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Probability kernels

For general sets S ,T , let F(S ,T ) denote the set of all functions
f : S → T .

Let S ,T be finite sets. A linear operator A : F(T ,R)→ F(S ,R)
is uniquely characterized by its matrix (A(x , y))x∈S , y∈T through
the formula

Af (x) :=
∑
y∈T

A(x , y)f (y) (x ∈ S).

A linear operator K : F(T ,R)→ F(S ,R) is a probability kernel
from S to T if and only if

K (x , y) ≥ 0 and
∑
z∈T

K (x , z) = 1 (x ∈ S , y ∈ T ).
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Random mapping representations

Let K be a probability kernel from S to T .

A random mapping representation of K is an F(S ,T )-valued
random variable M such that

K (x , y) = P[M(x) = y ] (x ∈ S , y ∈ T ).

We say that K is representable in G ⊂ F(S ,T ) if M can be chosen
so that it takes values in G.
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Monotone probability kernels

For partially ordered sets S ,T , let Fmon(S ,T ) be the set of all
monotone maps m : S → T , i.e., those for which x ≤ x ′ implies
m(x) ≤ m(x ′).

A probability kernel K is called monotone if

Kf ∈ Fmon(S ,R) ∀f ∈ Fmon(T ,R),

and monotonically representable if K is representable in
Fmon(S ,T ).

Monotonical representability implies monotonicity:

f ∈ Fmon(T ,R) and x ≤ x ′ ⇒
Kf (x) = E

[
f
(
M(x)

)]
≤ E

[
f
(
M(x ′)

)]
= Kf (x ′).
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Monotone probability kernels

J.A. Fill & M. Machida (AOP 2001) (and also D.A. Ross
(unpublished)) discovered that the converse does not hold. There
are counterexamples with S = T = {0, 1}2.

On the positive side, Kamae, Krengel & O’Brien (1977) and Fill &
Machida (2001) have shown that:

(Sufficient conditions for monotone representability)
Let S ,T be finite partially ordered sets and assume that at least
one of the following conditions is satisfied:

(i) S is totally ordered.

(ii) T is totally ordered.

Then any monotone probability kernel from S to T is
monotonically representable.
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Stochastic order

In particular, setting S = {1, 2}, this proves that if µ1, µ2 are
probability laws on T such that

µ1f ≤ µ2f ∀f ∈ Fmon(T ,R),

then it is possible to couple random variables M1,M2 with laws
µ1, µ2 such that M1 ≤ M2.
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Markov semigroups

Let S be finite. By definition, a Markov semigroup is a collection
of probability kernels (Pt)t≥0 on S such that

P0 = lim
t↓0

Pt = 1 and PsPt = Ps+t .

Each Markov semigroup is of the form

Pt := e tG =
∞∑
n=0

1

n!
tnGn (t ≥ 0),

where the generator G satisfies

G (x , y) ≥ 0 (x 6= y) and
∑
y∈S

G (x , y) = 0 (x ∈ S).
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Representability of semigroups

By definition, G is representable in G ⊂ F(S ,S) if G can be
written as

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

where (rm)m∈G are nonnegative constants (rates).

(Representability of semigroups)
Assume that G is closed under composition and contains the
identity map. Then the following statements are equivalent:

(i) G can be represented in G.

(ii) Pt can be represented in G for all t ≥ 0.
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Stochastic flows

Proof of (i)⇒(ii) Let ω be a Poisson subset of G × R with local
intensity rmdt and let ωs,u := {(m, t) ∈ ω : s < t ≤ u}.
Define random maps (Xs,u)s≤u by composing the maps in ωs,u in
the order of the time at which they occur:

Xs,u := mn ◦ · · · ◦m1

with ωs,u =
{

(m1, t1), . . . , (mn, tn)
}
, t1 < · · · < tn.

The (Xs,u)s≤u form a stochastic flow:

Xs,s = 1 and Xt,u ◦ Xs,u (s ≤ t ≤ u),

with independent increments:

Xt0,t1 , . . . ,Xtn−1,tn independent for t0 < · · · < tn.
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Stochastic flows

If X0 is independent of ω, then

Xt := X0,t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0 with generator G , and

Pt(x , y) = P[X0,t(x) = y ]

gives the desired random mapping representation of the Markov
semigroup (Pt)t≥0 with generator G .

We call the Poisson set ω a graphical representation of X .

Note: We have defined Xs,t right-continuous in s and t.
As a result, (Xt)t≥0 has right-continuous sample paths.
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Duality

Two Markov processes X and Y with state spaces S and T are
dual with duality function ψ : S × T → R iff

E
[
ψ(Xt ,Y0)

]
= E

[
ψ(X0,Yt)

]
(∗).

for all deterministic initial states X0 and Y0.
If (∗) holds for deterministic initial states, then also for random
initial states, provided Xt is independent of Y0 and X0 is
independent of Yt .

In terms of semigroups (Pt)t≥0, (Qt)t≥0 and generators G ,H,
duality says

Ptψ=ψQ†t (t ≥ 0),

⇔ Gψ=ψH†,

where A† denotes the adjoint of a matrix A.
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Pathwise duality

Two maps m : S → S and m̂ : T → T are dual w.r.t. the duality
function ψ iff

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
(x ∈ S , y ∈ T ).

Two stochastic flows (Xs,t)s≤t and (Ys,t)s≤t with independent
increments are dual w.r.t. the duality function ψ if:

(i) A.s. ∀ s ≤ t, the maps Xs−,t− and Y−t,−s are dual w.r.t. ψ.

(ii) (Xt0−,t1−,Y−t1,−t0), . . . , (Xtn−1,tn ,Y−tn,−tn−1) are independent
for t0 < · · · < tn.

To get a sensible definition, we have to take the left-continuous
modification Xs−,t− (if Ys,t is right-continuous as usual).
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Pathwise duality

Two Markov processes X and Y are pathwise dual if they can be
constructed from stochastic flows that are dual.
Pathwise duality implies duality:

E
[
ψ(Xt ,Y0)

]
= E

[
ψ
(
X0−,t−(X0),Y0

)]
= E

[
ψ
(
X0,Y−t,0(Y0)

)]
= E

[
ψ(X0,Yt)

]
.

Even though pathwise duality is much stronger than duality, lots of
well-known dualities can be realized as pathwise dualities.
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Pathwise duality

(Pathwise duality) If the generators G and H of X and Y have
random mapping representations of the form

Gf (x) =
∑
m∈G

rm
(
f (m(x))− f (x)

)
,

Hf (x) =
∑
m∈G

rm
(
f (m̂(y))− f (y)

)
,

where each map m̂ is a dual of m, then X and Y are pathwise dual.

Proof Given a graphical representation ω of X , we can define a
graphical representation ω̂ for Y by

ω̂ :=
{

(m̂,−t) : (m, t) ∈ ω
}
.

Then the stochastic flows (Xs,t)s≤t and (Ys,t)s≤t associated with
ω and ω̂ are dual.
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Pathwise duality

time

m1

m3

m2

m4

x

X0,t(x)

time

m̂1

m̂3

m̂2

m̂4

Y−t,0(y)

y

In this picture

X0,t = m4 ◦ · · · ◦m1 is dual to Y−t,0 = m̂1 ◦ · · · ◦ m̂4.
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Invariant subspaces

Let P(S) be the set of all subsets of S .
Let m−1 : P(S)→ P(S) denote the inverse image map

m−1(A) := {x ∈ S : m(x) ∈ A}.

Observation m−1 is dual to m w.r.t. to the duality function

ψ(x ,A) := 1{x ∈ A}.

Consequence Each Markov process X with state space S (and
given random mapping representation) has a pathwise dual Y with
state space P(S) and generator

Hf (A) :=
∑
m∈G

rm
(
f (m−1(A))− f (A)

)
In practise, this dual is not very useful since the space P(S) is very
big. Useful duals are associated with invariant subspaces of P(S).
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A bit of order theory

Let S be a finite partially ordered space. The “upset” and
“downset” of A ⊂ S are defined as

A↑ := {x ∈ S : x ≥ a for some a ∈ A},

A↓ := {x ∈ S : x ≤ a for some a ∈ A}.

A set A ⊂ S is increasing (resp. decreasing) if A↑ = A (resp.
A↓ = A) and a principal filter (resp. principal ideal) if A is of the
form A = {a}↑ (resp. A = {a}↓) for some a ∈ S . We let

Pinc(S) := {A ⊂ S : A is increasing},
P!inc(S) := {A ⊂ S : A is a principal filter},
Pdec(S) := {A ⊂ S : A is decreasing},
P!dec(S) := {A ⊂ S : A is a principal ideal}.
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A bit of order theory

A partially ordered set S is bounded from below resp. above if
there exists an element 0 resp. 1 such that

0 ≤ x (x ∈ S) resp. x ≤ 1 (x ∈ S).

A lattice is a partially ordered set such that for every x , y ∈ S
there exist x ∨ y ∈ S and x ∧ y ∈ S called the supremum or join
and infimum or meet of x and y , respectively, such that

{x}↑ ∩ {y}↑ = {x ∨ y}↑ and {x}↓ ∩ {y}↓ = {x ∧ y}↓.

Finite lattices are bounded from below and above.

A map m : S → S is additive if

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x , y ∈ S).

Jan M. Swart (Prague) Pathwise duality for monotone systems



Monotone and additive maps

(Monotone and additive maps)
(i) Let S and T be partially ordered sets and let m : S → T be a
map. Then m is monotone if and only if

m−1(A) ∈ Pdec(S) for all A ∈ Pdec(T ).

(ii) If S and T are finite lattices, then m is additive if and only if

m−1(A) ∈ P!dec(S) for all A ∈ P!dec(S).
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Dual spaces

Let S be a partially ordered set. A dual of S is a partially ordered
set S ′ together with a bijection S 3 x 7→ x ′ ∈ S ′ such that

x ≤ y if and only if x ′ ≥ y ′.

Example 1: For any partially ordered set S , we may take S ′ := S
but equipped with the reversed order, and x 7→ x ′ the identity map.

Example 2: If Λ is a set and S ⊂ P(Λ) is a set of subsets of Λ,
equipped with the partial order of inclusion, then we may take for
x ′ := Λ\x the complement of x and S ′ := {x ′ : x ∈ S}.
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Additive systems duality

Let X be a Markov process in a finite lattice S .
Assume that the generator of X is representable in additive maps.
Then X has a pathwise dual that takes values in the invariant
subspace P!dec(S) ⊂ P(S).
A convenient way to encode an element A ∈ P!dec(S) is to write

A = {y ′}↓ with y ∈ S ′.

Identifying P!dec(S) ∼= S ′, the duality function becomes

ψ(x , y) = 1{x ≤ y ′} = 1{y ≤ x ′} (x ∈ S , y ∈ S ′).

(Additive duality) A map m : S → S has a dual m′ : S ′ → S ′

w.r.t. ψ if and only if m is additive. The dual map m′ is unique
and also an additive map.
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Siegmund’s duality

Let S = {0, . . . , n} be totally ordered and let S ′ := S equipped
with the reversed order.
A map m : S → S is additive iff m is monotone and m(0) = 0.
Each such map has a dual m′ : S ′ → S ′ that is monotone and
satisfies m(n) = n.

(Siegmund’s dual) Let X be a monotone Markov process in S
such that 0 is a trap. Then X has a dual Y w.r.t. to the duality
function ψ(x , y) := 1{x≤y}. The dual process is also monotone and
has n as a trap. Moreover, the duality can be realized in a
pathwise way.
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Additive particle systems

Let S = P(Λ) with Λ a finite set, and let x 7→ x ′ ∈ S ′ := P(Λ)
denote the complement map x ′ := Λ\x .

(Additive particle systems) Let X be a Markov process in S
whose generator can be represented in additive maps. Then X
has a pathwise dual Y w.r.t. to the duality function
ψ(x , y) := 1{x∩y=∅}, and Y is also an additively representable
Markov process.

Examples: Voter model, contact process, exclusion process,
systems of coalescing random walks.
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Krone’s duality

Steve Krone [AAP 1999] has studied a two-stage contact process,
with state space of the form S = {0, 1, 2}Λ.
He interprets x(i) = 0, 1, or 2 as an empty site, young, or adult
organism, and defines maps

grow up ai (x)(k) := 2 if k = i , x(i) = 1,

give birth bij(x)(k) := 1 if k = j , x(i) = 2, x(j) = 0,

young dies ci (x)(k) := 0 if k = i , x(i) = 1,

death di (x)(k) := 0 if k = i ,

grow younger ei (x)(k) := 1 if k = i , x(i) = 2,

where in all cases not mentioned, the maps have no effect.
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Krone’s duality

We set S ′ := S and define S 3 x 7→ x ′ ∈ S ′ by x ′(i) := 2− x(i).
Then the duality function becomes

ψ(x , y) = 1{x ≤ y ′} = 1{x(i) + y(i) ≤ 2 ∀ i ∈ Λ}.

(Krone’s dual) The maps ai , bij , ci , di , ei are all additive and their
duals are given by

a′i = ai , b′ij = bji , c ′i = ei , d ′i = di , e ′i = ci .
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Percolation representations

Xt

X0

Y0

Yt

Additive particle systems and their duals can be constructed in
terms of open paths. In this example, X is a voter model and Y
are coalescing random walks.
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Percolation representations

0 1 0 2

0 1 2 0

X0

Xt

0 2 2 1

2 0 1 2

Yt

Y0

Every additive Markov process X taking values ina finite lattice S
has a percolation representation. If moreover S is a distributive
lattice, then X and its dual Y can be represented together.
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Monotone systems duality

Let X be a Markov process in a finite partially ordered set S .
Assume that the generator of X is representable in monotone
maps.
Then X has a pathwise dual that takes values in the invariant
subspace Pdec(S) ⊂ P(S).
A convenient way to encode an element A ∈ P!dec(S) is to write

A = {B ′}↓ with B ⊂ S ′.

The duality function then becomes

ψ(x ,B) = 1{x ≤ b′ for some b ∈ B}

For a monotone m : S → S , we define m† : P(S ′)→ P(S ′) and
m∗ : P(S ′)→ P(S ′) by

m†(B)′ := (m−1(B ′
↓
))max and m∗(B)′ :=

⋃
x∈B

(m−1({x ′}↓))max.
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Monotone systems duality

(Gray’s (1986) dual) The maps m† and m∗ are both dual to m
w.r.t. ψ. Moreover,

m†(B) = m†(B)min = m∗(B)min,

m∗(B ∪ C ) = m∗(B) ∪m∗(C ).

In the special case that S is a lattice and m is additive,

m∗(B) = m′(B) := {m′(y) : y ∈ B},

where m′ is the additive dual of m.

Here Amin := {x ∈ A : x is a minimal element of A}
= {x ∈ A :6 ∃y ∈ A, y 6= x s.t. y ≤ x}.
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Cooperative branching

Let S be a finite lattice and let m : S → S be monotone. Then m
is automatically superadditive:

m(x ∨ y) ≥ m(x) ∨m(y)

For monotone maps that are not additive, this inequality is strict.
A good example is the cooperative branching map

110 7→ 111,
100 7→ 100,
010 7→ 010,

which can be interpreted as two individuals cooperating to give
birth to a third one.
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Cooperative branching

DeMasi, Ferrari & Lebowitz [JSP 1986], C. Noble [AOP 1992], R.
Durrett [JAP 1992], and C. Neuhauser and S.W. Pacala [AAP
1999] consider a model with cooperative branching, deaths, and
fast stirring. They call this the sexual reproduction process.
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The sexual reproduction process

(Xt)t≥0 with Xt = (Xt(i))i∈Z takes values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(death) 1 7→ 0 with rate 1,

(stirring) 10 7→ 01 with rate ε−1,

(stirring) 01 7→ 10 with rate ε−1.

Interpretation:

I ‘Sexual’ reproduction.

I Competition for limited space.

I Death.

I Migration.
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A cooperative branching-coalescent

Let (Xt)t≥0 with Xt = (Xt(i))i∈Z take values in the space of all
configurations . . . 101101001001 . . . and evolve as:

(coop. bra.) 110 7→ 111 with rate 1
2λ,

(coop. bra.) 011 7→ 111 with rate 1
2λ,

(coal. RW) 10 7→ 01 with rate 1
2 ,

(coal. RW) 01 7→ 10 with rate 1
2 ,

(coal. RW) 11 7→ 01 with rate 1
2 ,

(coal. RW) 11 7→ 10 with rate 1
2 .

Interpretation:

I Cooperative reproduction.

I Competition for limited space.

I Migration.

I No spontaneous deaths!
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A graphical representation

0 0 1 1 0 1 0

0 0 1 1 1 0 0

t

Z

x(1) x(2) x(3)

t∈→ω(2)

x(1) x(2) x(3)∨(x(1)∧x(2))

cooperative branching

x(0) x(1)

0 x(0)∨x(1)

t∈→ω(1/2)

coalescing jump
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A cooperative branching-coalescent

Time = upwards, black = a particle, λ = 2.333.
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Critical points

Define

I The process survives if Px
[
|Xt | > 1 ∀t ≥ 0

]
> 0 for some, and

hence for all initial states with 1 < |x | <∞ particles. Note: a
single particle can neither die nor reproduce!

I The process is stable if there exists an invariant law that is
concentrated on nonzero states.

Monotonicity implies that there exist λc, λ
′
c such that

I The process survives for λ > λc and dies out for λ < λc.

I The process is stable for λ > λ′c and unstable for λ < λ′c.

[Sturm & S. ’14] 1 ≤ λc, λ
′
c <∞.

Numerically: λc ≈ λ′c ≈ 2.47± 0.02.

Open problem: Prove that λc = λ′c.
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Critical points

λ

θ(λ)
ψ(λ)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

ψ(λ) := P
[
|Xt | > 1 ∀t ≥ 0

]
starting with two particles on

neighboring sites.

θ(λ) := P[X∞(0) = 1] where X∞ distributed according to the
upper invariant law.
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The subcritical regime

Consider

P
[
|Xt | > 1

]
with X0 = δ0 + δ1 (two particles),

P
[
Xt(0) = 1

]
with X0 = 1 (fully occupied).

[Bezuidenhout & Grimmett ’91] For the contact process, in the
subcritical regime λ < λc, both quantities decay exponentially fast
to zero.

[Sturm & S. ’14] For the cooperative branching-coalescent, both
quantities decay not faster than as t−1/2. For λ ≤ 1

2 , this is the
exact rate of convergence.

Proof of the lower bound: By monotonicity, we can estimate the
cooperative branching-coalescent by a pure coalescent, for which
both quantities decay like t−1/2.
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Proof of the upper bound

The generator of the process has the random mapping
representation

Gf (x) =λ
∑
i∈Z

(
1
2 f (

→
coopi (x)) + 1

2 f (
←

coopi (x))− f (x)
)

+
∑

i∈Z+
1
2

(
1
2 f (

→
rwi (x)) + 1

2 f (
←
rwi (x))− f (x)

)
.
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Proof of the upper bound

Yt

Y0

X0

Xt

The coalescing random walk map
→
rwi is dual to the voter model

map
←
voti in the sense of additive systems duality, and likewise

←
rwi

is dual to
→
voti .
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Proof of the upper bound

The cooperative branching maps
→

coopi and
←

coopi are not additive,
but they are still monotone, so we resort to Gray’s dual map m∗

and the duality function

ψ(x ,Y ) = 1{x ≤ y ′ for some y ∈ Y }
= 1{x ∧ y = 0 for some y ∈ Y },

or equivalently,

φ(x ,Y ) := 1− ψ(x ,Y ) = 1{x ∧ y 6= 0 for all y ∈ Y }.

The dual process Yt takes values in the space Pfin

(
{0, 1}Z

)
of all

finite collections of “voter model configurations”.
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Proof of the upper bound

We recall that if m is an additive map, m′ is its additive dual and
m∗ is Gray’s dual map, then

m∗(B) = m′(B) := {m′(y) : y ∈ B}.

In particular, if m =
→
rwi or =

←
rwi is a coalescing random walk

map, then m∗ is a voter model map, applied to all configurations
y ∈ Yt simultaneously.

In the absence of cooperative branching, Yt is a collection of
coupled voter models that evolve simultaneously.
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Proof of the upper bound

time

0 1 1 1 0 0 0
0 0 0 1 1 1 0
0 0 1 0 1 1 0

0 1 1 1 0 0 0
0 0 0 0 1 1 0

y

z

y
z ′

z ′′
m∗(Y )

Y

For the cooperative branching maps m =
→

coopi and =
←

coopi ,
application of Gray’s dual map m∗ can in some cases increase the
number of elements of the set Yt .
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Proof of the upper bound

Since the full dual is (so far) too complicated to work with, we
resort to a (pathwise) subdual, which satisfies

φ
(
Xs,t(x), y

)
≤ φ

(
x ,Y−t,−s(y)

)
.

Each element of the subdual is a voter model configuration of the
form

· · · 000001111111000011111 · · ·

with exactly three interfaces, i.e., sites where a 0 borders a 1.

Under nearest-neighbor voter dynamics, it is known that such voter
configurations survive till time t with a probability that decays as
t−3/2.

For λ ≤ 1/2, the probability that an element of Yt creates another
element during its lifetime is ≤ 1 and the proof follows from
comparison with subcritical branching.
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