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Testing issues

Hypothesis testing

I central problem of statistical inference

I dramatically differentiating feature between classical and
Bayesian paradigms

I wide open to controversy and divergent opinions, includ.
within the Bayesian community

I non-informative Bayesian testing case mostly unresolved,
witness the Jeffreys–Lindley paradox

[Berger (2003), Mayo & Cox (2006), Gelman (2008)]



Testing hypotheses

I Bayesian model selection as comparison of k potential
statistical models towards the selection of model that fits the
data “best”

I mostly accepted perspective: it does not primarily seek to
identify which model is “true”, but compares fits

I tools like Bayes factor naturally include a penalisation
addressing model complexity, mimicked by Bayes Information
(BIC) and Deviance Information (DIC) criteria

I posterior predictive tools successfully advocated in Gelman et
al. (2013) even though they involve double use of data
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Some difficulties

I tension between using (i) posterior probabilities justified by a
binary loss function but depending on unnatural prior weights,
and (ii) Bayes factors that eliminate this dependence but
escape direct connection with posterior distribution, unless
prior weights are integrated within the loss

I subsequent and delicate interpretation (or calibration) of the
strength of the Bayes factor towards supporting a given
hypothesis or model, because it is not a Bayesian decision rule

I similar difficulty with posterior probabilities, with tendency to
interpret them as p-values (rather than the opposite!) when
they only report through a marginal likelihood ratio the
respective strengths of fitting the data to both models



Some further difficulties

I long-lasting impact of the prior modeling, meaning the choice
of the prior distributions on the parameter spaces of both
models under comparison, despite overall consistency proof for
Bayes factor

I discontinuity in use of improper priors since they are not
justified in most testing situations, leading to many alternative
if ad hoc solutions, where data is either used twice or split in
artificial ways

I binary (accept vs. reject) outcome more suited for immediate
decision (if any) than for model evaluation, in connection with
rudimentary loss function



Some additional difficulties

I related impossibility to ascertain simultaneous misfit or to
detect presence of outliers

I no assessment of uncertainty associated with decision itself

I difficult computation of marginal likelihoods in most settings
with further controversies about which algorithm to adopt

I strong dependence of posterior probabilities on conditioning
statistics, which in turn undermines their validity for model
assessment, as exhibited in ABC model choice

I temptation to create pseudo-frequentist equivalents such as
q-values with even less Bayesian justifications

I time for a paradigm shift

I back to some solutions



Significance tests
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Statistical tests
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data related questions

Given a dataset
x1, . . . , xn

is it possible to answer a question related with the mechanism
producing this data?

[Answer: No!]

For instance, is E[X ] > 0? Or, is xn+1 = 104 possible?
[Under some assumptions...]
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Historical appearance of Bayesian tests

Is the new parameter supported by the observations or is
any variation expressible by it better interpreted as
random? Thus we must set two hypotheses for
comparison, the more complicated having the smaller
initial probability

...compare a specially suggested value of a new
parameter, often 0 [q], with the aggregate of other
possible values [q′]. We shall call q the null hypothesis
and q′ the alternative hypothesis [and] we must take

P(q|H) = P(q′|H) = 1/2 .

(Jeffreys, ToP, 1939, V, §5.0)



Bayesian tests 101

Associated with the risk

R(θ, δ) = Eθ[L(θ, δ(x))]

=

{
Pθ(δ(x) = 0) if θ ∈ Θ0,

Pθ(δ(x) = 1) otherwise,

Bayes test

The Bayes estimator associated with π and with the 0 − 1 loss is

δπ(x) =

{
1 if P(θ ∈ Θ0|x) > P(θ 6∈ Θ0|x),

0 otherwise,
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Generalisation

Weights errors differently under both hypotheses:

Theorem (Optimal Bayes decision)

Under the 0 − 1 loss function

L(θ, d) =


0 if d = IΘ0(θ)

a0 if d = 1 and θ 6∈ Θ0

a1 if d = 0 and θ ∈ Θ0

the Bayes procedure is

δπ(x) =

{
1 if P(θ ∈ Θ0|x) > a0/(a0 + a1)

0 otherwise
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A function of posterior probabilities

Definition (Bayes factors)

For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0

B01 =
π(Θ0|x)

π(Θc
0|x)

/
π(Θ0)

π(Θc
0)

=

∫
Θ0

f (x |θ)π0(θ)dθ∫
Θc

0

f (x |θ)π1(θ)dθ

[Jeffreys, ToP, 1939, V, §5.01]

Bayes rule: acceptance if

B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}



Self-contained concept

Outside decision-theoretic environment:

I eliminates choice of π(Θ0)

I but depends on the choice of (π0,π1)

I Bayesian/marginal equivalent to the likelihood ratio
I Jeffreys’ scale of evidence:

I if log10(B
π
10) between 0 and 0.5, evidence against H0 weak,

I if log10(B
π
10) 0.5 and 1, evidence substantial,

I if log10(B
π
10) 1 and 2, evidence strong and

I if log10(B
π
10) above 2, evidence decisive

[...fairly arbitrary!]
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regressive illustration

caterpillar dataset from Bayesian Essentials (2013): predicting
density of caterpillar nests from 10 covariates

Estimate Post. Var. log10(BF)

(Intercept) 10.8895 6.8229 2.1873 (****)

X1 -0.0044 2e-06 1.1571 (***)

X2 -0.0533 0.0003 0.6667 (**)

X3 0.0673 0.0072 -0.8585

X4 -1.2808 0.2316 0.4726 (*)

X5 0.2293 0.0079 0.3861 (*)

X6 -0.3532 1.7877 -0.9860

X7 -0.2351 0.7373 -0.9848

X8 0.1793 0.0408 -0.8223

X9 -1.2726 0.5449 -0.3461

X10 -0.4288 0.3934 -0.8949

evidence against H0: (****) decisive, (***) strong,

(**) substantial, (*) poor



A major refurbishment

Suppose we are considering whether a location parameter
α is 0. The estimation prior probability for it is uniform
and we should have to take f (α) = 0 and K [= B10]
would always be infinite (Jeffreys, ToP, V, §5.02)

When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]



A major refurbishment

When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]

Requirement

Defined prior distributions under both assumptions,

π0(θ) ∝ π(θ)IΘ0(θ), π1(θ) ∝ π(θ)IΘ1(θ),

(under the standard dominating measures on Θ0 and Θ1)



A major refurbishment

When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]
Using the prior probabilities π(Θ0) = ρ0 and π(Θ1) = ρ1,

π(θ) = ρ0π0(θ) + ρ1π1(θ).



Point null hypotheses

“Is it of the slightest use to reject a hypothesis until we have some
idea of what to put in its place?” H. Jeffreys, ToP (p.390)

Particular case H0 : θ = θ0
Take ρ0 = Prπ(θ = θ0) and g1 prior density under Hc

0 .
Posterior probability of H0

π(Θ0|x) =
f (x |θ0)ρ0∫

f (x |θ)π(θ) dθ
=

f (x |θ0)ρ0
f (x |θ0)ρ0 + (1 − ρ0)m1(x)

and marginal under Hc
0

m1(x) =

∫
Θ1

f (x |θ)g1(θ) dθ.

and

Bπ
01(x) =

f (x |θ0)ρ0
m1(x)(1 − ρ0)

/
ρ0

1 − ρ0
=

f (x |θ0)

m1(x)
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Normal example

Testing whether the mean α of a normal observation X ∼ N(α, s2)
is zero:

P(H0|x) ∝ exp

(
−

x2

2s2

)
P(Hc

0 |x) ∝
∫

exp

(
−
(x − α)2

2s2

)
f (α)dα



regressive illustation
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what’s special about the Bayes factor?!

I “The priors do not represent substantive knowledge of the
parameters within the model”

I “Using Bayes’ theorem, these priors can then be updated to
posteriors conditioned on the data that were actually
observed.”

I “In general, the fact that different priors result in different
Bayes factors should not come as a surprise.”

I “The Bayes factor (...) balances the tension between
parsimony and goodness of fit, (...) against overfitting the
data.”

I “In induction there is no harm in being occasionally wrong; it
is inevitable that we shall be.”

[Jeffreys, 1939; Ly et al., 2015]



what’s wrong with the Bayes factor?!

I (1/2, 1/2) partition between hypotheses has very little to
suggest in terms of extensions

I central difficulty stands with issue of picking a prior
probability of a model

I unfortunate impossibility of using improper priors in most
settings

I Bayes factors lack direct scaling associated with posterior
probability and loss function

I twofold dependence on subjective prior measure, first in prior
weights of models and second in lasting impact of prior
modelling on the parameters

I Bayes factor offers no window into uncertainty associated with
decision

I further reasons in the summary

[Robert, 2016]



Vague proper priors are not the solution

Taking a proper prior and take a “very large” variance (e.g.,
BUGS) will most often result in an undefined or ill-defined limit

Example (Lindley’s paradox)

If testing H0 : θ = 0 when observing x ∼ N(θ, 1), under a normal
N(0,α) prior π1(θ),

B01(x)
α−→∞−→ 0
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Learning from the sample

Definition (Learning sample)

Given an improper prior π, (x1, . . . , xn) is a learning sample if
π(·|x1, . . . , xn) is proper and a minimal learning sample if none of
its subsamples is a learning sample

There is just enough information in a minimal learning sample to
make inference about θ under the prior π
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Pseudo-Bayes factors

Idea

Use one part x[i] of the data x to make the prior proper:

I πi improper but πi (·|x[i]) proper

I and ∫
fi (x[n/i]|θi ) πi (θi |x[i])dθi∫
fj(x[n/i]|θj) πj(θj |x[i])dθj

independent of normalizing constant

I Use remaining x[n/i] to run test as if πj(θj |x[i]) is the true prior
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Motivation

I Provides a working principle for improper priors

I Gather enough information from data to achieve properness

I and use this properness to run the test on remaining data

I does not use x twice as in Aitkin’s (1991)
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Unexpected problems!

I depends on the choice of x[i]
I many ways of combining pseudo-Bayes factors

I AIBF = BN
ji

1

L

∑
`

Bij(x[`])

I MIBF = BN
ji med[Bij(x[`])]

I GIBF = BN
ji exp

1

L

∑
`

log Bij(x[`])

I not often an exact Bayes factor

I and thus lacking inner coherence

B12 6= B10B02 and B01 6= 1/B10 .

[Berger & Pericchi, 1996]
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Fractional Bayes factor

Idea

use directly the likelihood to separate training sample from testing
sample

BF
12 = B12(x)

∫
Lb
2(θ2)π2(θ2)dθ2∫

Lb
1(θ1)π1(θ1)dθ1

[O’Hagan, 1995]

Proportion b of the sample used to gain proper-ness
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Fractional Bayes factor (cont’d)

Example (Normal mean)

BF
12 =

1√
b

en(b−1)x̄2n/2

corresponds to exact Bayes factor for the prior N
(
0, 1−b

nb

)
I If b constant, prior variance goes to 0

I If b =
1

n
, prior variance stabilises around 1

I If b = n−α, α < 1, prior variance goes to 0 too.



Jeffreys–Lindley paradox

Summary

Significance tests

Noninformative solutions

Jeffreys-Lindley paradox
Lindley’s paradox
dual versions of the paradox
Bayesian resolutions

Testing via mixtures



Lindley’s paradox

In a normal mean testing problem,

x̄n ∼ N(θ,σ2/n) , H0 : θ = θ0 ,

under Jeffreys prior, θ ∼ N(θ0,σ
2), the Bayes factor

B01(tn) = (1 + n)1/2 exp
(
−nt2n/2[1 + n]

)
,

where tn =
√

n|x̄n − θ0|/σ, satisfies

B01(tn)
n−→∞−→ ∞

[assuming a fixed tn]
[Lindley, 1957]



Two versions of the paradox

“the weight of Lindley’s paradoxical result (...) burdens
proponents of the Bayesian practice”.

[Lad, 2003]

I official version, opposing frequentist and Bayesian assessments
[Lindley, 1957]

I intra-Bayesian version, blaming vague and improper priors for
the Bayes factor misbehaviour:
if π1(·|σ) depends on a scale parameter σ, it is often the case
that

B01(x)
σ−→∞−→ +∞

for a given x , meaning H0 is always accepted
[Robert, 1992, 2013]



where does it matter?

In the normal case, Z ∼ N(θ, 1), θ ∼ N(0,α2), Bayes factor

B10(z) =
ez

2α2/(1+α2)

√
1 + α2

=
√

1 − λ exp{λz2/2}



Evacuation of the first version

Two paradigms [(b) versus (f)]

I one (b) operates on the parameter space Θ, while the other
(f) is produced from the sample space

I one (f) relies solely on the point-null hypothesis H0 and the
corresponding sampling distribution, while the other
(b) opposes H0 to a (predictive) marginal version of H1

I one (f) could reject “a hypothesis that may be true (...)
because it has not predicted observable results that have not
occurred” (Jeffreys, ToP, VII, §7.2) while the other
(b) conditions upon the observed value xobs

I one (f) cannot agree with the likelihood principle, while the
other (b) is almost uniformly in agreement with it

I one (f) resorts to an arbitrary fixed bound α on the p-value,
while the other (b) refers to the (default) boundary probability
of 1/2



Nothing’s wrong with the second version

I n, prior’s scale factor: prior variance n times larger than the
observation variance and when n goes to ∞, Bayes factor
goes to ∞ no matter what the observation is

I n becomes what Lindley (1957) calls “a measure of lack of
conviction about the null hypothesis”

I when prior diffuseness under H1 increases, only relevant
information becomes that θ could be equal to θ0, and this
overwhelms any evidence to the contrary contained in the data

I mass of the prior distribution in the vicinity of any fixed
neighbourhood of the null hypothesis vanishes to zero under
H1

c© deep coherence in the outcome: being indecisive about
the alternative hypothesis means we should not chose it
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On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,
which lacks complete proper Bayesian justification

[Berger & Pericchi, 2001]

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters, a
notion already entertained by Jeffreys

[Berger et al., 1998; Marin & Robert, 2013]

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors
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I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I Péché de jeunesse: equating the values of the prior densities
at the point-null value θ0,

ρ0 = (1 − ρ0)π1(θ0)

[Robert, 1993]

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function
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I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors, whose sole purpose is to bring frequentist
and Bayesian coverages as close as possible

[Datta & Mukerjee, 2004]
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On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

logB12(x) = log m1(x) − log m2(x) = S0(x , m1) − S0(x , m2) ,

that are independent of the normalising constant
[Dawid et al., 2013; Dawid & Musio, 2015]

I non-local priors correcting default priors



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors towards more
balanced error rates

[Johnson & Rossell, 2010; Consonni et al., 2013]



Changing the testing perspective

Summary

Significance tests

Noninformative solutions

Jeffreys-Lindley paradox

Testing via mixtures



Paradigm shift

New proposal for a paradigm shift in the Bayesian processing of
hypothesis testing and of model selection

I convergent and naturally interpretable solution

I more extended use of improper priors

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1
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Paradigm shift

Simple representation of the testing problem as a
two-component mixture estimation problem where the
weights are formally equal to 0 or 1

I Approach inspired from consistency result of Rousseau and
Mengersen (2011) on estimated overfitting mixtures

I Mixture representation not directly equivalent to the use of a
posterior probability

I Potential of a better approach to testing, while not expanding
number of parameters

I Calibration of the posterior distribution of the weight of a
model, while moving from the artificial notion of the posterior
probability of a model



Encompassing mixture model

Idea: Given two statistical models,

M1 : x ∼ f1(x |θ1) , θ1 ∈ Θ1 and M2 : x ∼ f2(x |θ2) , θ2 ∈ Θ2 ,

embed both within an encompassing mixture

Mα : x ∼ αf1(x |θ1) + (1 − α)f2(x |θ2) , 0 6 α 6 1 (1)

Note: Both models correspond to special cases of (1), one for
α = 1 and one for α = 0
Draw inference on mixture representation (1), as if each
observation was individually and independently produced by the
mixture model
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Inferential motivations

Sounds like an approximation to the real model, but several
definitive advantages to this paradigm shift:

I Bayes estimate of the weight α replaces posterior probability
of model M1, equally convergent indicator of which model is
“true”, while avoiding artificial prior probabilities on model
indices, ω1 and ω2

I interpretation of estimator of α at least as natural as handling
the posterior probability, while avoiding zero-one loss setting

I α and its posterior distribution provide measure of proximity
to the models, while being interpretable as data propensity to
stand within one model

I further allows for alternative perspectives on testing and
model choice, like predictive tools, cross-validation, and
information indices like WAIC



Computational motivations

I avoids highly problematic computations of the marginal
likelihoods, since standard algorithms are available for
Bayesian mixture estimation

I straightforward extension to a finite collection of models, with
a larger number of components, which considers all models at
once and eliminates least likely models by simulation

I eliminates difficulty of label switching that plagues both
Bayesian estimation and Bayesian computation, since
components are no longer exchangeable

I posterior distribution of α evaluates more thoroughly strength
of support for a given model than the single figure outcome of
a posterior probability

I variability of posterior distribution on α allows for a more
thorough assessment of the strength of this support



Noninformative motivations

I additional feature missing from traditional Bayesian answers:
a mixture model acknowledges possibility that, for a finite
dataset, both models or none could be acceptable

I standard (proper and informative) prior modeling can be
reproduced in this setting, but non-informative (improper)
priors also are manageable therein, provided both models first
reparameterised towards shared parameters, e.g. location and
scale parameters

I in special case when all parameters are common

Mα : x ∼ αf1(x |θ) + (1 − α)f2(x |θ) , 0 6 α 6 1

if θ is a location parameter, a flat prior π(θ) ∝ 1 is available



Weakly informative motivations

I using the same parameters or some identical parameters on
both components highlights that opposition between the two
components is not an issue of enjoying different parameters

I those common parameters are nuisance parameters, to be
integrated out

I prior model weights ωi rarely discussed in classical Bayesian
approach, even though linear impact on posterior probabilities.
Here, prior modeling only involves selecting a prior on α, e.g.,
α ∼ B(a0, a0)

I while a0 impacts posterior on α, it always leads to mass
accumulation near 1 or 0, i.e. favours most likely model

I sensitivity analysis straightforward to carry

I approach easily calibrated by parametric boostrap providing
reference posterior of α under each model

I natural Metropolis–Hastings alternative



Poisson/Geometric

I choice betwen Poisson P(λ) and Geometric Geo(p)
distribution

I mixture with common parameter λ

Mα : αP(λ) + (1 − α)Geo(1/1+λ)

Allows for Jeffreys prior since resulting posterior is proper

I independent Metropolis–within–Gibbs with proposal
distribution on λ equal to Poisson posterior (with acceptance
rate larger than 75%)
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Beta prior

When α ∼ Be(a0, a0) prior, full conditional posterior

α ∼ Be(n1(ζ) + a0, n2(ζ) + a0)

Exact Bayes factor opposing Poisson and Geometric

B12 = nnx̄n

n∏
i=1

xi ! Γ

(
n + 2 +

n∑
i=1

xi

)/
Γ(n + 2)

although undefined from a purely mathematical viewpoint



Parameter estimation
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is based on 104 Metropolis-Hastings iterations.
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Consistency
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Behaviour of Bayes factor
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Normal-normal comparison

I comparison of a normal N(θ1, 1) with a normal N(θ2, 2)
distribution

I mixture with identical location parameter θ
αN(θ, 1) + (1 − α)N(θ, 2)

I Jeffreys prior π(θ) = 1 can be used, since posterior is proper

I Reference (improper) Bayes factor

B12 = 2
n−1/2

/
exp 1/4

n∑
i=1

(xi − x̄)2 ,
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Comparison with posterior probability
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Comments

I convergence to one boundary value as sample size n grows

I impact of hyperarameter a0 slowly vanishes as n increases, but
present for moderate sample sizes

I when simulated sample is neither from N(θ1, 1) nor from
N(θ2, 2), behaviour of posterior varies, depending on which
distribution is closest



Logit or Probit?

I binary dataset, R dataset about diabetes in 200 Pima Indian
women with body mass index as explanatory variable

I comparison of logit and probit fits could be suitable. We are
thus comparing both fits via our method

M1 : yi | x
i , θ1 ∼ B(1, pi ) where pi =

exp(xiθ1)

1 + exp(xiθ1)

M2 : yi | x
i , θ2 ∼ B(1, qi ) where qi = Φ(xiθ2)



Common parameterisation

Local reparameterisation strategy that rescales parameters of the
probit model M2 so that the MLE’s of both models coincide.

[Choudhuty et al., 2007]

Φ(xiθ2) ≈
exp(kxiθ2)

1 + exp(kxiθ2)

and use best estimate of k to bring both parameters into coherency

(k0, k1) = (θ̂01/θ̂02, θ̂11/θ̂12) ,

reparameterise M1 and M2 as

M1 :yi | x
i , θ ∼ B(1, pi ) where pi =

exp(xiθ)

1 + exp(xiθ)

M2 :yi | x
i , θ ∼ B(1, qi ) where qi = Φ(xi (κ−1θ)) ,

with κ−1θ = (θ0/k0, θ1/k1).



Prior modelling

Under default g -prior

θ ∼ N2(0, n(XTX )−1)

full conditional posterior distributions given allocations

π(θ | y, X , ζ) ∝
exp
{∑

i Iζi=1yix
iθ
}∏

i ;ζi=1[1 + exp(xiθ)]
exp
{
−θT (XTX )θ

/
2n
}

×
∏
i ;ζi=2

Φ(xi (κ−1θ))yi (1 −Φ(xi (κ−1θ)))(1−yi)

hence posterior distribution clearly defined



Results

Logistic Probit
a0 α θ0 θ1

θ0

k0
θ1

k1
.1 .352 -4.06 .103 -2.51 .064
.2 .427 -4.03 .103 -2.49 .064
.3 .440 -4.02 .102 -2.49 .063
.4 .456 -4.01 .102 -2.48 .063
.5 .449 -4.05 .103 -2.51 .064

Histograms of posteriors of α in favour of logistic model where a0 = .1, .2, .3,

.4, .5 for (a) Pima dataset, (b) Data from logistic model, (c) Data from probit

model



Survival analysis

Testing hypothesis that data comes from a

1. log-Normal(φ, κ2),

2. Weibull(α, λ), or

3. log-Logistic(γ, δ)

distribution

Corresponding mixture given by the density

α1 exp{−(log x − φ)2/2κ2}/
√

2πxκ+

α2
α

λ
exp{−(x/λ)α}((x/λ)α−1+

α3(δ/γ)(x/γ)
δ−1/(1 + (x/γ)δ)2

where α1 + α2 + α3 = 1



Survival analysis

Testing hypothesis that data comes from a

1. log-Normal(φ, κ2),

2. Weibull(α, λ), or

3. log-Logistic(γ, δ)

distribution

Corresponding mixture given by the density

α1 exp{−(log x − φ)2/2κ2}/
√

2πxκ+

α2
α

λ
exp{−(x/λ)α}((x/λ)α−1+

α3(δ/γ)(x/γ)
δ−1/(1 + (x/γ)δ)2

where α1 + α2 + α3 = 1



Reparameterisation

Looking for common parameter(s):

φ = µ+ γβ = ξ

σ2 = π2β2/6 = ζ2π2/3

where γ ≈ 0.5772 is Euler-Mascheroni constant.

Allows for a noninformative prior on the common location scale
parameter,

π(φ,σ2) = 1/σ2
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Recovery
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Boxplots of the posterior distributions of the Normal weight α1 under the two

scenarii: truth = Normal (left panel), truth = Gumbel (right panel), a0=0.01,

0.1, 1.0, 10.0 (from left to right in each panel) and n = 10, 000 simulated

observations.



Asymptotic consistency

Posterior consistency holds for mixture testing procedure [under
minor conditions]

Two different cases

I the two models, M1 and M2, are well separated

I model M1 is a submodel of M2.



Asymptotic consistency

Posterior consistency holds for mixture testing procedure [under
minor conditions]

Two different cases

I the two models, M1 and M2, are well separated

I model M1 is a submodel of M2.



Posterior concentration rate

Let π be the prior and xn = (x1, · · · , xn) a sample with true
density f ∗

proposition
Assume that, for all c > 0, there exist Θn ⊂ Θ1 ×Θ2 and B > 0 such that

π [Θc
n] 6 n−c , Θn ⊂ {‖θ1‖+ ‖θ2‖ 6 nB }

and that there exist H > 0 and L, δ > 0 such that, for j = 1, 2,

sup
θ,θ′∈Θn

‖fj,θj − f
j,θ
′
j
‖1 6 LnH‖θj − θ ′j ‖, θ = (θ1, θ2), θ

′
= (θ

′
1, θ
′
2) ,

∀‖θj − θ∗j ‖ 6 δ; KL(fj,θj , fj,θ∗j ) . ‖θj − θ
∗
j ‖ .

Then, when f ∗ = fθ∗,α∗ , with α
∗ ∈ [0, 1], there exists M > 0 such that

π
[
(α, θ); ‖fθ,α − f ∗‖1 > M

√
log n/n|xn

]
= op(1) .



Separated models

Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

Further
inf
θ1∈Θ1

inf
θ2∈Θ2

‖f1,θ1
− f2,θ2

‖1 > 0

and, for θ∗j ∈ Θj , if Pθj weakly converges to Pθ∗j , then

θj −→ θ∗j

in the Euclidean topology



Separated models

Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

theorem

Under above assumptions, then for all ε > 0,

π [|α− α∗| > ε|xn] = op(1)



Separated models

Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

theorem

If

I θj → fj ,θj is C2 around θ∗j , j = 1, 2,

I f1,θ∗1
− f2,θ∗2

,∇f1,θ∗1
,∇f2,θ∗2

are linearly independent in y and

I there exists δ > 0 such that

∇f1,θ∗1 , ∇f2,θ∗2 , sup
|θ1−θ

∗
1 |<δ

|D2f1,θ1 |, sup
|θ2−θ

∗
2 |<δ

|D2f2,θ2 | ∈ L1

then
π
[
|α− α∗| > M

√
log n/n

∣∣xn
]
= op(1).



Separated models

Assumption: Models are separated, i.e. identifiability holds:

∀α,α ′ ∈ [0, 1], ∀θj , θ
′
j , j = 1, 2 Pθ,α = Pθ′ ,α′ ⇒ α = α

′
, θ = θ

′

theorem allows for interpretation of α under the posterior: If data
xn is generated from model M1 then posterior on α concentrates
around α = 1



Embedded case

Here M1 is a submodel of M2, i.e.

θ2 = (θ1,ψ) and θ2 = (θ1,ψ0 = 0)

corresponds to f2,θ2 ∈M1

Same posterior concentration rate√
log n/n

for estimating α when α∗ ∈ (0, 1) and ψ∗ 6= 0.



Null case

I Case where ψ∗ = 0, i.e., f ∗ is in model M1

I Two possible paths to approximate f ∗: either α goes to 1
(path 1) or ψ goes to 0 (path 2)

I New identifiability condition: Pθ,α = P∗ only if

α = 1, θ1 = θ
∗
1 , θ2 = (θ∗1 ,ψ) or α 6 1, θ1 = θ

∗
1 , θ2 = (θ∗1 , 0)

Prior
π(α, θ) = πα(α)π1(θ1)πψ(ψ), θ2 = (θ1,ψ)

with common (prior on) θ1
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Assumptions

[B1] Regularity : Assume that θ1 → f1,θ1 and θ2 → f2,θ2 are 3
times continuously differentiable and that

F ∗

(
f̄ 3
1,θ∗1

f 3
1,θ∗1

)
< +∞, f̄1,θ∗1 = sup

|θ1−θ
∗
1 |<δ

f1,θ1 , f 1,θ∗1
= inf

|θ1−θ
∗
1 |<δ

f1,θ1

F ∗

(
sup|θ1−θ∗1 |<δ |∇f1,θ∗1 |

3

f 3
1,θ∗1

)
< +∞, F ∗

(
|∇f1,θ∗1 |

4

f 4
1,θ∗1

)
< +∞,

F ∗

(
sup|θ1−θ∗1 |<δ |D

2f1,θ∗1 |
2

f 2
1,θ∗1

)
< +∞, F ∗

(
sup|θ1−θ∗1 |<δ |D

3f1,θ∗1 |

f 1,θ∗1

)
< +∞



Assumptions

[B2] Integrability : There exists

S0 ⊂ S ∩ {|ψ| > δ0}

for some positive δ0 and satisfying Leb(S0) > 0, and such that for
all ψ ∈ S0,

F ∗

(
sup|θ1−θ∗1 |<δ f2,θ1,ψ

f 4
1,θ∗1

)
< +∞, F ∗

(
sup|θ1−θ∗1 |<δ f 3

2,θ1,ψ

f 3
1,θ1∗

)
< +∞,



Assumptions

[B3] Stronger identifiability : Set

∇f2,θ∗1 ,ψ∗(x) =
(
∇θ1f2,θ∗1 ,ψ∗(x)

T,∇ψf2,θ∗1 ,ψ∗(x)
T
)T

.

Then for all ψ ∈ S with ψ 6= 0, if η0 ∈ R, η1 ∈ Rd1

η0(f1,θ∗1
− f2,θ∗1 ,ψ) + η

T
1∇θ1f1,θ∗1

= 0 ⇔ η1 = 0, η2 = 0



Consistency

theorem

Given the mixture fθ1,ψ,α = αf1,θ1 + (1 − α)f2,θ1,ψ and a sample
xn = (x1, · · · , xn) issued from f1,θ∗1

, under assumptions B1 − B3,
and an M > 0 such that

π
[
(α, θ); ‖fθ,α − f ∗‖1 > M

√
log n/n|xn

]
= op(1).

If α ∼ B(a1, a2), with a2 < d2, and if the prior πθ1,ψ is absolutely
continuous with positive and continuous density at (θ∗1 , 0), then for
Mn −→∞
π
[
|α− α∗| > Mn(log n)γ/

√
n|xn

]
= op(1), γ = max((d1 + a2)/(d2 − a2), 1)/2,
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