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Bernoulli Percolation

> Zd-lattice — (V(Z4), E(Z%)). I (1171
» pe|0,1]. - "] .
» Declare each site (or edge) I:I_I

independently ~—I qj

open with prob. p

{closed with prob. 1 — p. I_l I_I d

» P, corresponding law in {0, I}Zd (or {0, 1}E(Zd))_

> Important events

{0 < 0B(n)} {0+ oo} Crgrr(tn,n) Crp(rn,n).






The phase transition

» p > P,(0 <+ 00) is a non-decreasing function.
» Critical point: p.(Z%) = inf{p € [0, 1]; P,(0 > o0)} > 0.
» Phase transition: For d > 2, 0 < p.(Z9) < 1.
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Exponential decay of connectivity

How does the quantity {0 <+ 9B(n)} behaves as a function of n?
Subcritical phase:
If p < pe(Z?), then there exists o = a(p,d) > 0 such that

P,({0 < dB(n)) < e~oP)m,

(Menshikov '86, Aizenman & Barsky '87).
Supercritical phase:
If p > p(ZY), then there exists o = o(p,d) > 0 such that

P,({0 <> dB(n) « 00) < e~
(Chayes, Chayes & Newman '87).
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Drilling a wooden cube or playing with the Oskar’s puzzle

DA



Coordinate Percolation

» 7Z%-lattice, d > 3.
» {e1,...,eq} standard orthonormal basis.
> p1,...,pq € [0, 1] intensity parameters.

» Remove at random lines parallel to e; with probability p;

independently.
nej
= > L = set of removed
= = sites.
=
/i/j/ » V = Z4\L vacant set.
?/ AP > p=(p1,.--,Pd)
|~ " e Pp = law of the

/// // : process.



Phase transition

S2(no)

Existence of the supercritical

Existence of the subcritical phase
phase



Phase transition

Theorem (H., Sidoravicius, '11)

Assume that p; < p.(Z3~1) for somei € {1,...,d}, and that
pj # 1 forsome j € {1,...,d}\{i} then

Po({0 ¢ c0}) = 0. (1)
On the other hand if p1,...,pq are sufficiently close to 1, then

Py ({0 <> 00}) > 0. (2)

Theorem (H., Sidoravicius, '11)

Let N be the number of infinite connected components. Almost
surely under Pp,, N is a constant random variable taking values in
the set {0,1,00}.



Decay of correlations

Theorem (H., Sidoravicius '11)
If p; < pe(Z3~1) and p; < p.(Z3~1) for some i # j € {1,...,d},
then there exists a constant ¢ = ¢ (p,d) > 0 such that, forn > 0,

Po({0 < dB(n)}) < e V@, (3)

Theorem (H., Sidoravicius '11)

Let d = 3. Assume that py > p.(Z?), p3 > p.(Z*) and 0 < p1 < 1.

Then, there exists constants a(p) > 0 and o/(p) > 0 such that,
for alln >0,

Py ({0 < dB(n), 0 « co}) > o' (p)n P, (4)



‘Proof’ of the power-law decay
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More about the phase transition for d = 3.

d = 3, p.(Z*) = critical point for site oriented percolation in Z2.

Theorem (H., Sidoravicius '11)

> Ifp; > pe(Z2)V/3 for all i = 1,2,3, then Py({0 <+ o0}) > 0.
> If py > pc(Z*) and p3 > p.(Z?), then there exists

€ = €(p2,p3) > 0 such that for all p; > 1 —,
P5({0 <+ o0}) > 0.

p1 = p2 = p3 = p. Define p, = critical point. Open question:

show that p, > p.(Z?).
5
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What happens when p; = py = p3 = p.(Z?) + § with § ~ 0?

1.0 T
8 / Probability of having a
08 1= 16 _ crossing from bottom to
32 g . . .
06 F ¢ — . top in a box with indicated
128 .
C 256 0.3 , side length.
04 512 — ]
1024 ——— 02k i The data suggest that
0.2 oL - px = 0.6339(5).
00 J 0.633 0634 0.633 Compare:
0.5 0.6 0.7 08  pe(Z?) ~ 0.5927 and
D pe(Z2)Y3 = 0.8902.
Simulation by K.J. Schrenk, N.A.M Aratijo, H. J. Herrmann
exponential decay polynomial decay
; % % % b
0 pe(Z?)  Px infinite 1
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Cilinders’ Percolation

» RY d>3, L= space of lines of R<.
Construct a Poisson point process in LL
Parametrization:

» [ = line parallel to the canonical vector eg.

» (y) =y + 2.

> (2,0) € R x SO,.

a: R xS0, — L
(z,0) = 0(1:(1)).
Measure:
» \: Lebesgue on R4"!; v: Haar on SOy.
> u(A) = (A x v)(@”1(A)).



Cilinders’ Percolation

v

Q) = set of locally finite point measures on L.

» u > 0 parameter.

v

P, = law of a PPP in L with intensity u - p.

v

l € L — C(l) = cylinder of radius one and axis .

z

For w € Q)

Set of cylinders:

Lw= |J co.

lesupp(w)

Vacant set:

V(w) = RNL(w).



Critical point

Main goal: To study the connectivity properties of V under P,.

u small  —  few cylinders drilled;
u large  —  many cylinders drilled.

P, [V has an unbounded component] is non increasing in u.

uy = inf{u > 0; P, [V has an unbounded component | = 0}

Question: 0 < u, < 00?

infinite components no infinite components




Phase transition

Theorem (Tykesson, Windisch "11)

Ford > 3, wu, < oo;
Ford >4, wu, > 0.

d > 4,u small = VN R? has an unbounded component.
Why to look at V N R??
Duality

If the component of V N R? containing 0 is bounded, then
there exists a circuit in £ N R? surrounding the origin.

Multi-scale analysis for ruling out the existence of long circuits



The three dimensional case

Slow decay of correlations:

1 .
cov(lzey, lyey) < [z —y= T d = 3 is slowerl.

Theorem (Tykesson, Windisch '11)

d=3, forallu>0,YNR? has only
bounded connected components P,— a.s..

Infinitely many triangles surrounding the origin in £ N R2.
> o small.
» Look for unbounded connected components beyond V N R2.
» Avoiding being trapped by few cylinders.
» Still being use the duality principle.



The three dimensional case

Idea : Replace VNR? by VNH.

H = hexagonal lattice in R?
with mesh size 2000.

H = graph of the application
x > dist(z, H).

Theorem (H., Sidoravicius, Teixeira '12)
For d = 3, for all uw > 0 small enough

P, [V N H has an unbounded component | = 1.

Show that there are typically no long paths from 0 in LN H.



The multiscale analysis

v

v =T7/6 fixed.

ag large.

v

n

> a,=a | =a}
(super exponential growth of
scales).

pn(u) = SUDgcRr2 Eu[An(x)]

v

Ap(z) = 1{S(z, a,/10) <> 0S(z,a,) in 71(LN H)}.

Show that py,(u) decays very fast with n.



The multiscale analysis

cover intermediate spheres with
at most ¢ (a:*: ) balls of radius

1
an—1

10

pal) = sup EufAn(z) < c(ajjl)z sup By [An—1 (1) Ap—i(2)]

suppremum over x1 and xo, centre of balls in the coverings.



The multiscale analysis

2
pa(u) < c(aggl) sup Eu[An_1 (1) Ap_1(22)]
< () st + e

2
Forget about the error: p,(u) < c( an ) Pr_1(u)?.

an—1
Recursion:

pros() < 0 = o) < 207

i < e (gom) o+ (22) 4 (22) g

an

a
gn(u) = sup sup Eyu[An(z,w+0,+0,)] < R (nvpn—h%z—l) :
J?ER2 ll,IQE]L an—1



The multiscale analysis

Recursion: ag big and u small

Triggering: As u — 0 both po(u) and go(u) vanish.

The rough shape of H plays a crucial hole for showing that go(u)
vanishes (would be false for R?).

P there exists a circuit in 7(£L N H) 1
“ surrounding the origin of R? ’

P the origin belongs to an unbounded 0
“ component of m(£L N H) '



Brochette percolation

Bernoulli edge percolation in Z2.

v

v

Choose a random set of vertical lines.

v

Increase the parameter in this set.

v

How does it affect the critical point?

v

A C 7Z, deterministic set.
Eyert(A X Z) = set of brochettes.
p,q € [0, 1] parameters.

v

v

p, ife€ Eyen(AXZ),

> PII},q : open edge e with prob. = {q otherwise



Brochette percolation

Make the set of the brochettes random.

> ¢ = {€.}.ez iid. Bernoulli(p).
> A ={jeZ: =1}
> v(p) = law of &.

> Ppg() fpp (")dvp(§)-

Theorem (Duminil-Copin, H., Kozma, Sidoravicius '15)
For every € > 0 and p > 0 there exists § > 0 such that

P! e (05 00) > 0.

Remark: For the rest of the talk, we fix £ and p.



Enhancements induced by K-syndetic sets

A C Z is k-syndetic if all its gaps have diameter smaller than k.
The Aizenman-Grimmett argument (1991) implies that:

Proposition
If A is k-syndetic then for every € > 0 there exists § > 0 such that,

PA

potepes(0 > 00) > 0.

Russo’s Formula:
For A an increasing event depending on the state of finitely many
edges only (e.g.: {0 <> 0B(n)}),

d

%PP(A) = Py(c is pivotal for A),

where, {e is pivotal for A} = {w® € A,w. ¢ A}.



The Aizenman-Grimmett argument

» By Russo’'s Formula we have:

aﬁpgq(o < 0B(n))= > P).(fispiv. for 04 OB(n)).
p fEEvert(AXZ)

gpgq(o < 0B(n))= Y Py (eispiv. for 0 <> dB(n)).
q €& Eyert(AXZ)

» By local modification arguments, using that A is k-syndetic:
A - A -
Py ,(f(e) piv. for 0 <> B(n)) > c(k,p, q)P, (e piv. for 0 <> B(n)).

» This ultimately leads to:

d d
a71]1%(0 < 90B(n)) > c(k, p, q)%qu(o < 0B(n)),

with ¢(k, p, q) bounded in a neighbourhood of (p., pc).



The KSV Theorem

> Z%
» Edges oriented in the NE and
NW sense.

» Declare columns good
independently with probability p’.

» Parameter in good lines: pg.
» Parameter in bad lines: pp.
> I@Iglc;,ps = law

Theorem (Kesten, Sidoravicius, Vares, '12)

For all pg > 0 and pg > p.(Z?) there exists p' > 0 such that

I@g;m(oriented infinite path in Z3) > 0.



The renormalisation scheme
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» Columns: ¢, (i) = {vn(i,J); i + j is even}.
> c,(i) is good if A(§)N[2n(i —1),2n(i+ 1)] is
% log 2n-syndetic.

» v, (2) is good if crossed as above.



Crossing probabilities in k-syndetic boxes

Lemma
limy, 00 Ph 4(cn(4) is a good column) = 1.

Proposition
There exists ¢ > 0 and a > 0 such that for all A k-syndetic,

Pﬁchs,pc (CRL (Tnv n)) > ]P)pc—l—ck*a (CRL (Tn, n))

Lemma
hmn_mo Ppc-i-[% log(2n)}’°‘ (CRL (Tn, n)) =1.

» Conclusion: For n large, process in good columns dominates
a 0.999 Bernoulli site percolation.

» Also one can show that the process in bad columns dominates
a 0.001 Bernoulli site percolation.



Proof of the theorem

> Define pp = 0.0001 and pg = 0.99.
» By KSV, there exists p’ such that szq(o + 00) > 0.

» Fix n large enough so that:
— The process of good lines dominates a 1-d i.i.d.
Bernoulli(p’) sequence.
— The process of occupied blocks in good lines dominates an
0.999 Bernoulli percolation.

» With n fixed, find § small enough so that, under IP’;IC+87PC_5,
— The process of occupied sites in bad columns still dominates
an independent Bernoulli percolation with parameter 0.0001.
— The process of occupied sites in good columns still
dominates an independent Bernoulli percolation with

parameter 0.99.
» The result follows from KSV.



