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Percolation Background

Percolation

Physical phenomenon:

(i) Models how fluid can spread through a medium;

(ii) Models how certain epidemics can spread through a network;

(iii) Many other motivational examples!

Introduced by Broadbent and Hammersley in ’57 (independent

percolation).
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Percolation Background

Percolation

Ingredients:

(i) A graph G = (V ,E ) (e.g., Zd);

(ii) A parameter p ∈ [0, 1].

Two types of percolation: bond (edges) and site (vertices) percolation.

Today we focus on SITE percolation.
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Percolation Example

Example of Percolation

Figure: Z2 with p = 0.5.
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Percolation Example

Example of Percolation

Figure: Z2 with p = 0.7.
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Percolation Example

Questions

(i) Connectivity properties of the black (random) subgraph?

(ii) Phase transitions? (Typically interested in INFINITE graphs: is a

certain vertex connected to infinity?)

Define

θ(p) := Pp[vertex o is connected to infinity].

Figure: The function θ(p).
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Definition of pc

A critical value

From the previous picture it is then natural to define

pc := sup{p ∈ [0, 1] : θ(p) = 0}.

Lots of interesting questions!

(i) Continuity at pc?

(ii) Behavior of θ(p) at pc?

(iii) When is pc non-trivial?

When is pc ∈ (0, 1)?
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Definition of pc

d-dimensional lattices

On Zd we know several things, for example:

If d ≥ 2 we know that pc ∈ (0, 1); moreover, θ is smooth for all

p ≥ pc ;

If d = 2 or d ≥ 11 (or so), then we know that θ(pc) = 0.

We still don’t know what happens in the intermediate range of d ’s.
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Definition of pc

Other graphs

In general, for independent percolation, it is true that

If the degree of the graph G is at most ∆, then pc(G ) ≥ 1
∆ > 0.

We do not have such an easy way to investigate upper-bounds for pc .

The first step in a study of percolation on other graphs [...] will be to

prove that the critical probability on these graphs is smaller than one.

Benjamini and Schramm
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Definition of pc

Other graphs

We know that pc(G ) < 1 holds for:

Cayley graphs of group with exponential growth [Lyons];

Expander graphs [Benjamini–Schramm];

Cayley graphs of one-ended, finitely generated groups

[Babson–Benjamini];

Cayley graph of the Grigorchuck group (example of a graph with

intermediate growth) [Muchnik–Pak].
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Definition of pc

Other graphs

What we didn’t know before starting this project was that pc(G ) < 1

holds also for

Vertex-transitive graphs with polynomial growth.

The proof of this fact involves Gromov’s theorem (a very difficult and

powerful result from group theory) and combinatorial techniques developed

by Babson and Benjamini, and later on simplified by Timar.
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Isoperimetric inequalities

Isoperimetric inequalities

It is known that pc(Z) = 1, but on the other hand, when d ≥ 2 then

pc(Zd) < 1. Hence, the natural question here is

Does the dimension play a role for pc(G ) < 1?

How important?
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Isoperimetric inequalities

Isoperimetric inequalities

For every finite set A ⊂ V (G ), define the vertex-boundary as

∂A :=
{
y ∈ V (G ) : {x , y} ∈ E (G ), x ∈ A, y /∈ A

}
.

A

Figure: Constructing the boundary ∂A.
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Isoperimetric inequalities

Isoperimetric inequalities (dimension)

Define the (isoperimetric) dimension of G as follows: we say that

dim(G ) = d > 1

if and only if d is the largest value for which

there is a constant c > 0 such that

inf
A⊂V (G), A finite

|∂A|
|A|(d−1)/d

≥ c .
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Isoperimetric inequalities

Isoperimetric inequalities (remarks)

Remark: for every d ≥ 2, Zd has isoperimetric dimension d .

Remark: If G has isoperimetric dimension d > 1, then we can say that it

satisfies ISd (d-isoperimetric inequality).
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Isoperimetric inequalities

Question (Benjamini and Schramm ’96)

Is it true that dim(G ) > 1 implies that pc(G ) < 1?
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Isoperimetric inequalities

Some results

If G is planar, has polynomial growth and no accumulation points

then dim(G ) > 1 ⇒ pc(G ) < 1. [Kozma]

If G satisfies a stronger condition than the isoperimetric inequality

(called local isoperimetric inequality), and has polynomial growth

then dim`(G ) > 1 ⇒ pc(G ) < 1. [Teixeira]
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Our results

Our results

Definition: A measure P satisfies the decoupling inequality D(α, cα)

(where α > 0 is a fix parameter) if for all r ≥ 1 and any two decreasing

events G and G′ such that

G ∈ σ
(
Yz , z ∈ B(o, r)

)
and G′ ∈ σ

(
Yw ,w /∈ B(o, 2r)

)
,

we have

P(G ∩ G′) ≤
(
P(G) + cαr

−α)P(G′).

In other words: we admit dependencies, as long as they decay fast

enough in the distance.
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Our results

Our results

With a completely probabilistic approach we showed:

Theorem [C. and Teixeira]: Let G be a transitive graph of polynomial

growth, and let P satisfy D(α, cα) with α “large enough”. Then

(i) There exists a p∗ < 1, such that if infx∈V P[Yx = 1] > p∗, then the

graph contains almost surely a unique infinite open cluster.

(ii) Moreover, fixed any value θ > 0, we have

lim
v→∞

vθP[v < |Co | <∞] = 0,

where Co = open connected component containing the origin.
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Our results

Our results

Moreover, in the dependent case we also need to show that:

Theorem [C. and Teixeira]: Let G be a transitive graph of polynomial

growth, and let P satisfy D(α, cα) with α “large enough”. Then

(i) There exists a p∗∗ > 0, such that if supx∈V P[Yx = 1] < p∗∗, then the

graph contains almost surely NO infinite open cluster.

(ii) Moreover, fixed any value θ > 0, we have

lim
v→∞

vθP[v < |Co |] = 0,

where Co = open connected component containing the origin.
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Our results

Our results (Remark)

We always assume α to be large enough.

Although we don’t have sharp bounds on its critical value, if α is too

small, there are counterexamples!
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Our results

Our results

Definition: Two metric spaces (X1, d1) and (X2, d2) are roughly isometric

(sometimes called “quasi-isometric”) if there is a map ϕ : X1 → X2 s.t.:

(i) There are A ≥ 1, B ≥ 0 such that for all x , y ∈ X1

A−1d1(x , y)− B ≤ d2

(
ϕ(x), ϕ(y)

)
≤ Ad1(x , y) + B.

(ii) There is C ≥ 0 such that for all z ∈ X2 there is x ∈ X1 s.t.

d2(z , ϕ(x)) ≤ C .
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Our results

Our results (Remarks)

Definition: A graph G is roughly transitive if there is a rough isometry

between any two vertices of G .

ROUGHLY TRANSITIVE 6= ROUGHLY ISOMETRIC TO TRANSITIVE!
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Our results

Our results

Our proof also works when G is a roughly transitive graph:

Theorem [C. and Teixeira]: Let G be a roughly-transitive graph of

polynomial growth, and P satisfy D(α, cα) with α “large enough”. Then:

0 p∗∗ p∗ 1

NO infinite component
almost surely almost surely

Infinite component

and, for every θ > 0,{
limv→∞ vθP[v < |C∞|] = 0 if p < p∗∗

limv→∞ vθPp[v < |C∞| <∞] = 0 if p > p∗.
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Idea of the proof

Idea of the proof: renormalization (multiscale argument)

Think only of transitive graphs: the proof in general is very similar

but technically more involved.

Divide the graph into “cells”; and divide each cell into smaller cells;

Repeat until you get to a scale where you can handle the
computations:

1 Show that assuming that a bad event occurs at some scale, then it

must occur many times in the previous (smaller) scale.
2 Show that in the smallest scale P(bad event)� 1.
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Idea of the proof

Idea of the proof: renormalization (multiscale argument)

Idea:

Define some BAD EVENTS Ak occurring at scale k;

Show that P(Ak) is tiny (decaying exponentially fast in k);

Iteratively, show that this implies that the probability of the same

event occurring at a larger scale k + 1 is tiny too!
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Idea of the proof

Idea of the proof: renormalization (multiscale argument)

More precisely:

If the previous steps are verified for some p∗ ≤ c < 1, then OK.

If not ⇒ we obtain a contradiction!
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Idea of the proof

Idea of the proof: renormalization (multiscale argument)

Figure: Bad event occurring at scale k.
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Idea of the proof

Idea of the proof: renormalization (multiscale argument)

Figure: Bad event occurring at scale k + 1.
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Idea of the proof

Main hypothesis I: polynomial growth

Figure: Polynomial growth allows us to split the graph into cells.
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Idea of the proof

Main hypothesis II: Isoperimetric inequality

Figure: Isoperimetric inequality implies that there are lots of paths between large

connected sets and infinity.
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Idea of the proof

Main hypothesis III: transitivity (or rough-transitivity)

Figure: Transitivity allows us to repeat the same reasoning in different areas of

the graph...
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Idea of the proof

Proof

If G satisfies conditions I, II, and III (i.e., polynomial growth, isoperimetric

dimension > 1, rough transitivity), then

assuming pc(G ) = 1

⇓
it is possible to construct a binary tree inside G .

CONTRADICTION with polynomial growth of G ! �

Elisabetta Candellero (Warwick) Percolation and isoperimetric inequalities Bristol 2016/04/15 34 / 35



E.Candellero and A.Teixeira, Percolation and isoperimetry on roughly

transitive graphs, http://arxiv.org/abs/1507.07765.

Thank you for your attention!
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