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David Mermin′s foot. In his book ‘About Time’ (2005):
”Henceforth, by 1 foot we shall mean the distance light travels in a nanosecond.
A foot, if you will, is a light-nanosecond (and a nanosecond, even more nicely,
can be viewed as a light foot). If it offends you to redefine the foot then you
may define 0.299792458 meters to be 1 phoot, and think ”phoot” whenever you
read ”foot”.”

A nanosecond= 10−9 second = 1000 picosecond
1 foot=1 light-nanosecond ≈ 0.3 m

The cycle time for radio frequency 1 GHz (1× 109 hertz)=1 light-nanosecond

The Mermin-Peres magic square. The product of 9 numbers ±1 should be
either 1 or −1. This means that it is not possible to construct a 3×3 table with
entries +1 and −1 such that the product of the elements in each row equals +1
and the product of elements in each column equals −1. But it is nearly possible
to do so with the richer algebraic structure based on Pauli matrices:

σx × I σx × σx I× σx
−σx × σz σy × σy −σz × σx

I× σz σz × σz σz × I

with Pauli matrices σx, σy, σz

0 1
1 0

0 -i
i 0

1 0
0 -1

1. Gibbs measures and Dobrushin-Lanford-Ruelle (DLR) equation

The definition of a Gibbs random field on a lattice requires some terminology:
The lattice: A countable set L = Zd.
The single-spin space: A probability space (S,S, λ).
The configuration space: (Ω,F), where Ω = SL and F = SL.
The set L of all finite subsets of L.
Given a configuration ω ∈ Ω and a subset Λ ⊂ L, the restriction of ω to

Λ is ωΛ = (ω(t))t∈Λ. If Λ1 ∩ Λ2 = ∅ and Λ1 ∪ Λ2 = L, then the configuration
ωΛ1ωΛ2 is the configuration whose restrictions to Λ1 and Λ2 are ωΛ1 and ωΛ2 ,
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respectively.
For each subset Λ ⊂ L,FΛ is the σ−algebra generated by the family of

functions (σ(t))t∈Λ, where σ(t)(ω) = ω(t). This σ−algebra is just the algebra
of cylinder sets on the lattice.

The potential: A family Φ = (ΦA)A∈L of functions ΦA : Ω → R such that
for each A ∈ L, ΦA is FA−measurable. For all Λ ∈ L and ω ∈ Ω, the series
HΦ

Λ (ω) =
∑
A∈L,A∩Λ6=∅ΦA(ω) exists.

The Hamiltonian in Λ ∈ L with boundary conditions ω̄, for the potential Φ,
is defined by

HΦ
Λ (ω|ω̄) = HΦ

Λ (ωΛω̄Λc), (1.1)

where Λc = L \ Λ.
The partition function in Λ ∈ L with boundary conditions ω̄ and inverse

temperature β ∈ R+ (for the potential Φ and λ) is defined by

ZΦ
Λ (ω̄) =

∫
λΛ(dω) exp(−βHΦ

Λ (ω|ω̄)). (1.2)

Here λΛ(dω) is the product measure
∏
t∈Λ λ(dω(t)).

A potential Φ is λ−admissible if ZΦ
Λ (ω̄) <∞ for all Λ ∈ L, ω̄ ∈ Ω and β > 0.

A probability measure µ on (Ω,F) is a Gibbs measure for a λ−admissible
potential Φ if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equations∫

µ(dω̄)ZΦ
Λ (ω̄)−1

∫
λΛ(dω) exp(−βHΦ

Λ (ω|ω̄))1A(ωΛω̄Λc) = µ(A), (1.3)

for all A ∈ F and Λ ∈ L. We say that a phase transition is observed if the
solution of (1.3) is not unique.

2. Classical case: Heisenberg model

Werner Heisenberg studied a model of classical statistical mechanics on a
d-dimensional lattice Zd with spins of the unit length si ∈ R3, |si| = 1, each
one placed on a lattice node.

This was a prelude to Heisenberg quantum model with formal Hamiltonian

Ĥ =
∑

|j−j′|=1

Jxσxj σ
x
j′ + Jyσyj σ

y
j′ + Jzσzjσ

z
j′ (2.1)

Formal Hamiltonian of classical model:

H =
∑
i,j

φij(si, sj) = −
∑
|i−j|=1

Jij〈si, sj〉 (2.2)

with a coupling Jij between neighboring spins.
Invariant with respect of rotation group O(3).
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Mermin-Wagner principle: if d = 1, 2 an external
magnetic field cannot destroy this symmetry

Original proof is quite involved. A short proof is possible based on Gibbs-
Bogolyubov inequality: ifH = H0+λH and a free energy F (λ) = −β−1 ln Tr

[
e−βH

]
then d2F

dλ2 ≤ 0. ∀λ.

3. Schlosman’s rotators on Z2:

A phase transition with spontaneous breaking of discrete symmetry and
preservation of continuous symmetry.

φij(x, x′) = −β cos(x− x′) if |i− j| =
√

2,

φij(x, x′) = β cos2(x− x′) if |i− j| = 1. (3.1)

0 in all other cases.
Discrete symmetry is a rotation of all spins on even sub-lattice by π.

When β → ∞ the model exhibits a phase transition destroying the discrete
symmetry but preserving the continuous symmetry.

4. Quantum Hamiltonian on a graph

Formal Hamiltonian on frustrated 2D lattice Γ:

H =
1
2

[
−
∑
j∈Γ

∆j +
∑
j 6=j′

J(d(j, j′))V (xj , xj′)
]

(4.1)

Assume V (gx, gx′) = V (x, x′), g ∈ G−compact Lie group, and

|V (x′, x′′)|, |∇xV (x′, x′′)|, |∇x′∇x′′V (x′, x′′)| ≤ V̄ (4.2)

and a reasonable decay of J(d), say J(d) ∼ d−3.
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5. Quantum gravity: Lorentzian triangulations

Random Lorentzian triangulations are parametrized by critical size-biased
Galton-Watson (GW) trees

with the offspring numbers {kt, t = 1, 2, . . .} conditional upon non-extinction.
Select one particle from kt−1 and generate its offspring family with MGF f ′(x),
i.e. p̃k = kpk. All other particles have the same offspring law as in the classical
GW process.

The sized-biased critical branching processes have been studied by Russell
Lions (Indiana University), Robin Pemantle (UPenn) and Yurval Peres
(Microsoft Research).

Lemma 1. Let the offspring distribution has a finite second moment. Then
a.s.

kt ≤ Ct ln
1
2 +ε t (5.1)
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6. Quantum Gibbs states

in a finite volume Λ ⊂ Γ are linear positive normalized functionals on the C∗-
algebra BΛ of bounded operators in space HΛ =

∏
i∈Λ

L2(Mi, ν):

ϕΛ(A) = trHΛ

(
RΛA

)
(6.1)

where

RΛ =
exp

[
− βHΛ

]
Ξβ,Λ

with Ξβ,Λ = trHΛ

(
exp

[
− βHΛ

])
. (6.2)

Restriction to a finite volume Λ0 ⊂ Λ :

ϕΛ0

Λ (A0) = trHΛ0

(
RΛ0

Λ A0

)
, A ∈ B(Λ0) (6.3)

where
RΛ0

Λ = trHΛ\Λ0RΛ. (6.4)

In a similar way define operators RΛ0

Λ|xΓ′\Λ
with boundary conditions xΓ′\Λ.

Theorem 1. For all given β ∈ (0,∞) and a finite Λ0 ⊂ Γ, operators RΛ0

Λ form
a compact sequence in the trace-norm topology in HΛ0 as Λ ↗ Γ. Further-
more, given any family of (finite or infinite) sets Γ′ = Γ′(Λ) ⊆ Γ and boundary

conditions (i.e. particle configurations) xΓ′\Λ, operators RΛ0

Λ|xΓ′\Λ
also form a

compact sequence in the trace-norm topology.

Moreover, any limiting point, RΛ0
, for

{
RΛ0

Λ|xΓ′\Λ

}
is a positive definite op-

erator of trace one which possesses the following invariance property: ∀ g ∈ G,

UΛ0(g)−1RΛ0
UΛ0(g) = RΛ0

. (6.5)

The proof is based on the following

Lemma 2. Let ρn(x, y) be a sequence of kernels defining positive-definite op-
erators Rn of trace class and with trace 1 in a Hilbert space L2(M,ν) where
ν(M) <∞. Suppose there exists the following limit, uniform in x, y ∈M :

lim
n→∞

ρn(x, y) = ρ(x, y),

which defines a positive-definite trace-class operator R of trace 1. Then

lim
n→∞

‖Rn −R‖tr = 0

where ‖A‖tr = tr
(
AA∗

)1/2
.
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7. Symmetries in the Hubbard model

Brian Flowers, Baron Flowers FRS (1924-2010), was a British physicist, he was
educated in Swansea at the Bishop Gore School. Rector of Imperial College
(1973-1985), VC of University of London (1985-1990). While VC of the Univer-
sity of London, he became known for making extensive notes during committee
meetings. People thought that maybe he didnt trust the minutes. Later, when
his textbook ”An introduction to numerical methods in C + +” came out, it all
became clear.

Walter Marshall FRS (1932-1996) from Cardiff gained a PhD under Rudolf
Peierls. He succeeded Brian Flowers as Head of Theoretical Physics Division at
AERE (Atomic Energy Research Establishment) Harwell.

John Hubbard (1931-1980) from London was the Head of the Theoretical Physics
Group at AERE. He left the UK for the US in 1976, following Marshall’s pro-
motion to director of the AERE and a subsequent major reform of its facili-
ties in Harwell. He joined Brown University and the IBM Laboratories in San
Jose, California, where his research focused on the study of critical phenom-
ena: phase transitions near which universal behaviour, independent of material
specific properties, is observed.

When asked what the book ”The Many-Body Problem” was about, declared
that it was a murder mystery.

With vertex i ∈ Γ associate a bosonic Fock-Hilbert space H =
⊕
Hk,Hk =

Lsym2 (Mk),M = Rd/Zd- d-dimensional torus. The action of G is lifted to
unitary operator UΛ(g):

UΛ(g)φ(x∗Λ) = φ(g−1x∗Λ), (g,x) ∈ G×M → gx ∈M.

Formal Hamiltonian (with ∅ boundary conditions)

(HΛφ)(x∗Λ) =
[
− 1

2

∑
j∈Λ

∑
x∈x∗(j) ∆(x)

j +
∑
j∈Λ

∑
x∈x∗(j) U

(1)(x)

+ 1
2

∑
j∈Λ

∑
x,x′∈x∗(j) 1(x 6= x′)U (2)(x, x′) + 1

2

∑
j,j′∈Λ 1(j 6= j′)J(d(j, j′))×∑

x∈x∗(j),j′∈x∗(j′) V (x, x′)
]
φ(x∗Λ) +

∑
j,j′ 1(]x∗(j) ≥ 1, ]x∗(j′) < κ)×∑

x∈x∗(j)
∫
ν(dy)[φ(x∗(j,x)→(j′,y)(j))− φ(x∗(j))].

(7.1)
Assume that

zeΘ < 1 (7.2)

where Θ = κβ(Ū (1) + κŪ (2) + κJ̄(1)V̂ ) and

J̄(l) = sup
j′∈Γ

[∑
j∈Γ

J(d(j′, j))1(d(j′, j) ≥ l)
]
.

Theorem 2. Assume that all potentials are invariant under continuous group
G and satisfy some addtional conditions. Then for all β, z satisfying (7.2) all
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states corresponding the Hamiltonian (7.1) are G−invariant : ∀A ∈ BΛ0 and
g ∈ G

ϕ(A) = ϕ(U−1
Λ0

(g)AUΛ0(g))

8. Bose gas in R2

The simplest example of breaking translational symmetry is the wetting
transition in 2D Ising model for β → ∞. Let n be a unit vector, and Dn be
the straight line line through the origin with normal n. Denote by Dn the length
of the segment Dn ∩ [−1, 1]2, and define the following boundary condition

ηn = sign(x, n).

The surface tension in the direction n is defined by

τ(n, β) = − lim
l→∞

1
lDn

ln
Z
ηn
Λl

Z+
Λl

. (8.1)

We prove that the translational invariance is preserved if β < β0.

The local Hamiltonian

(Hn,Λφn)(xn1 ) = −1
2

n∑
j=1

(∆jφn)(xn1 ) +
∑

1≤j<j′≤n

V (x(j)− x(j′))(xn1 ) (8.2)

which acts on functions φn ∈ Lsym2 (Λnr ) where Λnr stands for the set of n−points
configurations in Λ with a hard core of radius r . Define a partition function

Ξβ,n(Λ) = trLsym2 (Λnr )Gβ,n,Λ, Gβ,n,Λ = exp [−βHn,Λ] (8.3)

positive-definite trace-class operator in Lsym2 (Λnr ). Similar define Gβ,n,Λ|x(Λ)c

for a boundary condition x(Λ)c. Next, for a given fugacity z > 0 define

GΛ|x(Λ)c =
∑
n≥0

znGβ,n,Λ|x(Λ)c ,

Ξ(Λ|x(Λ)c) =
∑
n≥0

znΞβ,n(Λ|x(Λ)c) = trH(Λ)GΛ|x(Λ)c .

Now the density matrix (for simplicity select x(Λ)c = ∅)

Rβ,Λ =
1

Ξβ(Λ)
Gβ,Λ (8.4)

defines the Gibbs state, i.e., a linear positive normalized functional ϕz,β,Λ on
the C∗−algebra of bounded operators A ∈ B(Λ):

ϕz,β,Λ = trH(Λ)

(
ARβ.Λ

)
, A ∈ B(Λ). (8.5)
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Reduced density matrices (RDMs) RΛ0
Λ , RΛ0

Λ|x(Λc) and RΛ0 are integral oper-
ators, say (

RΛ0
Λ φΛ

)
(x0) =

∫
Cr(Λ)

FΛ0
Λ (x0,y0)φΛ(y0)dy0. (8.6)

Next, we define the limiting density matrices as Λ ↗ R2. Here and below we
assume that z, β satisfy the condition

ρ̄ = z exp
(
4βV̄ Rd/rd0

)
< 1. (8.7)

Here V̄ = −max[0,−V (r), r0 ≤ r ≤ R], R stands for the radius of potential,
r0 stands for the radius of the hard core. However, it is valid ∀z ∈ (0, 1) if the
two-body potential V ≥ 0. We also assume that V̄ (2) = max[|V ′′(r)|, r0 ≤ r ≤
R] <∞.

Theorem 3. The family FΛ0
Λ|x(Λc)(x0,y0) is compact in the space of continuous

functions C0(Cr(Λ0) × Cr(Λ0)). Any limiting point FΛ0(x0,y0) determines a
positive-definite operator RΛ0 of trace 1. Consider a pair of limit-points along
a sequence Λ(l)↗ R2

FΛ1 = lim
l→∞

FΛ0
Λ(l)|x(Λ(l)c), F

Λ0 = lim
l→∞

FΛ0
Λ(l)|x(Λ(l)c). (8.8)

Then for any Λ1 ⊂ Λ0 the compatibility property holds:

Rβ,Λ1 = trH(Λ0\Λ1)Rβ,Λ0 . (8.9)

We establish the translation invariance of bose-gas:

Theorem 4. Under condiitons formulated below

ϕ(A) = ϕ(S(s)A), ∀A ∈ B(Λ0) (8.10)

or
Rβ,S(s)Λ0 = UΛ0(s)Rβ,Λ0U

S(s)Λ0(−s) (8.11)

Here
S(s)A = US(s)Λ0(−s)AUΛ0(s) ∈ B(S(s)Λ0). (8.12)

Feynman-Kac representation in a cube Λ

FΛ0
Λ|x(Λc)(x0,y0) =

∫
W∗(x0,y0)

Px0,y0(dΩ∗0)zK(Ω∗0)αΛ(Ω∗0)χΛ0(Ω∗Λ0
)
ΞΛ0,Ω

∗
0 [Λ \ Λ0|x(Λc)]
Ξ[Λ|x(Λc)]

.

where K(Ω∗0) =
∑
ω∗∈Ω∗0

k(ω∗), αΛ(Ω∗0) and χΛ0(Ω∗Λ0
) indicates that the paths

are always inside Λ but outside Λ0 at moments ∼ β.
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9. Method: Fröhlich-Pfister argument

proves that a.a. quenched Gibbs measures generated by U are G− invariant.
The basis is the following property of specifications (conditional probabilities)
of Gibbs measures

γ = {γΛ(ω|ω̄) =
1

ZΦ
Λ (ω̄)

e−βH
Φ
Λ (ω|ω̄)}.

Lemma 3. (H.-O. Georgii: Gibbs Measures and Phase Transitions)
Let for any cylindrical set A ∃ a, b > 0 and Λ ∈ Zd with

aγΛ(g−1A|.) + bγΛ(gA|.) ≥ γΛ(A|.). (9.1)

Then g preserve any measure µ ∈ Gibbs(γ).

We illustrate the method for a classical model on Lorenzian triangulation.
Let Tr be the union of the first r layers of the Lorentzian tree T . Let G be a
d−dimensional torus. Identify g with the vector θ and define a gauged action
on the layer j, r + 1 < j < n:

gn = θ
1

Q(n− r)

n−j∑
t=j+1−r

1
t ln t

where

Q(n− r) =
n−r∑
t=2

1
t ln t

.

Let Et,t+1 ≤ kt + kt+1 be the number of edges between levels j and j + 1.Then

φ =
∑
〈v,v′〉

(gn(v)− gn(v′))2 ≤ |θ|2

ln ln(n− r)

n−r∑
t=2

Et,t+1

t2(ln t)2
→ 0 (9.2)

as n→∞. The series in (9.2) converges due to Lemma 1.

A tuned-shift argument:

Lemma 4. Let µ be a FK-DLR measure, and an event D is localized in Λ0.
Then measure µ is S(s) invariant if and only if

µ(S(s)D) + µ(S(−s)D)− 2µ(D) ≥ 0. (9.2)

Proof Let τ = S(s). Then

µ(τk+1D) + µ(τk−1D) ≥ 2µ(τkD).
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The sequence {µ(τkD)} is convex and bounded. Hence, it has to be constant,
in particular µ(τ−1D) = µ(D).

10. Feynman-Kac formula for density matrix kernel

The idea goes back to Jean Ginibre, Paris-Sud 11 University.

(
exp

[
− βHΛ

]
φ
)

(xΛ) =
∫
MΛ

∏
j∈Λ

v(dy(j))Kβ,Λ(xΛ,yΛ)φ(yΛ). (10.1)

The integral kernel Kβ,Λ(xΛ,yΛ) admits a Feynman–Kac (FK) integral repre-
sentation

Kβ,Λ(xΛ,yΛ) =
∫

W
β

xΛ,yΛ

Pβ
xΛ,yΛ

(dωΛ) exp
[
− hΛ(ωΛ)

]
. (10.2)

Define an energy for a path configuration ωΛ = {ωj , j ∈ Λ} over Λ,

hΛ(ωΛ) =
∑

(j,j′)∈Λ×Λ

hj,j
′
(ωj , ωj′)

where hj,j
′
(ωj , ωj′) represents an integral along trajectories ωj and ωj′ :

hj,j
′
(ωj , ωj′) = J(d(j, j′))

β∫
0

dτ V
(
ωj(τ), ωj′(τ)

)
.

hj,j
′
(ωj , ωj′) yields the ‘energy of interaction’ between trajectories ωj and ωj′ ,

and hΛ(ωΛ) equals the ‘full potential energy’ of the path configuration ωΛ.

11. Breaking of continuous symmetry

Theorem 5. Take Γ = Z2 with distance d(j, j′) = max
[
|j1 − j′1|, |j2 − j′2|

]
.

Take M = S1 = G where S1 = R/Z is a unit circle, with a standard metric
ρ(x, x′) = min

[
|x − x′|, 1 − |x − x′|

]
and the group operation of addition mod

1. Assume that the two-body potentials J(d(j, j′)) and V (x, x′), j, j′ ∈ Z2,
x, x′ ∈ S1, are of the form

J(d(j, j′)) = 1, |j − j′| = 1,
= 0, |j − j′| 6= 1,

V (x, x′) = − cos 2π(x− x′), ρ(x, x′) ≤ θ,
= +∞, ρ(x, x′) > θ,
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where θ ∈ (0, 1/4). Then, ∀ β ∈ (0,∞), ∃ a measure µ̃ = µ̃β which is not S1-
invariant. Consequently, the corresponding state ϕ̃ = ϕ̃

µ̃
is not S1-invariant.

Theorem 5: a sketch of the proof:
Consider a sequence of ‘cooled’ boundary conditions x∗ and a measure µ∗

which is a limiting point of Gibbs measures in Λn. If µ∗ is not rotation invariant,
we are done. Otherwise, select an arc α = (x∗ − 1/200, x∗ + 1/200). So, the
weight of α < 1/99 for n large enough. Next, given η ∈ (0, 1] consider a sequence
of boundary conditions

x̃j,η = x∗ + j1ηθ, j = (j1, j2).

For η = 1 ∃ unique compatible configuration inside the box. Hence, ∀n ∃
η∗ ∈ (0, 1) such that the weight of α = 2/3. Any limiting point of this sequence
is not rotation invariant.
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12. Dobrushin-Lanford-Ruelle (DLR) equations in quantum statis-
tics

The standard approach to phase transitions in quantum statistics are KMS
(Kubo-Martin-Schwinger) states. In Heisenberg picture ατ (A) := eiHτAe−iHτ

〈ατ (A)B〉β = Tr[Rατ (A)B]
= Tr[RBατ+iβ ] = 〈Bατ+iβ(A)〉β .

(12.1)

RHS and LHS of (12.1) are the boundary values of an analytic function of z. If
there is a phase transition or spontaneous symmetry breaking, the KMS state
is not unique. In the case of the density matrix R with positive elements we
develop a simpler approach based on the DLR equations. Define

pΛ(xΛ,ωΛ) =
1

ΞΛ
exp

[
− hΛ(ωΛ)

]
(12.2)

Given Λ0 ⊂ Λ consider the partially integrated probability density

pΛ0

Λ (ω0) :=
∫
WΛ\Λ0

dνΛ\Λ0(ωΛ\Λ0)pΛ(ω0 ∨ ωΛ\Λ0)

where ω0 ∨ ωΛ\Λ0 stands for concatenation of two loop configurations.

DLR equations: ∀ set Λ′ such that Λ0 ⊂ Λ′ ⊂ Λ, the density pΛ0

Λ (ω0)
obeys

pΛ0

Λ (ω0) =
∫
WΛ\Λ′

dνΛ\Λ′(ωΛ\Λ′)

×pΛ\Λ′
Λ (ωΛ\Λ′)

ΞΛ′\Λ0(ω0,ωΛ\Λ′)
ΞΛ′(ωΛ\Λ′)

.

Define the class of infinite-volume Gibbs states G(β) satisfying DLR equa-
tions.

Theorem 6. For all β ∈ (0,∞), the sequence of Gibbs states ϕΛ(n) contains a
subsequence ϕΛ(nk) such that ∀ finite Λ0 ⊂ Γ and A0 ∈ BΛ0 , we have:

lim
k→∞

ϕΛ(nk)(A0) = ϕ(A0)

where state ϕ ∈ G(β). Consequently, class G(β) is non-empty.

Theorem 7. For all β ∈ (0,∞) and finite Λ0 ⊂ Γ, any Gibbs state ϕ ∈ G(β) is
G− invariant.
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