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Extreme events

I An extreme event is something which occurs rarely and thus lies in the tail
of the distribution (focus here on upper tail)
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Goal of extreme value theory

Estimate probabilities of extreme events by estimating the tails of probability
distributions

I Use existing extreme data to fit an asymptotically justified model



Extreme events

I An extreme event is something which occurs rarely and thus lies in the tail
of the distribution (focus here on upper tail)
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Goal of extreme value theory

Estimate probabilities of extreme events by estimating the tails of probability
distributions

I Use existing extreme data to fit an asymptotically justified model



Univariate extremes



Distributions of univariate extremes

Let

I Xi ∼ F

I un ∈ R s.t. F (un)→ 1 as n→∞

If there exists σn > 0 s.t.

P
(

Xi − un

σn
≤ x

∣∣∣∣Xi > un

)
→ H(x)

for non-degenerate H then

H(x) = 1−
[
1 + ξ

( x
σ

)]−1/ξ

+
, σ > 0, ξ ∈ R

is the generalized Pareto or GP distribution.



Distributions of univariate extremes

Tail behaviour determined by sign of ξ
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Alternative characterization
GP distribution gives a model for sizes of excesses conditional upon being an
excess.
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More “complete” characterization of tail from Pickands (1971) point process
representation. Assuming “weak long range dependence”,

n∑
i=1

δ( i
n+1 ,

Xi−un
σn ) →

∑
i≥1

δ(Ti,Zi),

a non-homogeneous Poisson point process on [0, 1]× (limn→∞(x∗ − un)/σn,∞)
with integrated intensity

Λ ((a, b)× (x,∞)) = (b − a)

[
1 + ξ

(
x − µ
σ

)]−1/ξ

+



Statistical models

GP distribution in practice

X − u | X > u .∼ GP(σ̃, ξ)

Poisson process in practice{
( i

n+1 ,Xi) : Xi > u
} .∼ PP(µ, σ, ξ)

Both require specification of a threshold u. Where does the tail begin?

I As high as possible to minimize bias

I As low as possible to minimize variance



Exploiting properties of the limit model

Threshold stability

If X − u | X > u ∼ GP(σ̃, ξ), then for v > 0

X − (u + v) | X > u + v ∼ GP(σv , ξ)

with σv = σ̃ + ξv .

Thus when the GP distribution holds, excesses above a higher threshold also
follow a GP distribution with

I the same shape parameter ξ

I modified scale parameter σv − ξv invariant to v

For the point process, points above a higher thresholds u + v follow the same
Poisson process with parameters (µ, σ, ξ).{

( i
n+1 ,Xi) : Xi > u + v

}
∼ PP(µ, σ, ξ)



Parameter stability plots
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Parameter stability plots?

I Simple, but not sophisticated

I Assumption that we will only take a fixed threshold

I The threshold does not exist
I What about uncertainty?

Alternatives (non-exhaustive) for fixed threshold selection:

I Minimum MSE

I Of shape parameter (Danielsson et al, 2001)
I Of specific quantile (Ferreira et al, 2003)

I Second order decay assumptions

I Peng (1998); Feuerverger and Hall (1999); Beirlant et al. (1999);
Guillou and Hall (2001)
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Alternatives for threshold uncertainty

Turning the threshold into a parameter necessitates some modelling below u:

x

f(
x)

x

f(
x)

I Parametric model

I Gaussian, gamma, . . . (Frigessi et al., 2002; Behrens et al., 2004;
Mendes and Lopes, 2004; Carreau and Bengio, 2009)

I Extended Poisson process (Wadsworth and Tawn, 2012)

I Semi/Non-parametric model

I Mixture of uniforms (Tancredi et al, 2006)
I Kernel density estimation (MacDonald et al, 2011)



Virtues and vices

I 7 Virtually all methods require specification of a tuning parameter: shi�s
the problem elsewhere

I 3 But: sensitivity to the tuning parameter may be reduced compared to
threshold sensitivity

I 7 Bespoke coding and idea that this is “just one method” o�pu�ing

Simplicity of parameter stability plots⇒ still commonly used in practice

I Only need to fit model and calculate Hessian at a sequence of thresholds

I Can we keep it simple, but do more with the information we have?



More information from the same plot

Di�iculty in interpretation stems from dependent estimates / CIs
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Idea:

I Find the joint (asymptotic) distribution of the MLEs calculated using
di�erent thresholds

I Use this distribution to suggest modifications to the plots to aid
interpretability

Focus on NHPP representation and the parameter stability plot for the shape
parameter ξ.



Set-up and notation

I Consider thresholds u1 < u2 < · · · < uk

I Fit the NHPP model separately above these k thresholds

I Denote the MLEs of θ = (µ, σ, ξ) from data on (u1,∞), . . . , (uk ,∞), by
θ̂1, . . . , θ̂k

u1

u2

u3

uk

..

.



Asymptotic distribution of MLEs

Let

I l1(θ), . . . , lk(θ) log-likelihoods on (u1,∞), . . . , (uk ,∞)

I θ0 true parameter value

I m grow with length of series s.t. m ∝ E(number of data points on (uj,∞))

Under the true model + regularity conditions (ξ > −1/2)

m1/2(θ̂j − θ0) = {−∇2lj(θ̂j)/m}−1m−1/2∇lj(θ0) + op(1),m→∞

Asymptotic normality of ∇lj(θ0) gives

θ̂j
.∼ N3(θ0, Jj

−1/m)

with Jj = E
[
−∇2lj(θ̂j)

]
expected / Fisher information.
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Asymptotic distribution of MLEs

For joint distribution of θ̂1, . . . , θ̂k , require joint distribution of scores

∇l1(θ), . . . ,∇lk(θ)

Noting that they are sums of independent or overlapping components gives
joint asymptotic distribution of scores as

N3k(0, {Jmax(i,j)}1≤i≤k,1≤j≤k)

and approximate asymptotic joint distribution of MLEs as

N3k(θ0, {(J−1)min(i,j)}1≤i≤k,1≤j≤k/m)



Consequence of the joint distribution

Consequence: independent increments property
(θ̂1 − θ̂2)

(θ̂2 − θ̂3)
...

(θ̂k−1 − θ̂k)

 .∼ N3(k−1)

(
0,

1
m

BlockDiag
(
J−1
i+1 − J−1

i

)
1≤i≤k−1

)
.

Focussing on ξ this gives

ξ∗ =


ξ∗1
ξ∗2
...

ξ∗k−1

 := m1/2



(ξ̂1−ξ̂2)

{(J−1
2 −J−1

1 )ξ,ξ}1/2

(ξ̂2−ξ̂3)

{(J−1
3 −J−1

2 )ξ,ξ}1/2

...
(ξ̂k−1−ξ̂k)

{(J−1
k −J−1

k−1)ξ,ξ}1/2


.∼ Nk−1 (0, Ik−1) .

i.e. independent standard normal r.v.s. Call ξ∗ the white noise process.



Parameter stability and white noise

I Use estimates of the information matrices to get realisations of ξ∗

I Numerically-di�erenced Hessian can be poor, expected info much be�er
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Parameter stability and white noise

I Use estimates of the information matrices to get realisations of ξ∗

I Numerically-di�erenced Hessian can be poor, expected info much be�er
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Testing for white noise

I Let ξ∗1:j = (ξ∗1 , . . . , ξ
∗
j ) etc.

I Structure of extreme value problems suggests ξ∗1:j is less likely to be white
noise than ξ∗j+1:k−1
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One possibility: assume a simple changepoint model

ξ∗i ∼ N(β, γ) iid, i = 1, . . . , j,

ξ∗i ∼ N(0, 1) iid, i = j + 1, . . . , k − 1,
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Testing for white noise

Likelihood for changepoint model:

L(β, γ, j) =
k−1∏
i=1

φ(ξ∗i ;β, γ)1(i≤j)φ(ξ∗i ; 0, 1)1(i>j), β ∈ R, γ > 0, j ∈ {2, . . . , k − 1},

I Maximize the profile likelihood Lp(j) = L(β̂j, γ̂j, j)
I (β̂j, γ̂j) the MLEs for a fixed j

I Define j∗ := arg maxj Lp(j)

I “Does L(β̂j∗ , γ̂j∗ , j∗) give a significantly be�er fit to ξ∗ than L(0, 1, 0)?”
I L(0, 1, 0) =

∏k−1
i=1 φ(ξ∗i ; 0, 1)

I Use likelihood ratio test statistic

T =
L(β̂j∗ , γ̂j∗ , j∗)

L(0, 1, 0)

with null distribution by simulation

I If “significant” set u∗ = uj∗+1; else set u∗ = u1 (lowest threshold
considered)
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Testing for white noise
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Caveats

I Enough data needed for joint distribution to be reasonably multivariate
normal under the null

I Number of thresholds k has some e�ect (tuning parameter?!)
I Assessed by checking approximate uniformity of p-values under the

null

I No theory developed for sequential testing; might be necessary in
applications

I Still best combined with “educated interpretation”



Multivariate extremes



Multivariate extremes
O�en extreme events are caused by the e�ect of more than one variable

Example
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Multivariate extremes

I Similar problems exist in defining where the tail begins

I But we also need to define what the tail is
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I Tail definition linked to type of limit theory we wish to employ (will not
focus on this aspect today)

Given a definition of the multivariate tail, how can we select a threshold?



Models for multivariate extremes

Let

I X i ∼ F

I un ∈ Rd s.t. F (un)→ 1 as n→∞

If there exists σn > 0 s.t.

P
(
X i − un

σn
≤ x

∣∣∣∣X i 6≤ un

)
→ H`(x;σ, ξ, τ )

for non-degenerate H then this is the multivariate generalized Pareto or MGP
distribution (Rootzén and Tajvidi, 2006; Beirlant et al., 2004, Ch. 8).

H` =
`
(
τ
(
1 + ξ min(x, 0)/σ

)−1/ξ
+

)
− `
(
τ
(
1 + ξx/σ

)−1/ξ
+

)
` (τ )

I ` : (0,∞)d → (0,∞) stable tail dependence function capturing extremal
dependence
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Salient properties of MGP distributions

Suppose Z |Z 6≤ 0 ∼ H`(x;σ, ξ, τ ). Then

I Zj|Zj > 0 ∼ GP(σj, ξj)

I For v > 0
Z − v|Z 6≤ v ∼ H`(x;σv , ξ, τv)
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Statistical model

Analogous to the univariate case assume

X − u|X 6≤ u .∼ H`(x; σ̃, ξ, τ̃ )

Need to pick a threshold u such that:

I Xj − uj|Xj > uj ∼ GP(σ̃j, ξj) (See Part 1!)

I The dependence structure is well described by a MGP distribution

I ` has no finite-dimensional parameterization
I Any given parametric model may fit the data badly... doesn’t mean

not MGP
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Dependence in MGP distributions

Key summary parameter for multivariate extremal dependence is

χ1:d = lim
q→1

P(F1(X1) > q, . . . , Fd (Xd ) > q)

1− q

O�en studied as a function of q for q near 1:

χ1:d (q) =
P(F1(X1) > q, . . . , Fd (Xd ) > q)

1− q

If
X − u|X 6≤ u ∼ H`(x; σ̃, ξ, τ̃ )

then χ1:d (q) is constant when X > u
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Dependence in MGP distributions

I χ1:d (q) constant when X > u... suggests u = (F−1
1 (q), . . . , F−1

d (q))

I But u need not correspond to equal quantiles

I Identifying q above which χ1:d (q) constant gives maximum marginal
quantile above which dependence assumption should hold

I Common in practice to make dependence assumption above equal
quantiles



Parameter stability for χ

Empirical estimate for χ:

χ̂1:d (q) =
1
n

n∑
k=1

1(min{F̃1(Xk,1), . . . , F̃d (Xk,d )} > q)

1− q

I F̃j empirical cdfs

I MLE based on binomial assumption
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Use parameter stability plots to identify where χ̂1:d (q) becomes constant



Parameter stability for χ

● ● ●
● ●

● ● ●
●

● ● ● ● ●
● ● ● ● ●

● ●

●
● ●

●
●

●
●

●

●

0.5 0.6 0.7 0.8 0.9 1.0

0.60

0.65

0.70

0.75

0.80

Quantile

χ̂



Parameter stability for χ

● ● ●
● ●

● ● ●
●

● ● ● ● ●
● ● ● ● ●

● ●

●
● ●

●
●

●
●

●

●

0.5 0.6 0.7 0.8 0.9 1.0

0.60

0.65

0.70

0.75

0.80

Quantile

χ̂

●

●

●

●

●

●

●

●

●
●

●
●

●

0.70 0.75 0.80 0.85 0.90 0.95
10

15

20

25

p−value: 0.001

Quantile

LR
 s

ta
tis

tic

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0.70 0.75 0.80 0.85 0.90 0.95
−1

0

1

2

3

Quantile

W
hi

te
 n

oi
se

●
● ●

● ● ●
●

●

● ●

●
● ● ●

●

0.70 0.75 0.80 0.85 0.90 0.95

0.65

0.70

0.75

Quantile
χ̂



Parameter stability for χ
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Wave Height Example



Data

I 2894 measurements of wave height and surge from Newlyn, UK

I Filtered for “approximate temporal independence”
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Data

I 2894 measurements of wave height and surge from Newlyn, UK

I Filtered for “approximate temporal independence”
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Margins: Height

Histogram of Height
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Margins: Surge

Histogram of Surge
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Dependence
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Pu�ing it together

�antiles implicated:

I Height marginal: 0.57 quantile

I Surge marginal: 0.505 quantile

I Dependence: maximum marginal quantile 0.83

Use 0.83 quantile for both margins
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Pu�ing it together
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Summary

I Threshold selection is challenging!

I Practitioners will use simple methods unless something else
convincingly be�er

I Idea in this talk: make “cheap and dirty” methods slightly less dirty

I Univariate threshold selection has received a lot of a�ention

I Parameter stability plots can be used in MV contexts too; as can joint
distribution of MLEs

I Multivariate extremal modelling can involve lots of threshold selection —
can we simplify?

Main reference:
Wadsworth, J. L. (2016) Exploiting structure of maximum likelihood estimators for extreme
value threshold selection, to appear in Technometrics

Some code available at:

http://www.lancaster.ac.uk/∼wadswojl/RCode.html
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