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Stochastic dynamics on complex systems

Analysis methods

» Stochastic simulation
» Scaling approximations and limit theorems

» Stochastic comparison and coupling



Outline

Stochastic orders and relations



Stochastic comparison approach

Ef(X(t) = ?

Find a reference model Y(t) which
» Performs worse than X(t)
» Can be proven to do so analytically

» Is computationally tractable

~» Computable & conservative performance estimates

~» Sufficient conditions for stochastic stability



Stochastic ordering

How to define X less than Y for random variables?

Strong order: X < Y if
Ef(X) <Ef(Y)
for all increasing test functions f

» This definition extends to random variables with values in a
complete separable metric (=Polish) space with a closed partial
order (S, <)



Strassen’s coupling theorem

Theorem (Strassen 1965)

Two random variables on a complete separable metric
space equipped with a closed partial order sat/sfy

X <« Y if and only if they admit a coupling (X,Y)
such that X < Y almost surely.

\ B
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‘

A coupling of random variables X and Y is a bivariate random
variable (X, Y) such that:

» X has the same distribution as X

» Y has the same distribution as Y



Stochastic relations

Any meaningful distributional relation should have
a coupling counterpart (Thorisson 2000).




Stochastic relations

Any meaningful distributional relation should have
a coupling counterpart (Thorisson 2000).

A relation is an arbitrary subset R C 51 x S
» Denote x ~ y if (x,y) €R

» Random variables X and Y are related by
X~ Y if they admit a coupling (X,Y)
such that X ~ Y almost surely.

S1

~» Coupling allows to define a randomized version an arbitrary relation



Examples of stochastic relations

St. equality Let = be the stochastic relation generated by the
equality =. Then X =;; Y ifand only if X and Y
have the same distribution.

St. order Let < be the stochastic relation generated by a
partial order <. Then X <4 Y corresponds to the
usual strong stochastic order.

St. e-distance Define x = y by |x — y| < e. Two real random
variables satisfy X ~¢ Y if and only if for all x the
corresponding c.d.f.'s satisfy
Fy(x —¢€) < Fx(x) < Fy(x +€).



Functional characterization

Theorem
For any closed relation ~ between complete separable metric

spaces, X ~g Y is equivalent to both:
(i) P(X € B) < P(Y € B7) for all compact B C $;

(i) EFf(X) < Ef7(Y) for all upper semicontinuous compactly
supported f : 51 — R

S

» B~ = UX1€B{X2 €S ix1~ X2} is
the set of points in S, related to a

B~ point in B

> F7(X2) = SUP,.xyx, T (X1) is the
supremum of f over points related
to xo
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Stochastic ordering of network populations



Stochastic ordering of network populations

Problem
Can we show that Markov processes X and Y
satisfy
Ef(X(t)="7
lim f(X(t)) <g tIer;o f(Y(t))

t—o0

without calculating the limiting distributions?



Stochastic ordering of network populations

Problem
Can we show that Markov processes X and Y

satisfy

Ef(X(t) =7 lim £(X(t)) <a lim £(Y(t))

t—00
without calculating the limiting distributions?

Assumptions and notation
» Countable state space S

» Continuous time

> Q(x,y) is the rate of transition for x — y, and

Q(x.B) = Y Qlx.y)

yEeB

is the aggregate rate of transitions from x into B C S



A sufficient condition

Theorem (Whitt 1986, Massey 1987)
The property lime_ oo X1(t) <gt limi— oo X2(t) holds if the
corresponding transition rate kernels satisfy for all x < y:
(i) Qi(x,B) < @y, B) for all upper sets B such that x,y ¢ B
(i) @i(x,B) > Qa(y, B) for all lower sets B such that x,y ¢ B

Notation
» A set is upper if its indicator function is increasing

» A set is lower if its indicator function is decreasing



A sufficient condition

Theorem (Whitt 1986, Massey 1987)
The property lime_ oo X1(t) <gt limi— oo X2(t) holds if the
corresponding transition rate kernels satisfy for all x < y:
(i) Qi(x,B) < @y, B) for all upper sets B such that x,y ¢ B
(i) @i(x,B) > Qa(y, B) for all lower sets B such that x,y ¢ B

Notation
» A set is upper if its indicator function is increasing

» A set is lower if its indicator function is decreasing

The above Whitt—Massey condition is not sharp in general
~» Can we do any better?



Markov coupling

A transition rate kernel @ on S; X S, is a coupling of transition
rate kernels Q; on S; and @, on S, if

Q(x, By x 52) = Qi(x1, B1)
Q(x, S1 X By) = Q(x2, Bo)

for all x = (x1,x2), By and Bj such that x; ¢ By and x» ¢ B

Andrei Markov (1856-1922) Andrei Markov (1978-)

St Petersburg University Montreal Canadiens



Markov coupling = path coupling

Theorem (Mu-Fa Chen 1986)

Let Q be a kernel that couples two nonexplosive kernels @, and
Q2. Then Q is nonexplosive, and for all x = (x1,x2) € S, the
Markov process X(x,-) generated by Q couples the Markov
processes Xi(x1,-) and Xa(xa2, ) generated by Q1 and Q».

> X(x,-) denotes the path of a Markov process started at x



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

x~y = X(x,t) ~g Y(y,t) forall t,
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» X is stochastically monotone if

x<y = X(xt)<g X(y,t) for all ¢.



Stochastic relations of Markov processes

A pair of Markov processes stochastically preserves a relation R if

x~y = X(x,t) ~g Y(y,t) forall t,

Examples

» X is stochastically monotone if
x<y = X(x,t)<g X(y,t) forall t.
» X is a stochastically distance-preserving if

xrmy =  X(x,t) =g X(y,t) forall ¢t.



Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are
equivalent:

(i) X1 and Xy stochastically preserve the relation R.
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(ii) There exists a Markov coupling of X1 and Xy for which R is
absorbing.



Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are

equivalent:
(i) X1 and Xy stochastically preserve the relation R.

(ii) There exists a Markov coupling of X1 and Xy for which R is
absorbing.
(iii) For all x; ~ xo, the rate kernels Q1 and Q satisfy

Qi(x1, B1) < Qx(x2, By")
for all measurable By such that x; ¢ By and x» ¢ B;”, and
Qi(x1,B57) > Qa(x2, B2)

for all measurable By such that x; ¢ By~ and xo ¢ Bs.



Relation preservation

Theorem
For nonexplosive Markov jump processes, the following are

equivalent:
(i) X1 and Xy stochastically preserve the relation R.

(ii) There exists a Markov coupling of X1 and Xy for which R is
absorbing.

(iii) For all x; ~ xo, the rate kernels Q1 and Q satisfy
Qi(x1, B1) < Qa(x2, By)
for all measurable By such that x; ¢ By and x» ¢ B;”, and
Qi(x1,B57) > Q2(x2, B2)
for all measurable By such that x; ¢ By~ and xo ¢ Bs.

Open problem

Is it enough to look at compact B; and B,?



Stochastic subrelations

Recall our starting point:

Problem
Can we show that Markov processes X and X5 satisfy

Agg, Xale) < fim (1)

without calculating the limiting distributions?



Stochastic subrelations

Recall our starting point:
Problem
Can we show that Markov processes X and X5 satisfy

lim Xl(t) <st t|l>m Xz(t)

t—00

without calculating the limiting distributions?

» The Whitt—Massey condition requires that
X1 and X stochastically preserve the order relation

Re={(x,y) i x <y}
» What about preserving a subrelation of R<?



Less stringent sufficient condition

Theorem

If (irreducible, positive recurrent) Markov processes X1 and X
stochastically preserve a nontrivial subrelation R of R<, then
Iimif—)oo Xl(t) <st Iimt—>oo X2(t)-



Less stringent sufficient condition

Theorem

If (irreducible, positive recurrent) Markov processes X1 and X
stochastically preserve a nontrivial subrelation R of R<, then
Iimif—)oo Xl(t) <st Iimt—>oo X2(t)-

Proof.

» Fix x = (x1,x) € R, and let X(x,-) be a Markov coupling of
Xi(x1,-) and Xa(x2, ) for which R is invariant.
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Theorem

If (irreducible, positive recurrent) Markov processes X1 and X
stochastically preserve a nontrivial subrelation R of R<, then
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Proof.

» Fix x = (x1,x) € R, and let X(x,-) be a Markov coupling of
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Jim Xi(t) =50 lim Xi(x, ) ~ lim Xy(x, t) = lim X5(t).
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Less stringent sufficient condition

Theorem

If (irreducible, positive recurrent) Markov processes X1 and X
stochastically preserve a nontrivial subrelation R of R<, then
Iimif—)oo Xl(t) <st Iimt—>oo X2(t)-

Proof.

» Fix x = (x1,x) € R, and let X(x,-) be a Markov coupling of
Xi(x1,-) and Xa(x2, ) for which R is invariant.

» Then Xi(x,t) ~ Xo(x, t) almost surely for all t, so that

Jim Xi(t) =50 lim Xi(x, ) ~ lim Xy(x, t) = lim X5(t).

> — Ilmt_>oo X]_(t) ~st ||mt_>oo Xz(t)
> = limiseo Xi(t) <st limeoo Xo(t) because R C R<



Subrelation algorithm

How to find a good subrelation (does it exist)?



Subrelation algorithm

How to find a good subrelation (does it exist)?

Given a relation R and transition rate kernels Q; and @, define a
sequence of relations by R(®) = R,

R(r+1) — {(X,y) e R (Qu(x,-), @y, ) € Rs(g)}7

where (Q1(x, ), Q(y,")) € Rs(t") means that (Q1, Q2) preserves the
stochastic relation generated by R(") locally at (x, y).



Subrelation algorithm

How to find a good subrelation (does it exist)?

Given a relation R and transition rate kernels Q; and @, define a
sequence of relations by R(®) = R,

R(r+1) — {(X,y) e R (Qu(x,-), @y, ) € Rs(g)}7

where (Q1(x, ), Q(y,")) € Rs(t") means that (Q1, Q2) preserves the
stochastic relation generated by R(") locally at (x, y).

Theorem

The relation R* = (", R(") is the maximal subrelation of R that
is stochastically preserved by (Q1, @2). Especially, the pair

(Q1, Q2) preserves a nontrivial subrelation of R if and only if

R* # .



Application: Call center

» M; English-speaking agents
» M, French-speaking agents
> N bilingual agents

My X1,1

A1

A2

X1,2

Service rate (in calls/min) in state X equals X1 1+ Xi2+ Xo1 + Xo2



Application: Call center

Does training improve performance?

Modified system Y = (Y171, Y172; Y271, Y272)
» Replace one English-speaking agent by a bilingual agent
» Can we show that Zi’k Xik <st th Yi k in steady state?

Define the relation x ~ y by >\ xix < D2k Vik-
» ~ is not an order (different state spaces)
» X and Y do not preserve ~y;

» But maybe (X, Y) preserves some subrelation of ~?



Application: Call center

Numerical example

> Available call agents: 3 English, 2 French, 2 bilingual
» Calls arrive at rates 1 (English) and 2 (French) per min

» Mean call duration is 1 min

How many iterations do we need to compute R,,?
» X has 72 possible states
» Y has 90 possible states

STOCHREL v1.0 — A Matlab stochastic relations package
http://www.iki.fi/1sl/software/stochrel/


http://www.iki.fi/lsl/software/stochrel/

Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center




Application: Call center




Application: Call center




Application: Call center

What if we started with a stricter relation?

Redefine x ~ y by



Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center

e
ﬁaﬁ?

i w%ﬁ

m_;

e

(=} (=} o (=} (=}
(=2} @ ~ © wn

I
70

I
60

I
50

40

20

10



Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center
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Application: Call center

Theorem (Jonckheere Leskels 2008)

The processes X and Y stochastically preserve the relation
R ={(x,y) : |x — y| € A}, where

A={0,e,e—e1,20—e1}.
Especially, the stationary distributions of the processes satisfy
Y[ =1 < [X]| <t | Y],
and

X11 2>st Y11,
X]_ k =st Y17k for all k 75 1,

ZX2,k <st Z Yo k-
K K



Application: Load balancing

X1 (t) XPB ()
— IO Hile
oM .
M
Xo(t) N X3P ()

Common sense: E(XFB(t) + XIB(t)) < E(Xi(t) + Xa(t))



Application: Load balancing

X1(t) XPB ()
— IO O
G .
Mt
Xa(t) - X3B(t)

Common sense: E(XFB(t) + XIB(t)) < E(Xi(t) + Xa(t))

Problem: (Q“B, Q) does not stochastically preserve:
» Rnat — {(x,y) x1 <y, X0 < )/2}
» RSum _ {(X,y) : ‘X| < ‘y|}, where ‘X| =X+ X



Application: Load balancing

X1(t) XPB ()
— IO O
G .
Mt
Xa(t) - X3B(t)

Common sense: E(XFB(t) + XIB(t)) < E(Xi(t) + Xa(t))

Problem: (Q“B, Q) does not stochastically preserve:
» Rnat — {(x,y) x1 <y, X0 < )/2}
» RSum _ {(X,y) : ‘X| < ‘y|}, where ‘X| =X+ X

How about a subrelation of R or RS"™?



Application: Load balancing

Subrelation algorithm applied to R® = Rt

T,(R%) T4RY T,(R)
(22) (22000000000 XXX

: (2.1 (21ee e
2,0 2,0
12) 12)jee e
1) 1ie
(1,0){® (1,0)
0.2)(® 0.2)
©0.1)}e s (0.1
0,0){® (0,0)

T,R) T,RY T,R)
e2)fee oo T (22 T (2.2)
1) R @1 R 21
(20 (2,0) (2,0)
12 12 (12)
(11 v (1) v 1)
(1,0) (10) (1,0)
02 02 0.2)
01 [ oy [ o1
(0,0) 0,0 0,0




Application: Load balancing

Starting with R®"™ instead of R"*'
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Application: Load balancing

Theorem
The subrelation algorithm started from R*"™ yields

R = {(,y): x| <lyland xa Vo < y1 Vyo + (yi Aya — n)*}
1
R*={(x,y) 1 |x| < |yl and x1 V x2 < y1 V yo} .

Especially, (Q“B, Q) stochastically preserves the relation R*.



Application: Load balancing

Theorem
The subrelation algorithm started from R*"™ yields

R = {(,y): x| <lyland xa Vo < y1 Vyo + (yi Aya — n)*}
1
R*={(x,y) 1 |x| < |yl and x1 V x2 < y1 V yo} .

Especially, (Q“B, Q) stochastically preserves the relation R*.

Remark

> R* is the weak majorization order on Z%r

» X ~% Y ifand only if Ef(X) < Ef(Y) for all coordinatewise
increasing Schur-convex functions f (Marshall Olkin 1979).



Outline

Stochastic ordering of network flows



Two-node linear queueing network

Two queues with buffer capacities n; and n»

Al(x3<ny) @Ll(xl)l(X2<n2) p2(x2)
©)

Blocking
» Arrivals blocked when
Xl(t) =m

» 1st server halts when
X2(t) = no



Two-node linear queueing network

Two queues with buffer capacities n; and n»

Al(x3<ny) @Ll(xl)l(X2<n2) p2(x2)
©)

Blocking Service station models
» Arrivals blocked when » Single-server:
Xl(t) =m /L;(X,') = Ci]'(Xi > 0)
» 1st server halts when » Multi-server: 11;(x;) = cix;

Xo(t) = m > Peer-to-peer: pj = pi(x1,x2)



Balanced system modification

)\1(x1<n1)1(X2<n@q (Xl)l(X2<n2) 2 (x2)1(x1<n1)

Balanced operation

» Arrivals blocked when Xi(t) = ny or Xo(t) = n
» 1st server halts when Xa(t) = n

» 2nd server halts when Xi(t) = m



Balanced system modification

)\1(x1<n1)1(x2<n@¢1 (Xl)l(X2<n2) 2 (X2)1(X1<n1)

Balanced operation

» Arrivals blocked when Xi(t) = ny or Xo(t) = n
» 1st server halts when Xa(t) = n

» 2nd server halts when Xi(t) = m

Balanced system has a product-form equilibrium distribution (van
der Wal & van Dijk 1989)



Balanced vs. original system

Balanced system

v

L3 * i3 £l

e Y S

. .\}. .\.
PO SRS
L4 Ld id d

BY = {x:x; = nj or xo = ny}

Performance comparison

Original system

B8 = {x : x; = n}

» Balanced system has more blocking states: BPal > Boris

» ~» Balanced system should have a higher loss rate

» ~~ Conservative & computable performance bound



How to prove the comparison statement?

» Sample path comparison



Sample path comparison

Heuristic reasoning;:

» Balanced system has more blocking states
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Sample path comparison

Heuristic reasoning;:

» Balanced system has more blocking states

v

~~ Blocks more jobs

» ~~ Has less jobs in the system

v

~> Spends less time in blocking states

v

~ Blocks less jobs?



How to prove the comparison statement?

> Sample-path-compatison



How to prove the comparison statement?

> Samplepath-comparison

» Order-preserving Markov coupling



How to prove the comparison statement?
> Samplepath-comparisen
> Ord o Moard :



How to prove the comparison statement?
> Samplepath-comparisen
> Ord o Moard :

> Relation-preserving Markov coupling



Relation-preserving Markov couplings

Find a relation R C S x S’ such that
» (x,x') e R = 1p(x) < 1p/(x)

» There exists an R-preserving Markov coupling of the systems.



Relation-preserving Markov couplings

Find a relation R C S x S’ such that
» (x,x') e R = 1p(x) < 1p/(x)

» There exists an R-preserving Markov coupling of the systems.

Does it exist? The existence of such a relation can be checked
using the subrelation algorithm

» The answer is NO



How to prove the comparison statement?

» Flow coupling



General Markov network

Network state: Markov process X on a subset of Z' with
transitions

X x — e + ¢ at rate o j(x), (i,j) € E(G)

where ¢; is the i-th unit vector in Z"” and e¢g = 0
» Network G = (V/, E) has n internal nodes {1,...,n} and one
external node 0
> g j(x) is the arrival rate to node j

> «jo(x) is the departure rate from node i



State—flow Markov process

Markov process (X, F) in Z7 x Zi(G) with transitions

O, ) (x —ei + e, f +epj) atrate ajj(x),  (i,j) el

» Xi(t) is the number of jobs in node i at time t

» Fij(t) — Fij(0) is the number of transitions over link (7, )
during (0, t]



Netflow ordering

ap1(x) a 2(x) az3(x) azo(x)

® ® ®

04170(X) a271(x) Oz372(X) 05073(X)

State—flow relation

» (x, f) has smaller netflow than (x', ') if

! ! .
fiiv1i— fipri < f iy —fq; foralli=0,1,...,n,

!/

/ ’ .
Xi — finyi + fiout = Xj — in,i T fi,out foralli=1,...,n,



Flow coupling for linear networks

Theorem
Assume that
x1 > x = ag1(x) < ag(x') and ag0(x) > aj o(x),
xi < xiand xiy1 > Xty = @ i(x) < 04 i(X') and @i i(x) > oy (X)),
<o

Xn < X; = apo(x) ( ") and g n(x) > ozoﬁn( x').

Then there exists a Markov coupling of (X, F) and (X', F") which
preserves the netflow relation. Especially, the netflow counting
processes are ordered by

(Fiig1(t) = Firri(t))e>0 <se (Fjj1(t) = Fippi(t))e>0

for all i =0,...,n, whenever X(0) =4 X'(0).



Flow coupling for linear networks

Proof: Marching soldiers coupling.
Let (X, F,X’, F") be a Markov process on
(z7 x ZE)Y x (27 x ZE(®)) with transitions

(Tij(x, f), Tij(x', ")) atrate a; j(x) Ao} ;(x),
(O, F), (X' ) = ((x, ), Tij(x', ) atrate (af;(x) — alJ(X))+a
(Tij(x,f),(x,f)) atrate (ai;(x) — ai;(x'))+,

where T,'J(X, f) = (X — & + €, f+ e,'7_,')
» This is the marching soldiers coupling of (X, F) and (X', F’)
(Mu-Fa Chen 2005).
» This coupling preserves the state—flow order relation



Balanced vs. original two-node network

a0,1(x) ® a12(x) @ az,0(x)
Balanced system Original system
> algflll(x) = A (x1<n1)1(x< > agfig(x) = A (x1<np)
) > a2 (x) = pa(x1)1(xe<n2)

> 07209 = m(a)le<n) > a9 i (x) = pa(x2)
2,0 (X) =
> a%(x) = uo(x2)1(x1<ny)



Balanced vs. original two-node network

a0,1(x) O a1,2(x) ® a2,0(x)
Balanced system Original system
> afi(x) = A (a<m)1(e< > agB(x) = Al(xa<n)
n2) orig

> ay 5 (x) = pa(x)10e<n)
orig

P edab) =mballlasm) e )

> aby(x) = pa(x2)1(xi<m)
(xPal, FPal) has a stochastically smaller flow than (X°'8, Forig) if
x> = ag(x) < afE(x)

x1 < x; and xp > xp = alf,%l(x) < a(l)gg(x’)

X < xp = aby(x) < agfég(x’).



Balanced vs. original two-node network

ap,1(x) O a1, 2(x) ® a2,0(x)
Balanced system Original system
> afi(x) = A (a<m)1(e< > agB(x) = Al(xa<n)
n i
2) > a9 (x) = ()1 (a<n)
> ap%(x) = pa(xa)1(xe<nm) orig

> aby(x) = pa(x2)1(xi<m) " 020 () =pal)

(xPal FPal) has a stochastically smaller flow than (X°rie, Foris) if

X1 > Xi — )\1(X1<I71)1(X2<I12) < )\l(x{<n1)
x1 < xpand xo > x5, = p1(x1)1(xe<n2) < p1(xq)1(xp<np)
X2 <% = p(x)1(xa<n) < po(xp)

The above conditions are valid when g7 and po are increasing.



How to prove the comparison statement?

» Flow coupling (OK for throughput distributions)



Generalizations

Other network structures?

» Closed cyclic networks

> Aggregate flows across linear partitions



Flow ordering in cyclic networks

@ Theorem
0‘5’1/' w\a” Assume that for all i and for all x and X',

(e 63
@ Le Gl @ xi < x{ and xjy1 > X{ 4

=
a4,s\ e 2 ans @iia(x) < of (X)) and i i(x) > g (x).
a3

@—> @ Then (X, F) has stochastically smaller
asa clockwise netflow than (X', F').



Aggregate flows through linear partitions

State-flow (x, f) has a smaller netflow through Ny — No — N3
than (x/, ') if

/ !
NN = TN < fnn,y — T, for all clusters N,
Ty / .
Xj — fin,i + fi,out = Xi = Hn + fi,out for all nodes i,

where

N, Ns = Z fij

i€Ny, jENs



Aggregate flows through linear partitions

Theorem

There exists a Markov coupling of state—flow processes (X, F) and
(X', F") which preserves the netflow ordering if and only if for all
x,x' € Zh:

agoy.m (%) < gy, (X

aNl,{O}(X) > (,Y/NI,{O}(X
Ixn | < x| } {aNk,Nk+1( x) < aly, n,., (X
XN | > x| AN N (X) 2 Ay, o (X
an,, {0y (x) < aly, 10y (x)

)

a0y N, (%) = Aoy, (X),

)
|XN1| > |XI/V1| = { /)

| < x| = {

where |xi| := >, x;i and ap, N, = ZIGN,,_]GNS Q.



Outline

Stochastic boundedness



Stochastic boundedness

When is a family of positive random variables (X,) bounded

> in the strong order?

Xo<sZ if Ed(X,) < E@(Z) for ¢ increasing



Stochastic boundedness

When is a family of positive random variables (X,) bounded

> in the strong order?

Xo<sZ if Ed(X,) < E@(Z) for ¢ increasing

> in the increasing convex order?

Xa<iexZ if E@(X,) < E@(Z) for ¢ increasing and convex



For any p > 1:

{|Xa|P} is st-bounded - {|Xa|} is st-bounded by
by an integrable r.v. a p-integrable r.v.

4
{|Xa|P} is icx-bounded
by an integrable r.v.

{Xa} is uniformly

p-integrable <

I
{Xa} is bounded
in LP

4
{|Xa|} is st-bounded by
an integrable r.v.

g
{Xa} is uniformly {|X«|} is icx-bounded
. <~ .
integrable by an integrable r.v.

4
{Xa} is bounded
in L1

I
{|Xa|} is st-bounded

{Xa} is tight At by a finite r.v.

L Leskelda & M Vihola, Stat Probab Lett 2013, arXiv:1106.0607

{|Xa|} is icx-bounded
by a p-integrable r.v.

{pa} is rel. compact in
the p-Wasserstein metric

{ia } is bounded in
the p-Wasserstein metric

{pa} is rel. compact in
the 1-Wasserstein metric

{pa} is bounded in
the 1-Wasserstein metric

{pa} is rel. compact in
the Prohorov metric



Conclusions

You can compare things without
ordering them.

Comparing populations Comparing flows
» Subrelation algorithm may » Redundant state—flow model
help to reveal hidden ~~ non-Markov couplings

monotone structure

L Leskeld, J Theor Probab 2010, arXiv:0806.3562
M Jonckheere & L Leskeld, Stoch Mod 2008, arXiv:0708.1927

L Leskeld & M Vihola, Stat Probab Lett 2013, arXiv:1106.0607



Lebesgue’s dominated convergence theorem

Theorem
Assume that X, — X almost surely. E |X, — X| — 0 if for some
integrable Y,

|Xal <&t Y for all n.



Sharp dominated convergence theorem

Theorem
Assume that X, — X almost surely. E |X, — X| — 0 if and only if
for some integrable Y,

| Xn| <iex Y for all n.



Stochastic boundedness — Examples
Let U be a uniform r.v. in (0,1) and

-1 -1
nw.pr. n", nw.pr. (nlogn)™+,
¢n = { ¢n = { ( )

0 else, 0 else.

Then for any p > 1:

» {el/V} is st-bounded by a finite r.v. (itself) but not bounded
in L€ for any € > 0.

» {¢n,} is bounded in L but not uniformly integrable.

» {1,} is uniformly integrable but not st-bounded by an
integrable r.v.

» {U~Y/P} is st-bounded by an integrable r.v. but not bounded
in LP.

> {gb},/p} is bounded in LP but not uniformly p-integrable.

> {w,l,/p} is uniformly p-integrable but not st-bounded by a r.v.
in LP.



Prohorov metric

The Prohorov metric on the space M of probability measures on
R9 is defined by

dp(p,v) =inf{e>0:pu(B) <v(B)+eand v(B) < u(B) + ¢ for all B

where B¢ = {x € R? : |[x — b| < € for some b € B} denotes the
e-neighborhood of a Borel set B

» (M, dp) is a complete separable metric space.

» Convergence in dp is convergence in distribution



Wasserstein metric

For p > 1, denote by M), the space of probability measures on RY
with a finite p-th moment. The p-Wasserstein metric on M, is
defined by

1/p
dw pv) = (inf / x—yP(dedy))
’ vEK (1) JRI R

where K(u,v) is the set of couplings of p and v.

» (Mp,dw p) is a complete separable metric space.

» A sequence converges in dy ,, if and only if it is uniformly
p-integrable and converges in distribution.



Open problems & discussion

Open problems

» Stochastic relations of diffusions
» Weak stochastic relations

» Structured Markov chains

Related work on non-Markov couplings

v

Generalized semi-Markov processes (Glasserman & Yao 1994)

v

Linear bandwidth-sharing networks (Verloop & Ayesta & Borst 2010)

v

Chip-firing games (Eriksson 1996)

v

Sleepy random walkers (Dickman & Rolla & Sidoravicius 2010)



Open problem: Coupling of diffusions

Assume that A; are differential operators on R of the form
1 (1) " (1) !
A,‘f(X,‘) = Ea (X,')f (X,‘) + b (X,')f (X,'),

and let A be a differential operator on R? such that

12
Ez:: 8x,8x1 X)+Zb

Then A couples A; and A if

%a,-,,-(x)f“(x,-) F bi()F(x) = %a(i)(x;)f/’(x;) + 0 (x)F ().



Discussion: Coupling vs. mass transportation

W, —  inf x0) \(d
)= int o) M@

» K(u,v) is the set of couplings of 1 and v
¢

» W, is a Wasserstein metric, if ¢ is a metric.
>~ v if and only if Wy(u,v) =0 for ¢(xi,x2) = 1(x1 # x2).

(Monge 1781, Kantorovich 1942, Wasserstein 1969, Chen 2005)



Discussion: Subrelations vs. minimal bounding chains

Subrelation approach

» Given transition kernels P; and P>, and a relation R, find a
maximal subrelation of R stochastically preserved by (X1, X2)

» Intuitive bounding: P> needs to be a priori given

Minimal bounding chains
(Truffet 2000, Fourneau Lecoz Quessette 2004, Ben Mamoun Busi¢ Pekergin 2007)

» Given a transition matrix P; and an order relation R, find a
minimal transition matrix P, (in a suitable class) such that Xy
and X5 stochastically preserve R

» Computational bounding: P, found numerically

Questions and comments
» How to interpret minimal (when R is not a total order)?

» Can we combine the two approaches?



Truncated subrelation algorithm

» Assume Q1 and @ have locally bounded jumps
» Truncation operators Ty : S1 x S5 — Sin X So.n

» Truncated subrelation algorithm can be computed in finite
time and memory

Algorithm for computing R(K) truncated into Sinv X Son:

R + TN+K(R)
for k=1,...,K do
n+—N+K+1-—k
Q1,n < truncation of Qy into S,
@2,n < truncation of Q> into S ,
R+ Ta(R")
R’ <+ subrelation algorithm applied to (Q1,n, @2,n, R’)
end for
R" + Tn(R")



Operator coupling

Denote by 7; the projection map from 51 x Sp to S;. A linear
operator A the space of bounded function on 51 x S5 is a coupling
of linear operators A; and A, if f om; € D(A) and

A(f om;) = (Aif)om; for all f € D(A)).

If A; and Aj are the generators of Markov processes on S;, then
we say that A is a Markov coupling for A; and A, if A couples the
linear operators A; and Ap, and the martingale problem for A is
well-posed.



Operator coupling

Conjecture

Assume that Ai1f(x) < Axg(y) for all x ~ y and f ~ g. Then
there exists a coupling of A1 and Ay that preserves the relation R.

» We denote f ~ g if f € D(A;) and g € D(A»), and

x~y = f(x) <gly)
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