neighbours, or
- (B) it might propagate via a series of open edges.

Contamination:

- (i) unidirectional (independent, directed edges $\xi_{i \to j}$ and $\xi_{j \to i}$ between any two adjacent vertices $i \sim j$), or
- (ii) symmetric (undirected edges ξ_{ij}).

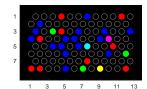
Open edges:

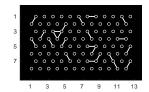
- (1) independent Bernoulli variables, or
- (2) locally correlated 0–1 random variables.

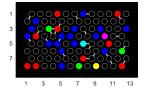
Contamination:

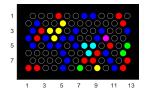
- (A) confined to neighbours, or
- (B) it might propagate via a series of open edges.

The process









The strategy

■ Process: index set I ($n_I := |I|$), colours $\ell \in \{1, 2, ..., n_c\}$

$$Y_i^{\ell} := X_i^{\ell} \vee \bigvee_{j: j \leftrightarrow i} X_j^{\ell}, \qquad Y_i^{\ell} \in \{0, 1\}$$

■ Goal: estimate $\theta = (\lambda^1, ..., \lambda^{n_c}, \mu)$ from the data $(Y_i^{\ell})_{i \in I, \ell \in \{1, 2, ..., n_c\}}$

- Objective: the method of simulated moments (MSM) is strongly consistent.
- We prove a strong law of large numbers (SLLN) with weakly dependent variables.
- To upper bound dependence (i.e. correlations bw. vertices), we use the FKG and BK inequalities of percolation theory.

- Data $\mathscr{Y} = (\mathscr{Y}_i)_{i \in I}$ originates from a distribution which is parameterised by the unknown $\theta_0 \in \Theta$ (the *true parameter value*).
- Moments: K is some n_m -dimensional function of the individual observations Y_i . $k(\theta) := E_{\theta}[K(Y_i)]$
- Identifiability: $E_{\theta_0}[K(\mathscr{Y}_i)] = k(\theta) \iff \theta = \theta_0$
- MSM: $k(\theta)$ is not available in analytical form but there exists an unbiased estimator $\widetilde{k}(U_i^s, \theta)$. $(U_i^s)_{i \in I, s \in \{1, \dots, n_s\}}$ is some source of randomness, typically vectors of independent U[0, 1].
- $\Omega \in \mathbb{R}^{n_m \times n_m}$ is a symmetric, positive definite matrix; $\alpha(\eta) = \eta^T \Omega \eta$ a quadratic form. The MSM estimator is

$$\hat{\theta}_{n_s,n_l} := \arg\min_{\theta \in \Theta} \alpha \left(\frac{1}{n_l} \sum_{i=1}^{n_l} \left(K(\mathscr{Y}_i) - \frac{1}{n_s} \sum_{s=1}^{n_s} \widetilde{k}(U_i^s, \theta) \right) \right)$$

Proposition

 $\Omega \in \mathbb{R}^{n_m \times n_m}$ is symmetric, positive definite; $\alpha(\eta) = \eta^T \Omega \eta$. The MSM estimator is

$$\hat{\theta}_{n_s,n_l} := \operatorname*{arg\,min}_{\theta \in \Theta} \alpha \left(\frac{1}{n_l} \sum_{i=1}^{n_l} \left(K(\mathscr{Y}_i) - \frac{1}{n_s} \sum_{s=1}^{n_s} \widetilde{k}(U_i^s, \theta) \right) \right).$$

If n_s is fixed and n_l tends to infinity, and the almost sure convergence guaranteed by the SLLN

$$\frac{1}{n_l}\sum_{i=1}^{n_l}\widetilde{k}(U_i^s,\theta) \quad \underset{n_l\to\infty}{\longrightarrow} \quad k(\theta)$$

is uniform in $\theta \in \Theta$ for every s, then $\hat{\theta}_{n_s,n_l}$ is strongly consistent (i.e. $\hat{\theta}_{n_s,n_l}$ converges to θ_0 almost surely).

- Variables (Y_i^{ℓ}) are neither identically distributed (boundary!) nor independent. SLLN is not a given.
- Moments we use: Y_i^{ℓ} , $Y_i^{\ell}Y_j^{\ell}$ for $i \sim j$
- Identifiability: If $(\lambda^1, \dots, \lambda^{n_c}) = h \in \{0, 1\}^{n_c}$, then for any choice of μ , $(Y_i)_{i \in I}$ is identically h.

 Similarly, if $(\mu = 1 \text{ and } (\lambda^{\ell} > 0 \iff h_c = 1))$, then $(Y_i)_{i \in I}$ is
 - Similarly, if $(\mu = 1 \text{ and } (\lambda^{\ell} > 0 \iff h_{\ell} = 1))$, then $(Y_i)_{i \in I}$ is identically h (with high probability as $n_I \to \infty$).

Theorem (Main result)

$$\begin{array}{l} \textit{I}_2 \coloneqq \{(\textit{i},\textit{j}) \in \textit{I} \times \textit{I} \mid \textit{i} \sim \textit{j}, \textit{i} < \textit{j}\}; \\ \Omega \in \mathbb{R}^{2n_c \times 2n_c} \text{ is symmetric, positive definite; } \alpha(\eta) = \eta^T \Omega \eta \text{ a quadratic form.} \end{array}$$

For triangular lattice: Θ a compact subset of $([0,1]^{n_c} \setminus \{0,1\}^{n_c}) \times [0,1/5[$. (For the square lattice case, replace 1/5 with 1/3.) When n_s is fixed and $n_l \rightarrow \infty$, then

$$\begin{split} \hat{\theta}_{n_{s},n_{l}} &:= \operatorname*{arg\,min}_{\theta \in \Theta} \alpha \left(\begin{array}{c} \left(\frac{1}{n_{l}} \sum_{i \in l} \left(\mathcal{Y}_{i}^{\ell} - \frac{1}{n_{s}} \sum_{s=1}^{n_{s}} Y_{i}^{\ell,s} \right) \right)_{\ell \in \{1,\dots,n_{c}\}} \\ \left(\frac{1}{|I_{2}|} \sum_{(i,j) \in I_{2}} \left(\mathcal{Y}_{i}^{\ell} \mathcal{Y}_{j}^{\ell} - \frac{1}{n_{s}} \sum_{s=1}^{n_{s}} Y_{i}^{\ell,s} Y_{j}^{\ell,s} \right) \right)_{\ell \in \{1,\dots,n_{c}\}} \\ &= \operatorname*{arg\,min}_{\theta \in \Theta} \alpha \left(\begin{array}{c} \left(\tilde{\mathcal{Y}}^{\ell} - \frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \tilde{Y}^{\ell,s} \right)_{\ell \in \{1,\dots,n_{c}\}} \\ \left(\tilde{\mathcal{Z}}^{\ell} - \frac{1}{n_{s}} \sum_{s=1}^{n_{s}} \tilde{Z}^{\ell,s} \right)_{\ell \in \{1,\dots,n_{c}\}} \end{array} \right) \end{split}$$

is strongly consistent.

$$\frac{1}{n_I} \sum_{i \in I} Y_i^\ell \longrightarrow \mathbf{E}_{\theta} Y_i^\ell$$

and

$$\frac{1}{|\mathit{I}_{2}|} \sum_{(i,j) \in \mathit{I}_{2}} Y_{i}^{\ell} Y_{j}^{\ell} \longrightarrow \mathrm{E}_{\theta} \left[Y_{i}^{\ell} Y_{j}^{\ell} \right].$$

This would ensure that almost surely, uniformly in $\theta \in \Theta$,

$$\alpha \left(\begin{array}{c} \left(\underline{\tilde{\mathscr{Y}}}^{\ell} - \frac{1}{n_s} \sum_{s=1}^{n_s} \bar{Y}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\underline{\tilde{\mathscr{F}}}^{\ell} - \frac{1}{n_s} \sum_{s=1}^{n_s} \bar{Z}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \end{array} \right) \xrightarrow{n_l \to \infty} \alpha \left(\begin{array}{c} \left(\mathbf{E}_{\theta_0} Y_i^{\ell} - \mathbf{E}_{\theta} Y_i^{\ell} \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\mathbf{E}_{\theta_0} [Y_i^{\ell} Y_j^{\ell}] - \mathbf{E}_{\theta} [Y_i^{\ell} Y_j^{\ell}] \right)_{\ell \in \{1,\dots,n_c\}} \end{array} \right)$$

Bence Mélykúti - http://research.melykuti.be

$$\frac{1}{n_I}\sum_{i\in I}Y_i^\ell-\frac{1}{n_I}\sum_{i\in I}\mathbf{E}_{\theta}Y_i^\ell\longrightarrow 0$$

$$\quad \text{and} \quad \frac{1}{|I_2|} \sum_{(i,j) \in I_2} Y_i^\ell Y_j^\ell - \frac{1}{|I_2|} \sum_{(i,j) \in I_2} \mathbf{E}_{\theta} \left[Y_i^\ell Y_j^\ell \right] \longrightarrow 0.$$

This would ensure that almost surely, uniformly in $\theta \in \Theta$,

$$\alpha \left(\begin{array}{c} \left(\tilde{\mathscr{Y}}^{\ell} - \frac{1}{n_s} \sum_{s=1}^{n_s} \tilde{Y}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\tilde{\mathscr{Z}}^{\ell} - \frac{1}{n_s} \sum_{s=1}^{n_s} \tilde{Z}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \end{array} \right) \xrightarrow[n_l \to \infty]{} \alpha \left(\begin{array}{c} \left(\mathbf{E}_{\theta_0} Y_l^{\ell} - \mathbf{E}_{\theta} Y_l^{\ell} \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\mathbf{E}_{\theta_0} [Y_l^{\ell} Y_j^{\ell}] - \mathbf{E}_{\theta} [Y_l^{\ell} Y_j^{\ell}] \right)_{\ell \in \{1,\dots,n_c\}} \end{array} \right)$$

$$\frac{1}{n_I} \sum_{i \in I} Y_i^{\ell} - \frac{1}{n_I} \sum_{i \in I} \mathbf{E}_{\theta} Y_i^{\ell} \longrightarrow 0$$

$$\text{ and } \quad \frac{1}{|I_2|} \sum_{(i,j) \in I_2} Y_i^\ell Y_j^\ell - \frac{1}{|I_2|} \sum_{(i,j) \in I_2} \mathbf{E}_{\theta} \left[Y_i^\ell Y_j^\ell \right] \longrightarrow 0.$$

This would ensure that almost surely, uniformly in $\theta \in \Theta$,

$$\alpha \left(\begin{array}{c} \left(\underline{\tilde{\mathcal{Y}}}^{\ell} - \frac{1}{n_s} \sum_{s=1}^{n_s} \bar{Y}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\underline{\tilde{\mathcal{Z}}}^{\ell} - \frac{1}{n_s} \sum_{s=1}^{n_s} \bar{Z}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \right) - \\ \alpha \left(\begin{array}{c} \left(\frac{1}{n_i} \sum_{i \in I} \left(\mathbf{E}_{\theta_0} \mathbf{Y}_i^{\ell} - \mathbf{E}_{\theta} \mathbf{Y}_i^{\ell} \right) \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\frac{1}{|I_2|} \sum_{(i,j) \in I_2} \left(\mathbf{E}_{\theta_0} [\mathbf{Y}_i^{\ell} \mathbf{Y}_j^{\ell}] - \mathbf{E}_{\theta} [\mathbf{Y}_i^{\ell} \mathbf{Y}_j^{\ell}] \right) \right)_{\ell \in \{1,\dots,n_c\}} \end{array} \right) \xrightarrow[n_l \to \infty]{} 0$$

Proposition (SLLN for our percolation model)

Let Θ be a compact subset of $[0,1]^{n_c} \times [0,1/5]$ (triangular lattice: μ < 1/5; square lattice: μ < 1/3). If Y is generated with parameter value $\theta \in \Theta$, then

$$\frac{1}{n_I} \left(\sum_{i \in I} Y_i^{\ell} - \sum_{i \in I} E_{\theta} Y_i^{\ell} \right) \xrightarrow[n_I \to \infty]{} 0$$

almost surely, uniformly in $\theta \in \Theta$.

Proof

Proposition (SLLN for our percolation model)

Let Θ be a compact subset of $[0,1]^{n_c} \times [0,1/5[$ (triangular lattice: $\mu < 1/5$; square lattice: $\mu < 1/3$). If Y is generated with parameter value $\theta \in \Theta$, then

$$\frac{1}{n_I} \left(\sum_{i \in I} Y_i^{\ell} - \sum_{i \in I} E_{\theta} Y_i^{\ell} \right) \xrightarrow[n_I \to \infty]{} 0$$

almost surely, uniformly in $\theta \in \Theta$.

Proof

Let $Y_i := Y_i^{\ell}$ for fixed $\ell \in \{1, \dots, n_c\}$.

Let a > 1. Define the lacunary sequence $k_n := [a^n]$.

Let
$$S_k := \sum_{i=1}^k Y_i$$
.

$$\begin{split} \sum_{n=1}^{\infty} \mathrm{P}\left(\sup_{\theta \in \Theta} \left| \frac{S_{k_n} - \mathrm{E}S_{k_n}}{k_n} \right| > \varepsilon\right) &= \sum_{n=1}^{\infty} \mathrm{P}\left(\left| \frac{S_{k_n}(\theta(k_n)) - \mathrm{E}_{\theta(k_n)}S_{k_n}}{k_n} \right| > \varepsilon\right) \\ &\leq \sum_{n=1}^{\infty} \frac{\sup_{\theta \in \Theta} \mathrm{Var}\,S_{k_n}}{\varepsilon^2 k_n^2} \\ &\leq \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{1}{k_n^2} \sup_{\theta \in \Theta} \sum_{i=1}^{k_n} \mathrm{Var}\,Y_i \\ &+ \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{2}{k_n^2} \sup_{\theta \in \Theta} \sum_{1 \leq i \leq k_n} (\mathrm{E}[Y_i Y_j] - \mathrm{E}Y_i \mathrm{E}Y_j). \end{split}$$

If this is finite, then by the Borel–Cantelli lemma, as $n \to \infty$,

$$\sup_{\theta \in \Theta} \left| \frac{S_{k_n} - ES_{k_n}}{k_n} \right| \to 0 \quad \text{a.s.}$$

Strong law of large numbers (SLLN)
$$\frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{1}{k_n^2} \sup_{\theta \in \Theta} \sum_{i=1}^{k_n} \operatorname{Var} Y_i + \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{2}{k_n^2} \sup_{\theta \in \Theta} \sum_{1 \le i < j \le k_n} (\operatorname{E}[Y_i Y_j] - \operatorname{E} Y_i \operatorname{E} Y_j)$$

If
$$1 < a, k_n = [a^n]$$
, then

$$\sum_{n=1}^{\infty} \frac{1}{k_n} < \infty.$$

$$\sup_{\theta \in \Theta} \left| \sum_{1 \le i < j \le n} (\mathbf{E}[Y_i Y_j] - \mathbf{E} Y_i \mathbf{E} Y_j) \right| = \mathcal{O}(n).$$

Strong law of large numbers (SLLN)

Strong law of large numbers (SLLN)
$$\frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{1}{k_{n}^{2}} \sup_{\theta \in \Theta} \sum_{j=1}^{k_{n}} \underbrace{\operatorname{Var} Y_{j}}_{\leq 1} + \frac{1}{\varepsilon^{2}} \sum_{n=1}^{\infty} \frac{2}{k_{n}^{2}} \sup_{\theta \in \Theta} \sum_{1 \leq i < j \leq k_{n}} (\operatorname{E}[Y_{i}Y_{j}] - \operatorname{E}Y_{i}\operatorname{E}Y_{j})$$

Lemma

If
$$1 < a, k_n = [a^n]$$
, then

$$\sum_{n=1}^{\infty} \frac{1}{k_n} < \infty.$$

$$\sup_{\theta \in \Theta} \left| \sum_{1 \le i < j \le n} (\mathbb{E}[Y_i Y_j] - \mathbb{E}Y_i \mathbb{E}Y_j) \right| = \mathcal{O}(n).$$

Strong law of large numbers (SLLN)

$$\frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{1}{k_n^2} \underbrace{\sup_{\theta \in \Theta} \sum_{i=1}^{k_n} \underbrace{\operatorname{Var} Y_i}_{\leq 1}}_{\leq k_n} + \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{2}{k_n^2} \underbrace{\sup_{\theta \in \Theta} \sum_{1 \leq i < j \leq k_n} (\operatorname{E}[Y_i Y_j] - \operatorname{E} Y_i \operatorname{E} Y_j)}_{\mathscr{O}(k_n)}$$

Lemma

If
$$1 < a, k_n = [a^n]$$
, then

$$\sum_{n=1}^{\infty} \frac{1}{k_n} < \infty.$$

Lemma

As $n \to \infty$, it holds

$$\sup_{\theta \in \Theta} \left| \sum_{1 < i < j < n} (\mathbb{E}[Y_i Y_j] - \mathbb{E}Y_i \mathbb{E}Y_j) \right| = \mathcal{O}(n).$$

Probability space $(\{0,1\}^S, \mathcal{F}, P)$ $(|S| < \aleph_0)$;

Geoffrey Grimmett; Percolation, Springer, 1999.

events \mathscr{F} : σ -algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $P = \prod_{s \in S} v_s$,

$$v_s$$
 is given by $(p(s))_{s \in S} \in [0,1]^S$ via

$$v_s(\omega(s) = 1) = p(s), \quad v_s(\omega(s) = 0) = 1 - p(s)$$

for sample vectors $(\omega(s))_{s \in S} \in \{0,1\}^S$.

events \mathscr{F} : σ -algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $P = \prod_{s \in S} v_s$,

$$v_s$$
 is given by $(p(s))_{s \in S} \in [0,1]^S$ via

$$v_s(\omega(s) = 1) = p(s), \quad v_s(\omega(s) = 0) = 1 - p(s)$$

for sample vectors $(\omega(s))_{s \in S} \in \{0, 1\}^{S}$.

A colour $\ell \in \{1, \dots, n_c\}$ is already fixed. Insert a loop edge for every vertex, $p(s) := \lambda^{\ell}$. For edges of the lattice, $p(s) := \mu$.

An event $A \in \mathscr{F}$ is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \cap B) \ge P(A)P(B)$

events \mathscr{F} : σ -algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $P = \prod_{s \in S} v_s$,

$$v_s$$
 is given by $(p(s))_{s \in S} \in [0,1]^S$ via

$$v_s(\omega(s) = 1) = p(s), \quad v_s(\omega(s) = 0) = 1 - p(s)$$

for sample vectors $(\omega(s))_{s \in S} \in \{0, 1\}^{S}$.

A colour $\ell \in \{1, ..., n_c\}$ is already fixed.

Insert a loop edge for every vertex, $p(s) := \lambda^{\ell}$.

For edges of the lattice, $p(s) := \mu$.

An event $A \in \mathscr{F}$ is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \cap B) \ge P(A)P(B)$.

events \mathscr{F} : σ -algebra generated by the finite-dimensional cylinder sets; the measure is a product measure $P = \prod_{s \in S} v_s$,

 v_s is given by $(p(s))_{s \in S} \in [0,1]^S$ via

$$v_s(\omega(s) = 1) = p(s), \quad v_s(\omega(s) = 0) = 1 - p(s)$$

for sample vectors $(\omega(s))_{s \in S} \in \{0, 1\}^{S}$.

A colour $\ell \in \{1, ..., n_c\}$ is already fixed. Insert a loop edge for every vertex, $p(s) := \lambda^{\ell}$. For edges of the lattice, $p(s) := \mu$.

An event $A \in \mathscr{F}$ is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \cap B) \ge P(A)P(B)$.

An event
$$A \in \mathscr{F}$$
 is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

Let e_1, e_2, \ldots, e_N be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega = (\omega(e_1), \ldots, \omega(e_N))$ only.

$$J(\omega) := \{e_i | i \in \{1, ..., N\}, \omega(e_i) = 1\}$$

For *A*, *B* increasing, *A* and *B* occur disjointly:

 $A \circ B := \{ \omega \in \{0,1\}^S \mid \text{there exists an } H \subseteq J(\omega) \text{ such that } \omega' \text{ determined by } J(\omega') = H \text{ belongs to } A, \text{ and } \omega'' \text{ determined by } J(\omega'') = J(\omega) \setminus H \text{ belongs to } B \}$

 $A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \circ B) \leq P(A)P(B)$.

An event
$$A \in \mathscr{F}$$
 is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

Let e_1, e_2, \ldots, e_N be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega = (\omega(e_1), \ldots, \omega(e_N))$ only.

$$J(\omega) := \{e_i \mid i \in \{1, ..., N\}, \omega(e_i) = 1\}$$

For *A*, *B* increasing, *A* and *B* occur disjointly:

 $A \circ B := \{\omega \in \{0,1\}^S \mid \text{there exists an } H \subseteq J(\omega) \text{ such that } \omega' \text{ determined by } J(\omega') = H \text{ belongs to } A, \text{ and } \omega'' \text{ determined by } J(\omega'') = J(\omega) \setminus H \text{ belongs to } B\}.$

 $A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \circ B) \leq P(A)P(B)$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ □▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □▶ ↓□▶ □□ ♥ □▶ ↓□▶ □□ ♥ □▶ ↓□▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □▶ □□ ♥ □□ ♥ □▶ □■ ♥ □▶

An event
$$A \in \mathscr{F}$$
 is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

Let e_1, e_2, \ldots, e_N be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega = (\omega(e_1), \ldots, \omega(e_N))$ only.

$$J(\omega) := \left\{ e_i \mid i \in \{1, \dots, N\}, \, \omega(e_i) = 1 \right\}$$

For *A*, *B* increasing, *A* and *B* occur disjointly:

 $A \circ B := \{\omega \in \{0,1\}^S \mid \text{there exists an } H \subseteq J(\omega) \text{ such that } \omega' \text{ determined by } J(\omega') = H \text{ belongs to } A, \text{ and } \omega'' \text{ determined by } J(\omega'') = J(\omega) \setminus H \text{ belongs to } B\}.$

 $A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \circ B) \leq P(A)P(B)$.

4 D > 4 A > 4 B > 4 B > B 9 9 9

An event
$$A \in \mathscr{F}$$
 is increasing : $\iff ((\omega \le \omega', \omega \in A) \Rightarrow \omega' \in A)$.

Let e_1, e_2, \ldots, e_N be N distinct edges, $A, B \in \mathscr{F}$ two increasing events which depend on the states of these N edges $\omega = (\omega(e_1), \ldots, \omega(e_N))$ only.

$$J(\omega) := \{e_i \mid i \in \{1, ..., N\}, \omega(e_i) = 1\}$$

For *A*, *B* increasing, *A* and *B* occur disjointly:

 $A \circ B := \{\omega \in \{0,1\}^S \mid \text{there exists an } H \subseteq J(\omega) \text{ such that } \omega' \text{ determined by } J(\omega') = H \text{ belongs to } A, \text{ and } \omega'' \text{ determined by } J(\omega'') = J(\omega) \setminus H \text{ belongs to } B\}.$

 $A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \circ B) \leq P(A)P(B)$.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・夕久(*)

FKG inequality (Fortuin, Kasteleyn, Ginibre; 1971)

If $A, B \in \mathcal{F}$ are increasing events, then $P(A \cap B) > P(A)P(B)$.

$$J(\omega) := \{e_i \mid i \in \{1, ..., N\}, \omega(e_i) = 1\}$$

For A, B increasing, A and B occur disjointly:

 $A \circ B := \{\omega \in \{0,1\}^S \mid \text{there exists an } H \subseteq J(\omega) \text{ such that } \omega' \text{ determined by } \}$ $J(\omega') = H$ belongs to A, and ω'' determined by $J(\omega'') = J(\omega) \setminus H$ belongs to B}. $A \circ B$ is also increasing and $A \circ B \subseteq A \cap B$.

BK inequality (van den Berg, Kesten; 1985)

If $A, B \in \mathcal{F}$ are increasing events, then $P(A \circ B) < P(A)P(B)$.

Lemma

As $n \to \infty$, it holds

$$\sup_{\theta \in \Theta} \left| \sum_{1 \leq i < j \leq n} (\mathbb{E}[Y_i Y_j] - \mathbb{E}Y_i \mathbb{E}Y_j) \right| = \mathcal{O}(n).$$

In the lattice graph extended with loop edges, the event $\{Y_i = 1\}$ is increasing.

By the

FKG inequality

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \cap B) > P(A)P(B)$.

$$\mathrm{E}[Y_iY_j] - \mathrm{E}Y_i\,\mathrm{E}Y_j = \mathrm{P}(Y_iY_j = 1) - \mathrm{P}(Y_i = 1)\,\mathrm{P}(Y_j = 1) \geq 0.$$

$$E[Y_i Y_j] - EY_i EY_j = P(Y_i Y_j = 1) - P(Y_i = 1) P(Y_j = 1) \stackrel{FKG}{\geq} 0.$$

By the BK inequality

If $A, B \in \mathscr{F}$ are increasing events, then $P(A \circ B) \leq P(A)P(B)$.

$$\begin{split} P(Y_{i}Y_{j} = 1) - P(Y_{i} = 1)P(Y_{j} = 1) &= P\left(\left\{Y_{i} = 1\right\} \circ \left\{Y_{j} = 1\right\}\right) - P(Y_{i} = 1)P(Y_{j} = 1) \\ &+ P\left(\left\{Y_{i}Y_{j} = 1\right\} \setminus \left\{Y_{i} = 1\right\} \circ \left\{Y_{j} = 1\right\}\right) \\ &\leq P\left(\left\{Y_{i}Y_{j} = 1\right\} \setminus \left\{Y_{i} = 1\right\} \circ \left\{Y_{j} = 1\right\}\right). \end{split}$$

Cooccurrence of $\{Y_i = 1\}$ and $\{Y_j = 1\}$ which is not disjoint is one where i and j are in the same component:

$$\{Y_iY_j=1\}\setminus\{Y_i=1\}\circ\{Y_j=1\}\subseteq\{i\leftrightarrow j\}.$$

Goal: on the triangular lattice, for every $\varepsilon > 0$, uniformly for $\mu \in [0, 1/5 - \varepsilon]$,

$$\sum_{1 \leq i < j \leq n} \mathrm{P}(i \leftrightarrow j) = \mathcal{O}(n)$$

 $\mathcal{W}_k := \{ \text{paths (i.e. self-avoiding walks) on the triangular lattice with length } k$ and beginning in a fixed vertex $i \}$

$$|\mathscr{W}_k| \le 6 \times 5^{k-1}$$

$$\mathrm{E}[\text{\#paths from } i] = \sum_{k=1}^{\infty} \sum_{\gamma \in \mathcal{W}_k} \mu^k = \sum_{k=1}^{\infty} |\mathcal{W}_k| \mu^k \leq \sum_{k=1}^{\infty} 6 \times 5^{k-1} \mu^k = 6 \mu \frac{1}{1-5\mu} < \infty$$

By allowing any paths on the infinite lattice $\supseteq I$,

$$\sum_{1 \le i < j \le n} P(i \leftrightarrow j) \le \sum_{1 \le i \le n} \sum_{k=1}^{\infty} \sum_{j \text{ is endpoint of } \gamma \in \mathscr{W}_k} \mu^k$$

$$\leq \sum_{1 \leq j \leq n} \frac{6\mu}{1 - 5\mu} = \frac{6\mu}{1 - 5\mu} n.$$

$$\sup_{\theta \in \Theta} \left| \sum_{1 \leq i < j \leq n} (\mathrm{E}[Y_i Y_j] - \mathrm{E} Y_i \mathrm{E} Y_j) \right| = \mathcal{O}(n).$$

Hence for $k_n = [a^n]$,

$$\sum_{n=1}^{\infty} P\left(\sup_{\theta \in \Theta} \left| \frac{S_{k_n} - ES_{k_n}}{k_n} \right| > \epsilon \right) < \infty.$$

Further, consider $k_n \le n_l < k_{n+1}$. Then

$$\frac{1}{n_I} \left(\sum_{i \in I} Y_i^{\ell} - \sum_{i \in I} \mathbf{E}_{\theta} Y_i^{\ell} \right) \xrightarrow[n_I \to \infty]{} 0$$

almost surely, uniformly in $\theta \in \Theta$, where Θ is a compact subset of $[0,1]^{n_c} \times [0,1/5[$ $(\mu < 1/3 \text{ for the square lattice}).$

$$\sup_{\theta \in \Theta} \left| \sum_{1 \leq i < j \leq n} (\mathrm{E}[Y_i Y_j] - \mathrm{E} Y_i \mathrm{E} Y_j) \right| = \mathcal{O}(n).$$

Hence for $k_n = [a^n]$,

$$\sum_{n=1}^{\infty} P\left(\sup_{\theta \in \Theta} \left| \frac{S_{k_n} - \mathrm{E}S_{k_n}}{k_n} \right| > \epsilon \right) < \infty.$$

Further, consider $k_n \le n_l < k_{n+1}$. Then

$$\frac{1}{n_I} \left(\sum_{i \in I} Y_i^{\ell} - \sum_{i \in I} \mathbf{E}_{\theta} Y_i^{\ell} \right) \xrightarrow[n_I \to \infty]{} 0$$

almost surely, uniformly in $\theta \in \Theta$, where Θ is a compact subset of $[0,1]^{n_c} \times [0,1/5[(\mu < 1/3 \text{ for the square lattice}). For the strong consistence of <math>\hat{\theta}_{n_s,n_l}$, repeat for

$$\frac{1}{|I_2|} \left(\sum_{(i,j) \in I_2} Y_i^{\ell} Y_j^{\ell} - \sum_{(i,j) \in I_2} \mathrm{E}_{\theta}[Y_i^{\ell} Y_j^{\ell}] \right) \underset{n_l \to \infty}{\longrightarrow} 0.$$

Implementation

$$n_c$$
 = 3 colours. Set $\alpha(\eta) = \eta^T \Omega \eta$ by

$$\begin{split} \Omega &= \operatorname{diag} \left((\bar{\mathscr{Y}}^1)^{-2}, \dots, (\bar{\mathscr{Y}}^{n_c})^{-2}, (\bar{\mathscr{Z}}^1)^{-2}, \dots, (\bar{\mathscr{Z}}^{n_c})^{-2} \right). \\ \alpha \left(\begin{array}{c} \left(\bar{\mathscr{Y}}^\ell - \frac{1}{n_s} \sum_{s=1}^{n_s} \bar{Y}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \\ \left(\bar{\mathscr{Z}}^\ell - \frac{1}{n_s} \sum_{s=1}^{n_s} \bar{Z}^{\ell,s} \right)_{\ell \in \{1,\dots,n_c\}} \end{array} \right) \longrightarrow \min \end{split}$$

Common random numbers for different $\theta = (\lambda^1, ..., \lambda^{n_c}, \mu) \in \Theta$.

Method 1: $(U_i^{\ell,s}), (V_{ij}^s) \sim U[0,1]$ $(\ell \in \{1, ..., n_c\}, s \in \{1, ..., n_s\}, i \in I, (i,j) \in I_2)$

$$X_i^{\ell,s} \coloneqq \begin{cases} 1 & \text{if } U_i^{\ell,s} < \lambda^\ell, \\ 0 & \text{otherwise}, \end{cases} \qquad \xi_{ij}^s \coloneqq \begin{cases} 1 & \text{if } V_{ij}^s < \mu, \\ 0 & \text{otherwise}. \end{cases}$$

Method 2: $(\sigma^{\ell,s}) \sim U[S_{n_I}], (\tau^s) \sim U[S_{|I_2|}]$

$$(\ell \in \{1,\ldots,n_c\},s \in \{1,\ldots,n_s\})$$

$$X_i^{\ell,s} := \begin{cases} 1 & \text{if } \sigma^{\ell,s}(i) \leq \lfloor \lambda^{\ell} n_I \rceil, \\ 0 & \text{otherwise}, \end{cases} \qquad \xi_{ij}^s := \begin{cases} 1 & \text{if } \tau^s \big((i,j) \big) \leq \lfloor \mu |I_2| \rceil, \\ 0 & \text{otherwise}. \end{cases}$$

Results

1 $n_I = 25 \times 25 = 625$ vertices ($|I_2| = 1776$)

n _s n	opt	μ_{\max}	θ_0	$\hat{ heta}_{n_s,n_l}^{(\mathrm{M1})}$	$d^{ m (M1)}$	$\hat{ heta}_{n_s,n_l}^{(\mathrm{M2})}$	$d^{(M2)}$	$lpha_{\hat{ heta}_{n_{\mathcal{S}},n_{I}}^{(\mathrm{M2})}}$
10 1	10	0.1	0.1	0.1287	28.7%	0.1223	22.3%	0.0126
			0.05	0.0597	19.4%	0.0605	21%	
			0.07	0.0614	12.29%	0.0587	16.14%	
			0.06	0.0428	28.67%	0.0436	27.33%	

 $n_I = 500 \times 500 = 250,000 \text{ vertices } (|I_2| = 748,001)$

ns	$n_{ m opt}$	$\mu_{ ext{max}}$	θ_0	$\hat{\theta}_{n_s,n_l}^{(\mathrm{M1})}$	$d^{ m (M1)}$	$\hat{ heta}_{n_s,n_l}^{(ext{M2})}$	$d^{(M2)}$	$lpha_{\hat{ heta}_{n_{\mathcal{S}},n_{I}}^{(\mathrm{M2})}}$
2	3	0.04	0.03	0.0295	1.67%	0.0293	2.33%	0.0011
			0.04	0.0402	0.5%	0.0401	0.25%	
			0.05	0.0522	4.4%	0.0520	4%	
			0.02	0.0192	4%	0.0195	2.5%	

d is the relative bias: $\left|1-\hat{\theta}_{n_s,n_l}/\theta_0\right| \times 100\%$

- Model chosen: symmetric (undirected edges ξ_{ij}); edges are independent Bernoulli variables; contamination propagates via a series of open edges.
- Method of simulated moments is strongly consistent as $n_l \rightarrow \infty$ but n_s bounded.
- Unusual: sample is large but neither independent nor identically distributed.
- Proof method:
 - The method of simulated moments (MSM) is strongly consistent.
 - Proved a strong law of large numbers (SLLN) with weakly dependent variables.
 - FKG and BK inequalities of percolation theory used to upper bound dependence (i.e. correlations bw. vertices).

23 / 25

- Confidence intervals? Under regularity conditions (the estimator is continuously differentiable with respect to θ), $\sqrt{n_l}(\hat{\theta}_{n_s,n_l}-\theta_0)$ is asymptotically normal with known limiting variance.
 - It is possible to choose Ω optimally, i.e. to minimise this asymptotic variance.
- Beyond estimating μ , estimate the proportion of vertices which are in a non-trivial component.
- 3 Largest μ for which SLLN holds? (cf. 1/5 for triangular, 1/3 for square lattice) Will this MSM work in the entire subcritical regime?
- 4 Maximum likelihood estimation; computing the probability of a configuration (and esp. of an *animal*).
- Model fit? Locally positively correlated open edges might be needed; e.g. Ising model for the edges (increases degrees of freedom by 1).

- 2 Gouriéroux, Monfort; Simulation-based econometric methods, Oxford University Press, Oxford, UK, 2002.
- Gouriéroux, Monfort; Simulation based inference in models with heterogeneity. Annales d'Économie et de Statistique, 20–21:69–107, 1991.

http://research.melykuti.be

