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David Mermin’s foot. In his book ‘About Time’ (2005):

”Henceforth, by 1 foot we shall mean the distance light travels in a nanosecond.
A foot, if you will, is a light-nanosecond (and a nanosecond, even more nicely,
can be viewed as a light foot). If it offends you to redefine the foot then you
may define 0.299792458 meters to be 1 phoot, and think ”phoot” whenever you
read ”foot”.”

A nanosecond= 10~? second = 1000 picosecond
1 foot=1 light-nanosecond ~ 0.3 m
The cycle time for radio frequency 1 GHz (1 x 10° hertz)=1 light-nanosecond

The Mermin-Peres magic square. The product of 9 numbers £1 should be
either 1 or —1. This means that it is not possible to construct a 3 x 3 table with
entries +1 and —1 such that the product of the elements in each row equals +1
and the product of elements in each column equals —1. But it is nearly possible
to do so with the richer algebraic structure based on Pauli matrices:

o X1 Op X Oy Ixo,
—0y X0, | Oy X0y | —0, X 0y
Ixo, 0, X 0, o, x1

with Pauli matrices o, 0y,0.

Oj1(O0|-i||1]O0
110{[i]0]0]-1

1. Gibbs measures and Dobrushin-Lanford-Ruelle (DLR) equation

The definition of a Gibbs random field on a lattice requires some terminology:

The lattice: A countable set L = Z<.

The single-spin space: A probability space (S, S, \).

The configuration space: (£, F), where Q = ST and F = ST

The set L of all finite subsets of L.

Given a configuration w € € and a subset A C L, the restriction of w to
Aiswp = (W(t))tea- T A3 NAy =0 and Ay U Ay = L, then the configuration
WA, wh, is the configuration whose restrictions to Ay and Ag are wp, and wa,,



respectively.

For each subset A C L,F, is the o—algebra generated by the family of
functions (o (t))ten, where o(t)(w) = w(t). This c—algebra is just the algebra
of cylinder sets on the lattice.

The potential: A family ® = (®4)ac, of functions 4 : © — R such that
for each A € L, &4 is Fa—measurable. For all A € £ and w € 2, the series

H/% (w) = ZAG[:,AI"WA;AQ) q)A (LU) exists.
The Hamiltonian in A € £ with boundary conditions @, for the potential @,

is defined by

HY (w|@) = HY (wa@ae), (1.1)

where A° =1L\ A.
The partition function in A € £ with boundary conditions @ and inverse
temperature § € Ry (for the potential ® and ) is defined by

28@) = [ M) exp(-HE (w[o)). (1.2)

Here \*(dw) is the product measure [],., A(dw(t)).
A potential ® is A—admissible if Z§ (0) < co forall A € £, € Q and 8 > 0.
A probability measure p on (2, F) is a Gibbs measure for a A—admissible
potential ® if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equations

/ (A2)Z2 (@ / MM (dw) exp(—BHE (@]0)) La (waae) = u(A),  (1.3)

for all A € F and A € L. We say that a phase transition is observed if the
solution of (1.3) is not unique.

2. Classical case: Heisenberg model

Werner Heisenberg studied a model of classical statistical mechanics on a
d-dimensional lattice Z? with spins of the unit length s; € R3,|s;| = 1, each
one placed on a lattice node.

This was a prelude to Heisenberg quantum model with formal Hamiltonian

H= Z Jtoiol + JValal, + T oo, (2.1)
li=3"1=1

Formal Hamiltonian of classical model:
H= Z ¢ij(si,s;5) Z Jij(si,s5) (2.2)
li—jl=1

with a coupling J;; between neighboring spins.
Invariant with respect of rotation group O(3).



Mermin-Wagner principle: if d = 1,2 an external
magnetic field cannot destroy this symmetry

Original proof is quite involved. A short proof is possible based on Gibbs-
Bogolyubov inequality: if H = H+AH and a free energy F(\) = —3~! In Tr[e =]

then L < 0. V.

3. Schlosman’s rotators on Z2:

A phase transition with spontaneous breaking of discrete symmetry and
preservation of continuous symmetry.

bij(x,2") = —Bcos(z — ') if |i—j] = V2,
¢ij(z,2') = Beos®(x — ') if |i—j|=1. (3.1)

0 in all other cases.
Discrete symmetry is a rotation of all spins on even sub-lattice by .

When 8 — oo the model exhibits a phase transition destroying the discrete
symmetry but preserving the continuous symmetry.

4. Quantum Hamiltonian on a graph

Formal Hamiltonian on frustrated 2D lattice I':

H= o[ =38+ 3 I )V )] (41)

Jjer J#j’
Assume V(gz, g2’) = V(z,2'), g € G—compact Lie group, and
|V(l’/, I”)|, |vacv($/7 1’“)‘, \Vx/quV(z’, 'IN)| < ‘7 (42)

and a reasonable decay of J(d), say J(d) ~ d=3.



5. Quantum gravity: Lorentzian triangulations

Random Lorentzian triangulations are parametrized by critical size-biased
Galton-Watson (GW) trees

with the offspring numbers {k;,¢ = 1,2,...} conditional upon non-extinction.
Select one particle from k;—; and generate its offspring family with MGF f'(x),
i.e. pr = kpg. All other particles have the same offspring law as in the classical
GW process.

The sized-biased critical branching processes have been studied by Russell
Lions (Indiana University), Robin Pemantle (UPenn) and Yurval Peres
(Microsoft Research).

Lemma 1. Let the offspring distribution has a finite second moment. Then
a.s. )
k, < Ctlnztt (5.1)



6. Quantum Gibbs states

in a finite volume A C T" are linear positive normalized functionals on the C*-
algebra By of bounded operators in space Ha = [] La(M;,v):

ieA
©A(A) = try, (RaA) (6.1)
where
exp | — BH o
Rp = L,@’AA] with Zga = trHA(exp [ — ﬁHA]) (6.2)
Restriction to a finite volume A° C A :
P2 (Ag) = tra, (RY Ao), A € B(Ap) (6.3)
where .
Ry = try, o Ra- (6.4)

In a similar way define operators Rﬁ(\)fr/\/\ with boundary conditions Xr .

Theorem 1. For all given 3 € (0,00) and a finite A° C T, operators Rﬁo form
a compact sequence in the trace-norm topology in Hao as A / I'. Further-
more, given any family of (finite or infinite) sets I' = I(A) C T" and boundary

conditions (i.e. particle configurations) Xpn\a, operators Rﬁfir/\/\ also form a
compact sequence in the trace-norm topology.

Moreover, any limiting point, RAO, for {RAO } is a positive definite op-

AlXpra
erator of trace one which possesses the following invariance property: V g € G,

Uno(g) "R Upo(g) = R™". (6.5)

The proof is based on the following

Lemma 2. Let p,(z,y) be a sequence of kernels defining positive-definite op-
erators R,, of trace class and with trace 1 in a Hilbert space Lo(M,v) where
v(M) < oo. Suppose there exists the following limit, uniform in x,y € M:

lim pn(z,y) = p(z,y),
n—oo
which defines a positive-definite trace-class operator R of trace 1. Then
lim ||R, — Rt =0
n—oo

where || Al¢ = tr(AA*)l/Q,



7. Symmetries in the Hubbard model

Brian Flowers, Baron Flowers FRS (1924-2010), was a British physicist, he was
educated in Swansea at the Bishop Gore School. Rector of Imperial College
(1973-1985), VC of University of London (1985-1990). While VC of the Univer-
sity of London, he became known for making extensive notes during committee
meetings. People thought that maybe he didnt trust the minutes. Later, when
his textbook ” An introduction to numerical methods in C' + +” came out, it all
became clear.

Walter Marshall FRS (1932-1996) from Cardiff gained a PhD under Rudolf
Peierls. He succeeded Brian Flowers as Head of Theoretical Physics Division at
AERE (Atomic Energy Research Establishment) Harwell.

John Hubbard (1931-1980) from London was the Head of the Theoretical Physics
Group at AERE. He left the UK for the US in 1976, following Marshall’s pro-
motion to director of the AERE and a subsequent major reform of its facili-
ties in Harwell. He joined Brown University and the IBM Laboratories in San
Jose, California, where his research focused on the study of critical phenom-
ena: phase transitions near which universal behaviour, independent of material
specific properties, is observed.

When asked what the book ”The Many-Body Problem” was about, declared
that it was a murder mystery.

With vertex i € T' associate a bosonic Fock-Hilbert space H = @ Hy, Hy, =
LY (M*),M = R?/Z%- d-dimensional torus. The action of G is lifted to
unitary operator U (g):

Ur(9)d(x4) = ¢(g7'x1), (9,x) € G x M — gx € M.

Formal Hamiltonian (with ) boundary conditions)

(Had)(R) = [ = 3 T jea Yaew () A + Xjen Loy UV (@)
+% ZjeA Zx,m’&x*(j) 1(z # x')U(z)(x, z’) + % Zj,j’EA 1(j # j)J(d(5,5")) x
D zex (). ex (77) V(m,x’)w(xj\) + 32, 1x*(j) = Lx*(j") < K)x
Y vex- () J V@[S =UW () — (x7 (7)]-
(7.1)
Assume that
2e® <1 (7.2)
where © = k(UM + kU® + kJ(1)V) and
J(0) = sup | D2 Il NG 5) = D).

v
J'Eel ~er

Theorem 2. Assume that all potentials are invariant under continuous group
G and satisfy some addtional conditions. Then for all 3,z satisfying (7.2) all



states corresponding the Hamiltonian (7.1) are G—invariant : YA € By, and
geaqG
o(A) = e(Uy ! (9) AU, (9))

8. Bose gas in R?

The simplest example of breaking translational symmetry is the wetting
transition in 2D Ising model for § — oco. Let n be a unit vector, and Dy, be
the straight line line through the origin with normal n. Denote by D,, the length
of the segment Dy, N [—1,1]?, and define the following boundary condition

nn = sign(z, n).

The surface tension in the direction n is defined by

M

1
. f) = - fim ot oL (8.1)
A

We prove that the translational invariance is preserved if 3 < (3.

The local Hamiltonian

5> (Bydn)@) + Y Vi) —2(i))&l)  (8.2)

j=1 1<j<j’'<n

l\JM—\

( n A¢n 1’1
which acts on functions ¢,, € L3 (AT") where A" stands for the set of n—points
configurations in A with a hard core of radius r. Define a partition function

Epn(A) = trLgvm an)Gan,a, Gann = exp [—8Hy A (8.3)

positive-definite trace-class operator in Ly?™(A}). Similar define G g, Ajx(a)e
for a boundary condition x(A)¢. Next, for a given fugacity z > 0 define

Ga(a)y = O 2 G nAlx(r)e
n>0

E(A[x(A)) = D 2" Epn(AX(A)7) = tra ) Gapeaye-

n>0

Now the density matrix (for simplicity select x(A)¢ =)
——— G (8.4)

defines the Gibbs state, i.e., a linear positive normalized functional ¢, 3 n on
the C*—algebra of bounded operators A € B(A):

©:8.4 = traga) (ARg.n), A € B(A). (8.5)



Reduced density matrices (RDMs) Rﬁo , Rﬁfx( A<) and R™o are integral oper-
ators, say

(R 6) (x0) = /C o e y0)0n o)y (8.6)

Next, we define the limiting density matrices as A / R?. Here and below we
assume that z, 3 satisfy the condition

p=zexp (4BVR/r{) < 1. (8.7)

Here V. = —max[0,—V(r),np < r < R], R stands for the radius of potential,
1o stands for the radius of the hard core. However, it is valid Vz € (0,1) if the
two-body potential V > 0. We also assume that V) = max[|V"(r)|, 1o < r <
R] < 0.

Theorem 3. The family F/(\ﬁc( AC)(XO, Yo) is compact in the space of continuous
functions C°(C,(Ag) x C.(Ag)). Any limiting point F*0(xq,yo) determines a
positive-definite operator R of trace 1. Consider a pair of limit-points along
a sequence A(l) /' R?
Ay Ao Ao _ 1; Ao
F™ = m Fyy peae £ = 10 Fxpea (8.8)
Then for any Ay C Ag the compatibility property holds:

Rp ;= tIp(ap\a) R0 (8.9)

We establish the translation invariance of bose-gas:

Theorem 4. Under condiitons formulated below

p(A) = p(S(s)A), VA€ B(Ao) (8.10)
Rg 5500 = UM ()R p, U500 (—5) (8.11)

Here
S(s)A = U () AU (5) € B(S(s)Ao). (8.12)

Feynman-Kac representation in a cube A

F * =Mo,Qg [A \ A0|X(AC)]
Ao (%0,¥0) —/ P yo (A5) 25 ) ay () A0 (2 »
AR W*(x0,¥0) ’ )’0( 0) ( 0 ( AO) :[A|X(Ac)]

where K () = Zw*eﬂg k(w*), aa(Q) and xro (€23,) indicates that the paths
are always inside A but outside Ay at moments ~ (3.



9. Method: Frohlich-Pfister argument

proves that a.a. quenched Gibbs measures generated by U are G— invariant.
The basis is the following property of specifications (conditional probabilities)
of Gibbs measures

e BHR(@I2)}

1= (e = Zors

Lemma 3. (H.-O. Georgii: Gibbs Measures and Phase Transitions)
Let for any cylindrical set A 3 a,b> 0 and A € Z% with

aya(gAL) + bya(gAl) = ya(Al.). (9.1)

Then g preserve any measure u € Gibbs(7y).
We illustrate the method for a classical model on Lorenzian triangulation.
Let T, be the union of the first r layers of the Lorentzian tree T. Let G be a

d—dimensional torus. Identify g with the vector § and define a gauged action
on the layer j,r +1 < j < mn:

FVIEE S o
“Qn—r) T, tint
where
n—r 1

Qn—r)= Z tInt
t=2

Let Bt +11 < k¢ + kt11 be the number of edges between levels j and j + 1.Then

— _ A2 |Q|2 n—r Et’t+1
¢>—<§><gn<v> gn(0)) Slnm(n_r); Ao =0 (92

as n — 0o. The series in (9.2) converges due to Lemma 1.
A tuned-shift argument:

Lemma 4. Let p be a FK-DLR measure, and an event D is localized in Ag.
Then measure y is S(s) invariant if and only if

H(S()D) + u(S(~s)D) — 2u(D) > 0. (9.2)

Proof Let 7 = S(s). Then

p(r"*1D) + p(v*7' D) > 2u(7* D).



The sequence {;(7%D)} is convex and bounded. Hence, it has to be constant,
in particular u(7=1D) = u(D).

10. Feynman-Kac formula for density matrix kernel

The idea goes back to Jean Ginibre, Paris-Sud 11 University.

(exp [~ HAl0)x) = [ TT o@D Kaalxay)otya). (10
JuAjGA

The integral kernel Kg x(xa,ya) admits a Feynman-Kac (FK) integral repre-
sentation

K@A(XA,yA) = / PﬁmyA(d@A) exp [7 hA(GA)]. (10.2)
WiAvyA
Define an energy for a path configuration @y = {w;, j € A} over A,
@y = Y W (@m)

(4,3")EAXA

L — . . . — _
where h7-7 (w;,w;/) represents an integral along trajectories W; and wj::

B
W' (wj’wj’) = J(d(J, ]/)) /dTV(wj(T)>wj’ (T))
0

Wi’ (@, @) yields the ‘energy of interaction’ between trajectories w; and @jr,
and h (@) equals the ‘full potential energy’ of the path configuration w,.

11. Breaking of continuous symmetry

Theorem 5. Take I' = Z? with distance d(j, j') = max [|j1 — ji|, |72 — j4l]-
Take M = S' = G where S' = R/Z is a unit circle, with a standard metric
p(z,x') = min [|z — 2/|,1 — |z — 2/|| and the group operation of addition mod
1. Assume that the two-body potentials J(d(j,5')) and V(z,2'), j,j' € Z?,
x,z’ € St, are of the form

J(d(.77]/)) = ]-7 |] _j/| = la
207 ‘]_.7/| 7é 17

V(z,2') = —cos 2n(x — 2'), p(z,x) <0,
= +o0, p(x,z') > 6,

10



where 0 € (0,1/4). Then, ¥V 3 € (0,00), 3 a measure i = iz which is not S*-
invariant. Consequently, the corresponding state ¢ = 95}7 is not S'-invariant.

Theorem 5: a sketch of the proof:

Consider a sequence of ‘cooled’ boundary conditions z* and a measure u*
which is a limiting point of Gibbs measures in A,,. If u* is not rotation invariant,
we are done. Otherwise, select an arc o = (x* — 1/200,z* + 1/200). So, the
weight of « < 1/99 for n large enough. Next, given n € (0, 1] consider a sequence
of boundary conditions

Tjn ="+ jn0,j = (ji, j2)-
For n = 1 3 unique compatible configuration inside the box. Hence, Vn 3

n* € (0,1) such that the weight of & = 2/3. Any limiting point of this sequence
is not rotation invariant.

11



12. Dobrushin-Lanford-Ruelle (DLR) equations in quantum statis-
tics

The standard approach to phase transitions in quantum statistics are KMS
(Kubo-Martin-Schwinger) states. In Heisenberg picture o, (A) 1= 17 Ae=*H7

(ar(4)B)s = Tr[Ro-(A) Bl

= Tr[RBatip] = (Barip(4) 5 (12.1)

RHS and LHS of (12.1) are the boundary values of an analytic function of z. If
there is a phase transition or spontaneous symmetry breaking, the KMS state
is not unique. In the case of the density matrix R with positive elements we
develop a simpler approach based on the DLR equations. Define

pA(Xa,wp) = :Lexp [ — ™ (wa)] (12.2)

—A

Given A° C A consider the partially integrated probability density

0
Py (W°) = / dvp a0 (WA a0 )pa (@ V wpya0)
w

A\AO

where w° V w A\A0 stands for concatenation of two loop configurations.

DLR equations: V set A’ such that A° C A’ C A, the density pﬁo(wo)
obeys

pA (W0 = / dvayar(wayar)
w

A\A/

A\A’(

= 0
= w-,Ww
XPA A\A° ( ) A\A/) .

En(waa)

WA\A/)

Define the class of infinite-volume Gibbs states G((3) satisfying DLR equa-
tions.

Theorem 6. For all 3 € (0,00), the sequence of Gibbs states @y contains a
subsequence Y (y,) such that V finite A% C T and Ag € Bpo, we have:

im0 (Ao) = ¢(Ao)
where state ¢ € G(3). Consequently, class G(3) is non-empty.

Theorem 7. For all 3 € (0,00) and finite A° C T', any Gibbs state o € G(3) is
G— invariant.

12
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