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Extreme events

> An extreme event is something which occurs rarely and thus lies in the tail
of the distribution (focus here on upper tail)
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Extreme events

> An extreme event is something which occurs rarely and thus lies in the tail
of the distribution (focus here on upper tail)

f(x)

Goal of extreme value theory

Estimate probabilities of extreme events by estimating the tails of probability
distributions

> Use existing extreme data to fit an asymptotically justified model



Univariate extremes



Distributions of univariate extremes

Let
> X~ F
> u, € Rsit. F(u,) = 1asn— oo

If there exists o, > 0 s.t.

P<X’_”“<x
on

Xi > un) — H(x)
for non-degenerate H then

H(x)=1- {1+§(§>I1/5, c>0,({cR

is the generalized Pareto or GP distribution.



Distributions of univariate extremes

Tail behaviour determined by sign of £

£<0 £=0 £>0

<0 light tail
&4 — 0 exponential tail
>0 heavy tail



Alternative characterization

GP distribution gives a model for sizes of excesses conditional upon being an
excess.

More “complete” characterization of tail from Pickands (1971) point process
representation. Assuming “weak long range dependence”,

Za(ﬁf“xﬁun) — 25(77,2,‘)7
i=1

=
! i>1

a non-homogeneous Poisson point process on [0, 1] X (lim,—o0(Xe — Uy)/0p, 00)
with integrated intensity

At x o) =60 [1ve (122

—-1/¢

+



Statistical models

GP distribution in practice

X—u|X>u~GP(,§)

Poisson process in practice

{(F"PX;) X > u} ~ PP(p,0,€)

Both require specification of a threshold u. Where does the tail begin?
> As high as possible to minimize bias

> As low as possible to minimize variance



Exploiting properties of the limit model

Threshold stability
If X —u|X>u~GP(5,&), thenforv >0

X—(u+v)|X>u+v~GP(o,8)
with o, =6 + &v.

Thus when the GP distribution holds, excesses above a higher threshold also
follow a GP distribution with

> the same shape parameter £

> modified scale parameter o, — {v invariant to v

For the point process, points above a higher thresholds u + v follow the same
Poisson process with parameters (u, o, £).

{(?i],X,A) X > u+ v} ~ PP(p,0,8)



Parameter stability plots
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Parameter stability plots?

> Simple, but not sophisticated
> Assumption that we will only take a fixed threshold

» The threshold does not exist
» What about uncertainty?



Parameter stability plots?

> Simple, but not sophisticated
> Assumption that we will only take a fixed threshold
> The threshold does not exist
» What about uncertainty?
Alternatives (non-exhaustive) for fixed threshold selection:
> Minimum MSE

» Of shape parameter (Danielsson et al, 2001)
» Of specific quantile (Ferreira et al, 2003)

> Second order decay assumptions

> Peng (1998); Feuerverger and Hall (1999); Beirlant et al. (1999);
Guillou and Hall (20071)



Alternatives for threshold uncertainty

Turning the threshold into a parameter necessitates some modelling below u:

[
[

» Parametric model

» Gaussian, gamma, . .. (Frigessi et al., 2002; Behrens et al., 2004;
Mendes and Lopes, 2004; Carreau and Bengio, 2009)
» Extended Poisson process (Wadsworth and Tawn, 2012)

» Semi/Non-parametric model

» Mixture of uniforms (Tancredi et al, 2006)
» Kernel density estimation (MacDonald et al, 2011)



Virtues and vices

> X Virtually all methods require specification of a tuning parameter: shifts
the problem elsewhere

> / But: sensitivity to the tuning parameter may be reduced compared to
threshold sensitivity

> X Bespoke coding and idea that this is “just one method” offputting

Simplicity of parameter stability plots = still commonly used in practice
> Only need to fit model and calculate Hessian at a sequence of thresholds

> Can we keep it simple, but do more with the information we have?



More information from the same plot

Difficulty in interpretation stems from dependent estimates / Cls
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Idea:

> Find the joint (asymptotic) distribution of the MLEs calculated using
different thresholds

> Use this distribution to suggest modifications to the plots to aid
interpretability

Focus on NHPP representation and the parameter stability plot for the shape
parameter &.



Set-up and notation

» Consider thresholds u; < u, < -+ < uy
> Fit the NHPP model separately above these k thresholds

> Denote the MLEs of 8 = (u, 0, §) from data on (u;,00), .. ., (uk, 00), by
91, ceey Ok




Asymptotic distribution of MLEs

Let
> [(0),...,L(0) log-likelihoods on (uy,00), ..., (ug,o0)
> 0, true parameter value

> m grow with length of series s.t. m o< E(number of data points on (uj, o))



Asymptotic distribution of MLEs =

Let

> [(0),...,L(0) log-likelihoods on (uy,00), ..., (ug,o0)

> 0, true parameter value

> m grow with length of series s.t. m o< E(number of data points on (uj, o))
Under the true model + regularity conditions (£ > —1/2)

m'/2(8; — 6,) = {=V?((8;)/m} "' m™ >V [;(60) + 0,(1),m — o0
Asymptotic normality of V[;(6,) gives
6; < Ns(6o, ;" /m)

with J; = E[ — Vzlj(éj)] expected / Fisher information.



Asymptotic distribution of MLEs

For joint distribution of 6.,...,64 require joint distribution of scores
V§L(0),...,Vi(0)

Noting that they are sums of independent or overlapping components gives
joint asymptotic distribution of scores as

and approximate asymptotic joint distribution of MLEs as

Nsk (6, {(J_])min(i,j)}1gigk,1gjgk/m)



Consequence of the joint distribution

Consequence: independent increments property

(6, - 6))
(6, — 65) _ 1 I

: < Nage—1) (o, ;BlockDiag U = Ji ‘)@SH) .
(Bk—1— 61)

Focussing on & this gives

(&-%&)
* {0 "= e e'?
2} _1(52:{’53)
s* — : — m1/2 {(Js _jz. )575} / ~ Nk—'l (0’ Ik—1) .
. (i—E0)

{0 =) Dee 12

i.e. independent standard normal r.v.s. Call £* the white noise process.



Parameter stability and white noise

> Use estimates of the information matrices to get realisations of £*

> Numerically-differenced Hessian can be poor, expected info much better



Parameter stability and white noise

> Use estimates of the information matrices to get realisations of £*

> Numerically-differenced Hessian can be poor, expected info much better
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Testing for white noise

> Let & = (€5,....&) ete.
> Structure of extreme value problems suggests &7, is less likely to be white

noise than £, ,

Quantile



Testing for white noise

> Let 5;'{_/ = (fT’ tee 7{?) etc.

> Structure of extreme value problems suggests £7.; is less likely to be white

noise than £, ,

Quantile

One possibility: assume a simple changepoint model

&~ N(0,1) iid, i=j+1,....k—1,

Quantile



Testing for white noise

Likelihood for changepoint model:
k=1

L(B,7,)) = H¢£ 3,7) ]1(/<1)¢(§ 0, 1)11 :>/)’ BeER,y>0,j€{2,...,k— 1},
i=1
> Maximize the profile likelihood L,(j) = L(Bj,’AYj,j)
> (Bj, 4;) the MLEs for a fixed j

> Define j* := arg max; L,())



Testing for white noise

Likelihood for changepoint model:
k=1

L(B,7.4) = [T o(&5: 8. =e(&750,1)' ), BeR,y>0,j€{2,... k=1},
i=1
» Maximize the profile likelihood L,(j) = L(Bj,’yj,j)
» (5;,4;) the MLEs for a fixed j
> Define j* := arg max; L,())
> “Does L(fj, %+, j*) give a significantly better fit to £* than L(0, 1,0)?”
> 1(0,1,0) =TT,/ 6(&7:0,1)
> Use likelihood ratio test statistic
o LB A 0)
L(0,1,0)

with null distribution by simulation



Testing for white noise

Likelihood for changepoint model:
k=1

ﬁ 7?]) H¢£ ﬁ /7 ]l(l<1)¢(§ O ])1 ’>J)a ﬁER,’Y>O,jE{2,,k_1},
i=1
» Maximize the profile likelihood L,(j) = L(Bj,’yj,j)
» (5;,4;) the MLEs for a fixed j
Define j* := arg max; Lp(j)

v

> “Does L(fj, %+, j*) give a significantly better fit to £* than L(0, 1,0)?”
> 1(0,1,0) =T 6(¢750,1)
> Use likelihood ratio test statistic
o LB A 0)
L(0,1,0)
with null distribution by simulation

> If “significant” set u* = uj-1; else set u* = u; (lowest threshold
considered)



Testing for white noise

p-value: 0.03
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Caveats

> Enough data needed for joint distribution to be reasonably multivariate
normal under the null

» Number of thresholds k has some effect (tuning parameter?!)
> Assessed by checking approximate uniformity of p-values under the
null

> No theory developed for sequential testing; might be necessary in
applications

> Still best combined with “educated interpretation”



Multivariate extremes



Multivariate extremes

Often extreme events are caused by the effect of more than one variable

Example

2 O 0 10 T2

B
Hmo

Figure 1. Waxe height HmO and sea level SWL recorded during 828 storm evens for the Dutch Coast. The
arca above the solid line represets a possible faiure area.

Sea walls breached in storms due to combination of still water level and wave
height

RHS plot: de Haan, L. and de Ronde, J. (1998) Sea and wind: multivariate extremes at work



Multivariate extremes

» Similar problems exist in defining where the tail begins

» But we also need to define what the tail is

> Tail definition linked to type of limit theory we wish to employ (will not
focus on this aspect today)

Given a definition of the multivariate tail, how can we select a threshold?



Models for multivariate extremes

Let
> X, ~F
» u, € RIst. F(u,) = Tasn— oo

If there exists o, > 0 s.t.
p <X—" <x
Op

for non-degenerate H then this is the multivariate generalized Pareto or MGP
distribution (Rootzén and Tajvidi, 2006; Beirlant et al., 2004, Ch. 8).

Xi g un) — H((X;O',g,T)



Models for multivariate extremes

Let

> X;~F

» u, € RIst. F(u,) = Tasn— oo
If there exists o, > 0 s.t.

Xi_ n
P< "gx

n

Xi g un) — H((X;O',g,T)

for non-degenerate H then this is the multivariate generalized Pareto or MGP
distribution (Rootzén and Tajvidi, 2006; Beirlant et al., 2004, Ch. 8).

(1 €minx 0)/) ) — £ {1+ /) )

fie = ()

» (:(0,00)? — (0, 00) stable tail dependence function capturing extremal
dependence



Salient properties of MGP distributions

Suppose Z|Z £ 0 ~ Hy(x;0,&,7). Then
> Zj|Z; > 0~ GP(a;, &)

» Forv >0
Z—v|ZLv~H(xo,&T)




Statistical model

Analogous to the univariate case assume
X —ulX L u Hyx;6,§,7)
Need to pick a threshold u such that:

> X; — uj|X; > uj ~ GP(5},&;) (See Part 1!)

> The dependence structure is well described by a MGP distribution



Statistical model

Analogous to the univariate case assume
X —ulX £ u~ Hyx;6,&F)

Need to pick a threshold u such that:

> X; — uj|X; > uj ~ GP(5},&;) (See Part 1!)
> The dependence structure is well described by a MGP distribution

> ¢ has no finite-dimensional parameterization
> Any given parametric model may fit the data badly... doesn’t mean
not MGP



Dependence in MGP distributions

Key summary parameter for multivariate extremal dependence is

i PRGN > . Fi(X) > 9)
1 il 1—q

Often studied as a function of g for g near 1:

P(Fi(X:) > gq,...,Fs(Xq) > q)
1—q

x1:4(q) =



Dependence in MGP distributions

Key summary parameter for multivariate extremal dependence is

i PRGN > . Fi(X) > 9)
1 il 1—q

Often studied as a function of g for g near 1:

P(Fi(X:) > gq,...,Fs(Xq) > q)
1—q

x1:4(q) =

X —ulX £ u~ Hyx;6,€F)

then x1.4(q) is constant when X > u



Dependence in MGP distributions

> X1.4(q) constant when X > u... suggests u = (F; '(q), ..., F; '(q))
> But u need not correspond to equal quantiles

> Identifying g above which x1.4(g) constant gives maximum marginal
quantile above which dependence assumption should hold

» Common in practice to make dependence assumption above equal
quantiles



Parameter stability for x

Empirical estimate for x:

]l(min{ﬁ()(/d)7 ey i'—d(Xk,d)} > q)
k=1 -9

> F; empirical cdfs

> MLE based on binomial assumption

Use parameter stability plots to identify where X1.4(q) becomes constant



Parameter stability for x
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Parameter stability for x
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Parameter stability for x
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Wave Height Example



Data

> 2894 measurements of wave height and surge from Newlyn, UK

> Filtered for “approximate temporal independence’

Surge

Height

]



Data

> 2894 measurements of wave height and surge from Newlyn, UK

> Filtered for “approximate temporal independence”

Surge
Surge
0.5

Height Height



Margins: Height

p-value: 0.671
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Margins: Surge

p-value: 0.206
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Dependence

LR statistic

White noise
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Putting it together

Quantiles implicated:
> Height marginal: 0.57 quantile
> Surge marginal: 0.505 quantile
> Dependence: maximum marginal quantile 0.83

Use 0.83 quantile for both margins
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Putting it together
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Summary

> Threshold selection is challenging!

> Practitioners will use simple methods unless something else
convincingly better
> ldea in this talk: make “cheap and dirty” methods slightly less dirty

» Univariate threshold selection has received a lot of attention

> Parameter stability plots can be used in MV contexts too; as can joint
distribution of MLEs

> Multivariate extremal modelling can involve lots of threshold selection —
can we simplify?

Main reference:

Wadsworth, J. L. (2016) Exploiting structure of maximum likelihood estimators for extreme
value threshold selection, to appear in Technometrics

Some code available at:

http://www.lancaster.ac.uk/~wadswojl/RCode.html
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