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Last Passage Percolation

Random potential ω = (ωx)x∈Z2 ∈ Ω, R-valued i.i.d., 2 + ε moments.

Up-right paths x0,n = (x0, . . . , xn)
take steps e1 = (1, 0) or e2 = (0, 1).

Passage time of path x0,n is
n−1∑
i=0

ωxi .

Point-to-point last passage time: Gx ,y (ω) = max
x0,n

x0=x ,xn=y

n−1∑
k=0

ωxk .

Connections to: Totally Asymmetric Simple Exclusion, Queuing
Theory, Corner Growth Model, etc.
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Shape Theorem

LLN says sum of i.i.d. grows linearly.

G0,x is not quite a sum of i.i.d.

It is however superadditive: Gx ,y + Gy ,z ≤ Gx ,z .

Then: outside one null set, for all ξ ∈ R2
+ and all xn/n→ ξ simultaneously

gpp(ξ) = lim
n→∞

n−1G0,xn exists, is deterministic, concave, homogenous

(gpp(cξ) = cgpp(ξ)) and continuous all the way to the boundary.

{x : G0,x ≤ t}

4 / 19



Shape Theorem

LLN says sum of i.i.d. grows linearly.

G0,x is not quite a sum of i.i.d.

It is however superadditive: Gx ,y + Gy ,z ≤ Gx ,z .

Then: outside one null set, for all ξ ∈ R2
+ and all xn/n→ ξ simultaneously

gpp(ξ) = lim
n→∞

n−1G0,xn exists, is deterministic, concave, homogenous

(gpp(cξ) = cgpp(ξ)) and continuous all the way to the boundary.

{x : G0,x ≤ t}

4 / 19



Geodesics

Path x0,n that maximizes Gx ,y is called a geodesic.

x0,∞ is a ξ-geodesic if ∀n x0,n is a geodesic and xn/n→ ξ.

Given ξ ∈ R2
+, is there an infinite ξ-geodesic?

Is it the limit of the geodesic from 0 to xn as n→∞ and xn/n→ ξ?

If ω0 is continuous then finite geodesics are unique.

Is the infinite ξ-geodesic unique?

Do ξ-geodesics out of x and y coalesce (i.e. eventually merge)?
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Geodesics

Licea and Newman ’96: answers are in the positive for standard first
passage percolation (nearest-neighbor paths minimizing the passage time)
if gpp(ξ) satisfies a global curvature assumption.

Problem: the curvature assumption has not been proved. Though
conjectured to hold.

Damron and Hanson ’14: Existence holds under just strict convexity or
differentiability of gpp (which presumably should be “easier” to prove).

Ferrari and Pimentel ’05: answers are in the positive also for the last
passage percolation model we are considering, but with ω0 exponential.

The exponential model is one of the solvable models for which explicit
computations are possible. In particular, an explicit formula is available for
the shape gpp(ξ).

Would like to allow more general weight distributions.
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Understanding the shape

Consider a finite subset V ⊂ Z2 containing 0 (e.g. {u : |u| ≤ L}).

{G0,zn−u − G0,zn : u ∈ V } describes the microscopic shape around zn.

Expect this random vector to converge in distribution as zn/n→ ξ.

Shifting by −zn and reflecting ωx 7→ ω−x turns the above into
{Gu,zn − G0,zn : u ∈ V }.

Now maybe even almost sure convergence holds.

Busemann functions: Bξ(x , y ;ω) = lim
zn/n→ξ

(Gx ,zn − Gy ,zn).

Limit exists if e.g. geodesics coalesce.

x y

zn
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Understanding geodesics

Note that Gx ,zn = ωx + max(Gx+e1,zn ,Gx+e2,zn).

So (Gx ,zn − Gx+e1,zn) ∧ (Gx ,zn − Gx+e2,zn) = ωx almost surely.

At each point x , geodesic to zn follows the smallest of the two gradients.

n→∞ gives Bξ(x , x + e1) ∧ Bξ(x , x + e2) = ωx almost surely.

The above suggests that ξ-geodesic out of x should follow the smallest
Bξ(x , x + z), z ∈ {e1, e2}.
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Busemann functions

Consider gpp as a concave function on U = {(t, 1− t) : t ∈ (0, 1)}.

Given ξ ∈ U let [ξ, ξ] ⊂ U be the maximal (possibly degenerate) interval
containing ξ on which gpp is linear.

Standing assumptions: P{ω0 ≥ c} = 1, ωx i.i.d. with 2 + ε moments, ξ

and ξ are points of differentiability.

Theorem. Bξ(x , y ;ω) = lim
zn/n→ξ

(Gx ,zn − Gy ,zn) exists a.s.

Furthermore: Same limit for all ξ in the same linear segment.

Corollary. If gpp is differentiable, limits exist ∀ξ . (No convexity needed.)

Remark. ω0 ≥ c only because we use results from queuing
where service times were assumed nonnegative. All the queuing
results seem to go through without this assumption.
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Properties

L1: E[|Bξ(x , y)|] <∞. (Comes from construction.)

Stationary: Bξ(x , y ;Tzω) = Bξ(x + z , y + z ;ω) ((Tzω)x = ωx+z)

Cocycle: Bξ(x , y) + Bξ(y , z) = Bξ(x , z).

The space of L1 stationary cocycles: C .

Potential recovery: Bξ(0, e1) ∧ Bξ(0, e2) = ω0 almost surely.
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Geodesics

If B ∈ C then a B-geodesic is a path that follows the minimal B(x , x + z),
z ∈ {e1, e2}. (In case of ties, OK to go either way.)

Theorem. If B recovers potential ω (B(0, e1) ∧ B(0, e2) = ω0 a.s.) then a
B-geodesic is a geodesic: every finite piece of it is a geodesic.

Given ξ ∈ U , recall the maximal linear segment [ξ, ξ].

A geodesic x0,∞ is directed in [ξ, ξ] if all limit points of xn/n belong to this
interval.

Theorem.

a) Any Bξ-geodesic is directed in [ξ, ξ].

b) Any geodesic directed in [ξ, ξ] is a Bξ-geodesic.

c) The Bξ-geodesic with e2-tie breaks is the topmost of all
geodesics directed in [ξ, ξ]. Similarly for rightmost.
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Geodesics

Corollary. If gpp is differentiable everywhere, then every geodesic is
directed in [ξ, ξ] for some ξ.

Remark. Can also handle corners, but will omit.

Thus can show: If gpp is strictly concave, then every geodesic has a
direction ξ, i.e. lim xn/n exists almost surely.

Theorem. Assume also P{ω0 ≤ r} is continuous in r . Then
P{Bξ(0, e1) = Bξ(0, e2)} = 0.

Corollary. If ω0 is continuous, then there exists a unique geodesic
directed in [ξ, ξ] out of every point x ∈ Z2.

Theorem. Topmost [ξ, ξ]-directed geodesics coalesce, rightmost

[ξ, ξ]-geodesics coalesce, and when ω0 is continuous, [ξ, ξ]-geodesics
coalesce.

12 / 19



Geodesics

Corollary. If gpp is differentiable everywhere, then every geodesic is
directed in [ξ, ξ] for some ξ.

Remark. Can also handle corners, but will omit.

Thus can show: If gpp is strictly concave, then every geodesic has a
direction ξ, i.e. lim xn/n exists almost surely.

Theorem. Assume also P{ω0 ≤ r} is continuous in r . Then
P{Bξ(0, e1) = Bξ(0, e2)} = 0.

Corollary. If ω0 is continuous, then there exists a unique geodesic
directed in [ξ, ξ] out of every point x ∈ Z2.

Theorem. Topmost [ξ, ξ]-directed geodesics coalesce, rightmost

[ξ, ξ]-geodesics coalesce, and when ω0 is continuous, [ξ, ξ]-geodesics
coalesce.

12 / 19



Variational formula

Until recently, the only description of gpp(ξ) was from superadditivity:
gpp(ξ) = supn n

−1E[G0,[nξ]] (e.g. if ξ ∈ Z2
+).

Going through random polymer models:

Theorem. gpp(ξ) = inf
B∈C

ess sup{ω0 − B(0, e1;ω) ∧ B(0, e2;ω) + B · ξ}.

(B = (E[B(0, e1)],E[B(0, e2)]) and C is class of L1 stationary cocycles.)

Such formulas are important in statistical mechanics: their solutions are
expected to describe the infinite-volume system (i.e. geodesics
and shape as n→∞).
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Shape

Theorem. Under the standing assumptions, Bξ solves the variational
formula for gpp(ξ). In fact, the essential supremum is not needed and we
have almost surely

gpp(ξ) = ω0 − Bξ(0, e1, ω) ∧ Bξ(0, e2, ω) + Bξ · ξ.

Corollary. Due to potential recovery, we have gpp(ξ) = Bξ · ξ.

Using some calculus one then gets that Bξ = ∇gpp(ξ).

Nice interpretation: average microscopic gradient is macroscopic gradient.
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Solvable models

When ω0 are exponential or geometric we in fact can calculate explicitly
the distributions of Bξ(0, e1) and Bξ(0, e2) for all ξ ∈ U .

For example, if ω0 is exponential with rate 1, then Bξ(0, e1) is exponential
with rate α and Bξ(0, e2) is exponential with rate 1− α, where

α =

√
ξ1√

ξ · e1 +
√
ξ · e2

.

Then Bξ = (E[Bξ(0, e1)],E[Bξ(0, e2)]) = ( 1
α ,

1
1−α)

and gpp(ξ) = Bξ · ξ = (
√
ξ · e1 +

√
ξ · e2)2.

This is the known formula derived by Rost ’81.
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Fluctuations

CLT says that if X0,n has increments e1 or e2 equally likely, then it
fluctuates from its average (straight line from 0 to (n/2, n/2)) by n1/2.

Limit distribution of (Xn − (n/2, n/2))/n1/2 is Gaussian.

Say ω0 is continuous.

What are the fluctuations of the geodesic from 0 to [nξ]?

Conjecture: with enough moments on ω0 geodesic has fluctuations of
order n2/3.

Superdiffusivity is because the path goes “out of its way” looking for high
values of the potential.

On the other hand, G0,[nξ] should have n1/3 fluctuations.

Limit distributions related to Tracy-Widom from random matrices.
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Fluctuations

Models with these fluctuation exponents are said to belong to the
Kardar-Parisi-Zhang (KPZ) universality class.

Johansson ’00 proved LPP with exponential weights is in the KPZ class.

Again: solvability of the model was key.
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Fluctuations

When ω0 is exponential or geometric, Bξ(ne1, (n + 1)e1) are i.i.d. and so
are Bξ(ne2, (n + 1)e2).

Balázs, Cator, and Seppäläinen ’06 used this to prove the n2/3 fluctuations
of the geodesic and n1/3 fluctuations of the last passage time, in the
exponential weights case, with less technology than Johansson’s proof of
the Tracy-Widom limit.

More generally, CLT exponents for fluctuations of Bξ(0, ne1) and
Bξ(0, ne2) imply information about fluctuation exponents of last passage
quantities. (The above BCS result is one way to achieve this.)

Now we have a promising route to proving universality of KPZ fluctuations
for general weight distributions.
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Thank You
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