
Latent Variable Models for
the Analysis, Visualization and Prediction

of Network and Nodal Attribute Data

Isabella Gollini

School of Engineering

University of Bristol

isabella.gollini@bristol.ac.uk

January 24th, 2014

Joint work with Prof. Brendan Murphy (University College Dublin)

Isabella Gollini Latent Variable Models for Network and Nodal Attribute Data

About Me

With Jonty: Probabilistic methods for uncertainty assessment
and quantification in natural hazards (floods, volcanoes, and
earthquakes etc.).

Models to cluster binary data with complex dependence
structure

Gollini, I., and Murphy, T.B., (2013) “Mixture of Latent Trait
Analyzers for Model-Based Clustering of Categorical Data”,
Statistics and Computing.

Models for network data

Use of Variational methods for fast approximate inference.
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Outline

Network Data

Latent Space Models for Networks
Variational Inference

Factor Analysis for Nodal Attributes

Joint Model for Network and Nodal Attributes

Latent Variable Models for Multiple Networks
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Notation

N number of nodes of an observed network

2

1

3

Y (N×N) adjacency matrix

yij =

�
1 if there is an edge between node i and j
0 otherwise

X (N×M) matrix of M nodal attributes.

zn ∼N (0,σ2I) D dimensional continuous latent variable
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Latent Space Model (LSM) for Networks

Hoff et al. (2002) introduced a model that assumes that each
node n has an unknown position zn in a D-dim Euclidean
latent space.

p(Y|Z,α) =
N

∏
i �=j

p(yij |zi ,zj ,α) =
N

∏
i �=j

exp(α− |zi −zj |2)yij

1+exp(α− |zi −zj |2)

with p(α) = N (ξ ,ψ2), p(zn)
iid
= N (0,σ2ID) and σ2,ξ ,ψ2

are fixed parameters.

The posterior distribution cannot be calculated analytically.

NOTE: We propose to use is the Squared Euclidean Distance.
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Why Squared Euclidean Distance?

It requires less approximation to be made in the estimation
procedure.

It allows to visualize more clearly the presence of potential
clusters, giving a higher probability of a link between two close
nodes in the latent space and lower probability to two nodes
lying far away from each other.
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LSM for Networks – Variational Approach

We fit the model using a Variational inference approach that
is considerably quicker but less accurate than MCMC.

The posterior probability of the unknown (Z,α) is:

p(Z,α|Y) = p(Y|Z,α)p(α)
N

∏
n=1

p(zn)×C

where C is the unknown normalising constant

We propose a variational posterior q(Z,α|Y) introducing
variational parameters ξ̃ , ψ̃2, z̃n,Σ̃:

q(Z,α|Y) = q(α)
N

∏
n=1

q(zn)

where q(α) = N (ξ̃ , ψ̃2) and q(zn) = N (z̃n,Σ̃).
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Variational Approach

The basic idea behind the variational approach is to find a
lower bound of the log marginal likelihood logp(Y) by
introducing the variational posterior distribution q(Z,α|Y).

This approach leads to minimize the Kulback-Leibler
divergence between the variational posterior q(Z,α|Y) and
the true posterior p(Z,α|Y):

KL[q(Z,α|Y)||p(Z,α|Y)] =−
�

q(Z,α|Y) log
p(Z,α|Y)

q(Z,α|Y)
d(Z,α)

=
�

q(Z,α|Y) log
p(Y,Z,α)

p(Y)q(Z,α|Y)
d(Z,α)

=
�

q(Z,α|Y) log
p(Y,Z,α)

q(Z,α|Y)
d(Z,α)− logp(Y)
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Variational Approach

KL[q(Z,α|Y)||p(Z,α|Y)] divergence can be written as:

KL[q(Z,α|Y)||p(Z,α|Y)] = KL[q(α)||p(α)]+
N

∑
i=1

KL[q(zi )||p(zi )]

−Eq(Z,α|Y)[log(p(Y|Z,α))]

Eq(Z,α|Y)[log(p(Y|Z,α))] is approximated using the Jensen’s
inequality:

Eq(Z,α|Y)[log(p(Y|Z,α))] =
N

∑
i �=j

yijEq(Z,α|Y)[α− |zi −zj |2]

−Eq(Z,α|Y)[log(1+exp(α− |zi −zj |2))]

≤
N

∑
i �=j

yij(Eq(Z,α|Y)[α− |zi −zj |2])

− log(1+Eq(Z,α|Y)[exp(α− |zi −zj |2)])
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LSM for Networks – Variational Approach – EM Algorithm

The EM algorithm at each (i +1)th iteration:

E-Step Estimate z̃(i+1)
n and Σ̃

(i+1)
:

Q(ΘLSM ;Θ(i)
LSM) = KL[q(Z,α|Y)||p(Z,α|Y)]

where ΘLSM = (ξ̃ , ψ̃2).

M-Step Estimate ξ̃ and ψ̃2:

Θ(i+1)
LSM = argmax Q(ΘLSM ;Θ(i)

LSM)
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LSM – Monks Network

Sampson (1969) recorded the social interactions among a
group of N = 18 monks while being a resident in a New
England monastery.

The directed links of the network represent the liking
relationships.
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Comparison of Estimation Methods and Distance Metrics
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Variational Inference VS MCMC

Closed form posteriors

Far faster than MCMC based methods

In the absence of posterior dependence, the lower bound
would match the log likelihood.

As long as the posterior dependence is weak, the VA may be
useful:

Larger networks
For starting point of MCMC algorithms
To explore the model space.

Underestimates variances

Difficult to assess how tight the lower bound is.

Sensitive to starting values (local minima)
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Network and Nodal Attributes

The classical approach to incorporate nodal attributes in the LSM is:

p(Y|Z,α,X,β) =
N

∏
i �=j

exp(α +βT xij − |zi −zj |2)yij

1+exp(α +βT xij − |zi −zj |2)

β and xij are vectors of length M.

This LSM contains only link covariate information xij so it is not designed to
deal with nodal attributes directly.

This model assumes that the probability of a link depends on the nodal
attributes (social selection)

Sometimes the nodal attributes depend on the network links (social influence).

We present a model where the network and the nodal attributes data mutually
depend on each other.
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Factor Analysis (FA) for Nodal Attributes

Factor analysis (FA) (Spearman, 1904) is a useful technique
to visualize continuous data, reducing the data dimensionality
from M to D (where D �M) in order to explain the
variability expressed by the correlation within the data.

FA assumes that there is a continuous latent variable zn

underlying the behavior of the continuous response variables
given by an observation xn.
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Factor Analysis (FA) for Nodal Attributes

zn
iid∼N (0,σ2I), and εn

iid∼N (0,Ψ),

where Ψ = diag(ψ2
1 , . . . ,ψ2

M), and

xn = µ +Λzn + εn

So,
p(xn|zn)∼N (µ,(Λσ)(Λσ)T +Ψ)

The EM algorithm is used to find maximum likelihood
estimate.

p(zn|xn)∼N (ẑn,Σ̂)

Everything can be calculated analytically in closed form.
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The joint model for Network and Nodal Attributes

The probability of a node being connected with other nodes
and the behaviour of nodal attributes are explained by the
same latent variable.

A continuous latent variable zn ∼N (0,σ2ID) summarizes the
information given by both the network and the nodal
attributes.

Network Y and nodal attributes xn are independent given the
latent variable zn.

XFA

Z

Y LSM

Ψ

Λ α
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The joint model for Network and Nodal Attributes – Fit the model

We assume that: p(zn)∼N (0,σ2I).
The network data are modeled via LSM: p(zn|Y)∼N (z̃n,Σ̃).
The nodal attributes are modeled via FA: p(zn|xn)∼N (ẑn,Σ̂).

Joint model:

p(zn|Y,xn) ∝ p(zn|Y)p(zn|xn)

p(zn)

∝ N (z̄n,Σ̄)

where

Σ̄ =

�
Σ̃
−1

+ Σ̂
−1− 1

σ2
ID

�−1

and z̄n = Σ̄
�
Σ̃
−1

z̃n + Σ̂
−1

ẑn

�
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The joint model for Network and Nodal Attributes– EM Algorithm

E-Step Estimate Σ̄
(i+1)

and z̄(i+1)
n

Q(ΘLSM ,ΘFA;Θ(i)
LSM ,Θ(i)

FA) =

= E
p(Z|Y,X;Θ(i)

LSM ,Θ(i)
FA)

[log(p(Y,Z|ΘLSM))] +

+E
p(Z|Y,X;Θ(i)

LSM ,Θ(i)
FA)

[log(p(X,Z|ΘFA))]

therefore,

Σ̄
(i+1)

=

�
[Σ̃

(i+1)
]−1 +[Σ̂

(i+1)
]−1− 1

σ2
ID

�−1

z̄(i+1)
n = Σ̄

(i+1)
�
[Σ̃

(i+1)
]−1z̃(i+1)

n +[Σ̂
(i+1)

]−1ẑ(i+1)
n

�

M-Step Update

(Θ(i+1)
LSM ,Θ(i+1)

FA ) = argmax Q(ΘLSM ,ΘFA;Θ(i)
LSM ,Θ(i)

FA)
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The joint model for Network and Nodal Attributes – Yeast Proteins

The network is composed by N=1500 nodes representing the
interaction between Saccharomyces cerevisiae (yeast) proteins.

The nodal attributes consist of expression levels during yeast
sporulation from M=80 experiments with Saccharomyces
cerevisiae proteins.

Factor analysis is an appropriate tool to visualize the
M-dimensional expression data in a low dimensional latent
space.

The fixed parameters:

zn ∼N (0, I2)
ξ = 0
ψ2 = 2
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The joint model for Network and Nodal Attributes – Results

LSM positions (left) and LSJM positions (right).
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The joint model for Network and Nodal Attributes – Performance
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ROC curve (left) and Boxplot (right) of the estimated probabilities
of a link for the true negatives and true positives.
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Multiple Network Views

In many applications the behaviour of the nodes is strongly
shaped by the complex relation of many interactions.

Longitudinal networks: the links represent the same relation at
different time points.

Multiplex networks: the links come from different kind of
relations (eg genetic and physical etc.)
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Joint Modelling of Multiple Network Views

We have K networks on the same N nodes. We propose a
model that merges the information given by all these networks.

A continuous latent variable zn ∼N (0,σ2ID) identifies the
position of node n in a D-dimensional latent space.

Y1

LSM

Z

Y2

LSM

Y3

LSM
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Joint Modelling of Multiple Network Views – Model

The probability of a link depends on the distance between two
nodes in the latent space.

p(Y1, . . . ,YK |Z,α) =
K

∏
k=1

N

∏
i �=j

exp(αk − |zi −zj |2)yijk

1+exp(αk − |zi −zj |2)

Variational Approach k = 1, . . . ,K : p(zn|Yk)∼N (z̃nk ,Σ̃k).

Joining the two models:

p(zn|Y1, . . . ,YK ;Θ1, . . . ,ΘK ) ∝ ∏K
k=1 p(zn|Yk ;Θk)

p(zn)K−1

∝ N (z̄n,Σ̄)

where

Σ̄ =

�
∑K

k=1 Σ̃
−1
k − K −1

σ2
ID

�−1

and z̄n = Σ̄
�
∑K

k=1 Σ̃
−1
k z̃nk

�
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Joint Modelling of Multiple Network Views – EM Algorithm

E-Step Estimate the parameters of the joint posterior distribution

Σ̄
(i+1)

and z̄(i+1)
n :

Q(Θ1, . . . ,ΘK ;Θ(i)
1 , . . . ,Θ(i)

K ) =

=
K

∑
k=1

E
p(Z|Y1,...,YK ;Θ(i)

1 ,...,Θ(i)
K )

[log(p(Yk ,Z|Θk))]

We estimate the parameters z̃nk ,Σ̃k of the posterior
distribution p(zn|Yk ;Θk) given each network k separately.
We merge these estimates to find joint posterior
distribution of the latent positions N (z̄n,Σ̄).

M-Step Update the variational model parameters
ξ̃1, . . . , ξ̃K , ψ̃2

1 , . . . , ψ̃2
K :

(Θ(i+1)
1 , . . . ,Θ(i+1)

K ) = argmax Q(Θ1, . . . ,ΘK ;Θ(i)
1 , . . . ,Θ(i)

K ).
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LSJM – Monks Network (cont’d)

We analyze the networks of liking relationship at K = 3 time
points fitting the LSM to each network separately.
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LSJM – Monks Network – LSJM positions
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LSJM – Protein-Protein Interactions

K = 2 undirected networks formed by genetic and physical
protein-protein interactions between N = 67 Saccharomyces
cerevisiae proteins.

The complex relational structure of this dataset has led to
implementation of models aiming at describing the functional
relationships between the observations.

The data were downloaded from the Biological General
Repository for Interaction Datasets (BioGRID) database.
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LSJM – Protein-Protein Interactions – LSM positions
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Latent posterior distributions fitting the LSM for the two networks
separately.
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LSJM – Protein-Protein Interactions – LSM ROC and BOX plots
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ROC curves and Boxplots of the estimated probabilities of a link
for the true negatives and true positives.
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LSJM – Protein-Protein Interactions – LSJM positions
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Left: p(zn|Y1, . . . ,YK ;Θ1, . . . ,ΘK ) ∝ N (z̄n,Σ̄) fitting the LSJM

Right: the dots represent the overall positions z̄n and the arrows connect the
estimated position under each model p(zn|Yk ;Θk ) = N (z̃nk ,Σ̃k ).
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LSJM – Protein-Protein Interactions – LSJM ROC and BOX plots
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ROC curves and Boxplots of the estimated probabilities of a link
for the true negatives and true positives.
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LSJM – Missing Links and Missing Nodes

Missing (unobserved) links can be easily managed by the
LSJM using the information given by all the network views.

To estimate the probability of the presence or absence of an
edge we employ the posterior mean of the αk and of the
latent positions so that we get the following equation:

y∗ijk = p(yijk = 1|z̄i , z̄j , ξ̃k) =
exp(ξ̃k − |z̄i − z̄j |2)

1+exp(ξ̃k − |z̄i − z̄j |2)
.

If we want to infer whether to assign yijk = 1 or not, we need
to introduce a threshold τk , and let yijk = 1 if

p(yijk = 1|z̃ik , z̃jk , ξ̃k) > τk .
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LSJM – Protein-Protein Interactions – Missing Data

To evaluate the link prediction we applied a 10-fold cross
validation setting the 10% of the links to be missing at each
time point.
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ROC curves fitting a LSJM (left) and 2 single LSM (right)
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LSJM – Protein-Protein Interactions – Missing Data

Missing Links (10-fold cross validation):
LSJM: misclassification rate of 9% for the genetic interaction
network, and 6% for the physical interaction network.
LSM: misclassification rate of 18% for the genetic interaction
network, and 7% for the physical interaction network.

Missing Nodes (10-fold cross validation):
LSJM: misclassification rate of 24% for the genetic interactions
dataset and 20% for the physical interaction network.
LSM: useless since it would locate the nodes only relying on
the prior information.

Try to improve the predictions using a higher dimension for
the latent variables.
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Conclusions

The joint models are particularly useful to:

Locate unconnected nodes/subgraphs in the latent space.

Estimate missing links.

Wide range of applications

Variational Bayes allows to deal with networks of thousands of
nodes.

Possible extentions:

Joint models for directed networks using the inner product
instead of Euclidean distance.

Joint models for categorical nodal attributes (LTA instead of
FA).

Joint models with clusters (LPCM, MFA, MLTA).

Beyond binary networks: Rank and Count data.
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