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Introduction

Suppose that Yt , t = 1, . . . , n, are n observations collected from a
stationary time series process and Xt = (Z

ᵀ

t ,Y
ᵀ

t−1)
ᵀ

with

Zt =
(
Zt1,Zt2, . . . ,Ztpn

)ᵀ
and Yt−1 = (Yt−1,Yt−2, . . . ,Yt−dn)

ᵀ
,

where Zt are exogenous regressors.

The main interest is to study the multivariate regression function:

m(x) = E(Yt

∣∣Xt = x). (1)
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Introduction

It is well known that when the dimension of Xt is very small
(univariate or bivariate), m(x) can be well estimated by some
commonly-used nonparametric methods such as the kernel
method, the local polynomial method and the spline method.
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Introduction

However, if the dimension is large, to address the so-called “curse
of dimensionality”, various nonparametric and semiparametric
models such as additive models, varying-coefficient models and
partially linear models have been proposed in the literature for the
dynamic time series data (c.f., Fan and Yao, 2003; Teräsvirta,
Tjøstheim and Granger, 2010).
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In this talk, we assume that the dimension of the exogenous
variables Zt may be diverging at certain exponential rate of n,
which indicates that the dimension of the potential explanatory
variables Xt can be diverging at an exponential rate, i.e.,

pn + dn = O(exp{nδ0})

for some positive constant δ0.
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A motivated example

We apply the proposed semiparametric model averaging methods
to forecast inflation in the UK. The data were collected from the
Office for National Statistics (ONS) and the Bank of England
(BoE) websites and included quarterly observations on CPI and
some other economics variables over the period Q1 1997 to Q4
2013.
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All the variables are seasonally adjusted. We use 53 predictor series
measuring aggregate real activity and other economic indicators to
forecast CPI. Given the possible time persistence of CPI, we also
add its 4 lags as predictors.

Data from Q1 1997 to Q4 2012 are used as the training set and
those between Q1 2013 and Q4 2013 are used for forecasting.

The dimension of the candidate covariates is 53 + 4 = 57, which is
comparable to 16× 4 = 64 observations in the training set.
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Our aims

Propose two types of semiparametric dimension reduction
with the penalised estimation method involved.

Examine the nonlinear forecasting performance after
dimension reduction.
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KSIS+PMAMAR

Step 1 of KSIS+PMAMAR

Apply Kernel Sure Independence Screening (KSIS) technique
for the nonlinear time series setting which screens out the
regressors whose marginal regression (or autoregression)
functions do not make significant contribution to estimating
the joint multivariate regression function.
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Step 2 of KSIS+PMAMAR

Consider a semiparametric method of Model Averaging
MArginal Regression (MAMAR) for the regressors and
autoregressors that survive the screening procedure, and
propose a penalised MAMAR method to further select the
regressors and determine the optimal combination of the
significant marginal regression and autoregression functions.
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Literature on SIS

Linear models: Fan and Lv (2008);

Additive models: Fan, Feng and Song (2011);

Varying coefficient models: Fan, Ma and Dai (2014) and Liu,
Li and Wu (2014);

Linear SIS+model averaging: Ando and Li (2014).
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KSIS–1

For notational simplicity, we let

Xtj =

{
Ztj , j = 1, 2, . . . , pn,
Yt−(j−pn), j = pn + 1, pn + 2, . . . , pn + dn.

For j = 1, . . . , pn + dn, the kernel smoother of marginal regression

mj(xj) := E(Yt |Xtj = xj)

is

m̂j(xj) =

∑n
t=1 YtKtj(xj)∑n
t=1 Ktj(xj)

, Ktj(xj) = K
(Xtj − xj

h1

)
.
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KSIS–2

We consider ranking the importance of the covariates by
calculating the correlation between the response variable and
marginal regression:

cor(j) =
cov(j)√

v(Y ) · v(j)
=
[ v(j)

v(Y )

]1/2
, (2)

where v(Y ) = var(Yt), v(j) = var(mj(Xtj)) and

cov(j) = cov(Yt ,mj(Xtj)) = var(mj(Xtj)) = v(j).

Equation (2) indicates that the value of cor(j) is non-negative for
all j and the ranking of cor(j) is equivalent to the ranking of v(j)
as v(Y ) is positive and invariant across j .
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KSIS–3

The sample version of cor(j) can be constructed as

ˆcor(j) =
ˆcov(j)√

v̂(Y ) · v̂(j)
=
[ v̂(j)

v̂(Y )

]1/2
,

where

v̂(Y ) =
1

n

n∑
t=1

Y 2
t −

(1

n

n∑
t=1

Yt

)2
,

ˆcov(j) = v̂(j) =
1

n

n∑
t=1

m̂2
j (Xtj)−

[1

n

n∑
t=1

m̂j(Xtj)
]2
,
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KSIS criterion

The screened sub-model can be determined by,

Ŝ =
{
j = 1, 2, . . . , pn + dn : v̂(j) ≥ ρn

}
,

where ρn is a pre-determined positive number.

The above criterion is equivalent to

Ŝ =
{
j = 1, 2, . . . , pn + dn : ˆcor(j) ≥ ρ�n

}
,

where ρ�n = ρ
1/2
n /

√
v̂(Y ).
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Asymptotic theory for KSIS–1

Define the index set of “true” candidate models as

S =
{
j = 1, 2, . . . , pn + dn : v(j) 6= 0

}
.
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Asymptotic theory for KSIS–2

Theorem 1(i) Suppose that the conditions A1–A5 in the paper
are satisfied. For any small δ1 > 0, there exists a positive constant
δ2 such that

P

(
max

1≤j≤pn+dn

∣∣∣v̂(j)− v(j)
∣∣∣ > δ1n

−2(1−θ1)/5
)

= O
(
M(n) exp

{
−δ2n(1−θ1)/5

})
,

where M(n) = (pn + dn)n(17+18θ1)/10 and 1/6 < θ1 < 1 is defined
by h1 = n−θ1 .
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Asymptotic theory for KSIS–3

Theorem 1(ii) If we choose the pre-determined tuning parameter
ρn = δ1n

−2(1−θ1)/5 and assume

min
j∈S

v(j) ≥ 2δ1n
−2(1−θ1)/5,

then we have

P
(
S ⊂ Ŝ

)
≥ 1− O

(
MS(n) exp

{
−δ2n(1−θ1)/5

})
,

where MS(n) = |S|n(17+18θ1)/10 with |S| being the cardinality of
S.
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Remark on the asymptotic theory

As pn + dn = O(exp{nδ0}), in order to ensure the validity of
Theorem 1(i), we need to impose the restriction δ0 < (1− θ1)/5,
which reduces to δ0 < 4/25 if the order of the optimal bandwidth
in kernel smoothing (i.e., θ1 = 1/5) is used.
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PMAMAR
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MAMAR approximation–1

We denote the chosen covariates (after KSIS in the first step) by

X∗t =
(
X ∗t1,X

∗
t2, . . . ,X

∗
tqn

)ᵀ
which may include both exogenous

variables and lags of Yt , where qn might be divergent but is
smaller than the sample size n.

Define
m∗(x) = E(Yt |X∗t = x), (3)

where x = (x1, x2, . . . , xqn)
ᵀ
.
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KSIS+PMAMAR

MAMAR approximation–2

We approximate the conditional regression function m∗(x) by an
affine combination of one-dimensional conditional component
regressions

m∗j (xj) = E(Yt |X ∗tj = xj), j = 1, . . . , qn.

Each marginal regression m∗j (·) can be treated as a “nonlinear
candidate model”.

A weighted average of m∗j (xj) is used to approximate m∗(x), i.e.,

m∗(x) ≈ w0 +

qn∑
j=1

wjm
∗
j (xj),

where wj , j = 0, 1, . . . , qn, are to be determined later and can be
seen as the weights for different “candidate models”.
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MAMAR approximation–3

By replacing m∗j (X ∗tj), j = 1, . . . , qn, by their corresponding
nonparametric estimates m̂∗j (X ∗tj), we have the following
“approximate linear model”:

Yt ≈ w0 +

qn∑
j=1

wjm̂
∗
j (X ∗tj).

The above MAMAR approximation is introduced in Li, Linton and
Lu (2015) and recently applied by Chen et al (2015) in the
dynamic portfolio choice with many conditioning variables.
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PMAMAR–1

For j = 1, . . . , qn, we estimate the marginal regression functions
m∗j (·) by the kernel smoothing method:

m̂∗j (xj) =

∑n
t=1 YtK tj(xj)∑n
t=1 K tj(xj)

, K tj(xj) = K
(X ∗tj − xj

h2

)
.

Then, for j = 1, . . . , qn, we let

M̂(j) =
[
m̂∗j (X ∗1j), . . . , m̂

∗
j (X ∗nj)

]ᵀ
=: Sn(j)Yn

be the estimated values of

M(j) =
[
m∗j (X ∗1j), . . . ,mj(X

∗
nj)
]ᵀ
,

where Sn(j) is the n× n smoothing matrix whose (k , l)-component
is K lj(X

∗
kj)/

[∑n
t=1 K tj(X

∗
kj)
]
, and Yn = (Y1, . . . ,Yn)

ᵀ
.
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PMAMAR–2

We define the objective function by

Qn(wn) =
[
Yn − M̂(wn)

]ᵀ[
Yn − M̂(wn)

]
+ n

qn∑
j=1

pλ(|wj |), (4)

where

M̂(wn) =
[
w1Sn(1) + . . .+ wqnSn(qn)

]
Yn = Sn(Y)wn,

Sn(Y) =
[
Sn(1)Yn, . . . ,Sn(qn)Yn

]
, and pλ(·) is a penalty function

with a tuning parameter λ.

Our semiparametric estimator of the optimal weights wo can be
obtained through minimising the objective function Qn(wn):

ŵn = arg min
wn
Qn(wn).
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Penalty functions

AIC and BIC: pλ(|z |) = 0.5λ2I (|z | 6= 0) with different values
of λ;

LASSO: pλ(|z |) = λ|z |;

SCAD: p′λ(z) = λ
[
I (z ≤ λ) + a0λ−z

(a0−1)λ I (z > λ)
]

with

pλ(0) = 0, where a0 > 2, λ > 0 and I (·) is the indicator
function.

In our numerical studies, we use the SCAD penalty in PMAMAR.
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Asymptotic theory for PMAMAR–1

Theorem 2 (i) Suppose that the conditions A1–A8 are satisfied.
There exists a local minimizer ŵn of the objective function Qn(·)
defined in (4) such that

‖ŵn −wo‖ = OP

(√
qn(n−1/2 + an)

)
,

where ‖ · ‖ denotes the Euclidean norm and

an = max
1≤j≤qn

{
|p′λ(|woj |)|, |woj | 6= 0

}
.
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Asymptotic theory for PMAMAR–2

Theorem 2 (ii) Let ŵn(2) be the estimator of wo(2) which is
composed of all the zero weights and further assume that

λ→ 0,

√
nλ
√
qn
→∞, lim inf

n→∞
lim inf
ϑ→0+

p′λ(ϑ)

λ
> 0.

Then, the local minimizer ŵn of the objective function Qn(·)
satisfies ŵn(2) = 0 with probability approaching one.
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Asymptotic theory for PMAMAR–3

Theorem 2 (iii) If we further assume that the eigenvalues of Λn1

are bounded away from zero and infinity,

√
nAnΣ−1/2

n

(
Λn1 +Ωn

)[
ŵn(1)−wo(1)−

(
Λn1 +Ωn

)−1
ωn

]
d−→ N

(
0,A0

)
,

where 0 is a null vector whose dimension may change from line to
line, An is an s × sn matrix such that AnA

ᵀ

n → A0 and A0 is an
s × s symmetric and non-negative definite matrix, s is a fixed
positive integer. The definitions of Σn, Λn1, Ωn and ωn are given
in the paper.
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Simulation for KSIS+PMAMAR
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Example 1

The sample size is set to be n = 100, and the numbers of candidate
exogenous covariates and lagged terms are (pn, dn) = (30, 10) and
(pn, dn) = (150, 50). The model is defined by

Yt = m1(Zt1) + m2(Zt2) + m3(Zt3) + m4(Zt4) + m5(Yt−1)

+m6(Yt−2) + m7(Yt−3) + εt

for t ≥ 1, where, following Meier, van de Geer and Bühlmann
(2009), we set

mi (x) = sin(0.5πx), i = 1, 2, . . . , 7.
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The exogenous covariates

Zt = (Zt1,Zt2, . . . ,Ztpn)
ᵀ

are independently drawn from pn-dimensional Gaussian distribution
with zero mean and covariance matrix cov(Z) = Ipn or CZ, whose
the main-diagonal entries are 1 and off-diagonal entries are 1/2.

The error term εt are independently generated from the N(0, 0.72)
distribution. The real size of exogenous regressors is 4 and the real
lag length is 3.

We generate 100 + n observations from the process with initial
states Y−2 = Y−1 = Y0 = 0 and discard the first 100− dn
observations.
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Summary of the simulation result

The iterative version of KSIS+PMAMAR performs better in
both estimation and prediction than the KSIS+PMAMAR.

The penGAM is the most conservative in variable selection
and on average selects the least number of variables.

The ISIS suffers from the model misspecification problem.

When the correlation among the exogenous variables
increases, the performance of all approaches worsens.
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PCA+PMAMAR

Impose an approximate factor modelling structure on the
ultra-high dimensional exogenous regressors and use the
well-known principal component analysis to estimate the
latent common factors;

Apply the PMAMAR method to select the estimated common
factors and lags of the response variable which are significant.
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Factor models and PCA
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PCA–1

Letting

B0
n = (b0

1, . . . ,b
0
pn)

ᵀ
and Ut = (ut1, . . . , utpn)

ᵀ
,

we assume the approximate factor model:

Zt = B0
nf0t + Ut ,

where b0
k is an r -dimensional vector of factor loadings, f0t is an

r -dimensional vector of common factors, and utk is called an
idiosyncratic error.
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PCA–2

Denote Zn = (Z1, . . . ,Zn)
ᵀ
, the n × pn matrix of the observations

of the exogenous variables. We then construct

F̂n =
(

f̂1, . . . , f̂n
)ᵀ

as the n × r matrix consisting of the r eigenvectors (multiplied by√
n) associated with the r largest eigenvalues of the n × n matrix

ZnZ
ᵀ

n/(npn).



Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series

PCA+PMAMAR

PCA–3

Define

H = V̂−1
(
F̂ᵀ

nF0
n/n
) [

(B0
n)

ᵀ
B0

n/pn
]
, F0

n =
(
f01 , . . . , f

0
n

)ᵀ
,

and V̂ is the r × r diagonal matrix of the first r largest eigenvalues
of ZnZ

ᵀ

n/(npn) arranged in descending order.
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Asymptotic theory for PCA

Theorem 3 (i). Suppose that the conditions B1–B4 are satisfied,
and

n = o(p2n), pn = O
(

exp{nδ∗}
)
, 0 ≤ δ∗ < 1/3.

For the PCA estimation f̂t , we have

max
t

∥∥∥f̂t −Hf0t

∥∥∥ = OP

(
n−1/2 + n1/4p

−1/2
n

)
.
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PMAMAR with estimated

factor regressors
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Consider the following multivariate regression function with rotated
latent factors and lags of response:

m∗f (x1, x2) = E
(
Yt |Hf0t = x1,Yt−1 = x2

)
.

Apply the PMAMAR with

X̂∗t,f =
(

f̂
ᵀ

t ,Y
ᵀ

t−1

)ᵀ

=
(
f̂t1, . . . , f̂tr ,Y

ᵀ

t−1

)ᵀ

.
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For k = 1, . . . , r , define

m∗k,f (zk) = E
[
Yt |f̃ 0tk = zk

]
, f̃ 0tk = e

ᵀ

r (k)Hf0t ,

where er (k) is an r -dimensional column vector with the k-th
element being one and zeros elsewhere, k = 1, . . . , r .

We estimate m∗k,f (zk) by the kernel smoothing method:

m̂∗k,f (zk) =

∑n
t=1 YtK̃tk(zk)∑n
t=1 K̃tk(zk)

, K̃tk(zk) = K
( f̂tk − zk

h3

)
, j = 1, . . . r ,

where h3 is a bandwidth and f̂tk is the k-th element of f̂t .
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Theorem 3(ii) Suppose that the conditions A5 and B1–B5 are
satisfied, and the latent factor f0t has a compact support. Then we
have

max
1≤k≤r

sup
zk∈F∗

k

∣∣m̂∗k,f (zk)− m̃∗k,f (zk)
∣∣ = oP

(
n−1/2

)
,

where F∗k is the compact support of f̃ 0tk , m̃∗k,f (zk) is the infeasible

kernel estimation defined as m̂∗k,f (zk) but with f̂tk replaced by f̃ 0tk .
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Relevant literature

Factor-augmented linear regression and autoregression: Stock
and Watson (2002), Bernanke, Boivin and Eliasz, (2005) Bai
and Ng (2006), Pesaran, Pick and Timmermann (2011) and
Cheng and Hansen (2015).
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Simulation for PCA+PMAMAR
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How to choose the number of factors

Set a maximum number, say rmax (which is usually not too
large), for the factors. Since the factors extracted from the
eigenanalysis are orthogonal to each other, the over-extracted
insignificant factors will be discarded in the PMAMAR step.

Select the first few eigenvectors (corresponding to the first few
largest eigenvalues) of ZnZ

ᵀ

n/(npn) so that a pre-determined
amount, say 95%, of the total variation is accounted for.

Other commonly-used selection criteria such as BIC can be
found in Bai and Ng (2002) and Fan, Liao and Mincheva
(2013).
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Example 2

The exogenous variables Zt are generated via an approximate
factor model:

Zt = Bft + zt ,

where the rows of the pn × r loadings matrix B and the common
factors ft , t = 1, · · · , n, are independently generated from the
multivariate N(0, Ir ) distribution, and the pn-dimensional error
terms zt , t = 1, · · · , n, are independently drawn from 0.1N(0, Ipn).
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We set pn = 30 or 150, r = 3, and generate the response variable
via

Yt = m1(ft1) + m2(ft2) + m3(ft3) + m4(Yt−1)

+m5(Yt−2) + m6(Yt−3) + εt ,

where fti is the i-th component of ft , mi (·), i = 1, · · · , 6, are the
same as in Example 1, and εt , t = 1, · · · , n, are independently
drawn from the N(0, 0.72) distribution.

In this example, we choose the number of candidate lags of Y as
dn = 10.
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Summary of simulation result

When pn = 30, the KSIS+PMAMAR outperforms all the
other approaches (except the Oracle) in terms of estimation
and prediction accuracy.

When pn becomes larger than n, the PCA based approaches
show their advantage in effective dimension reduction of the
exogenous variables, which results in their lower EE and PE.

The PCA+PMAMAR has a lower EE but higher PE than the
PCA+KSIS+PMAMAR. This is due to the fact that without
the KSIS step the PCA+PMAMAR selects more false lags of
Y .
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Example 3

We next apply the proposed semiparametric model averaging
methods to forecast inflation in the UK. The data were collected
from ONS and BoE websites and included quarterly observations
on CPI and some other economics variables over the period Q1
1997 to Q4 2013.
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All the variables are seasonally adjusted. We use 53 predictor series
measuring aggregate real activity and other economic indicators to
forecast CPI. Given the possible time persistence of CPI, we also
add its 4 lags as predictors.

Data from Q1 1997 to Q4 2012 are used as the training set and
those between Q1 2013 and Q4 2013 are used for forecasting.
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Method IKSIS+PMAMAR KSIS+PMAMAR PCA+PMAMAR
PE 0.0360 0.1130 0.0787

Method penGAM ISIS Phillips curve
PE 0.0865 0.3275 1.1900

The Phillips curve specification is:

It+1 − It = α + β(L)Ut + γ(L)∆It + εt+1,

where It is the CPI in the t-th quarter,
β(L) = β0 +β1L+β2L

2 +β3L
3 and γ(L) = γ0 + γ1L+ γ2L

2 + γ3L
3

are lag polynomials with L being the lag operator, Ut is the
unemployment rate, and ∆ is the first difference operator.
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Thank you very much
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