
Empirical Bayes Unfolding of Elementary Particle
Spectra at the Large Hadron Collider

Mikael Kuusela
Institute of Mathematics,

EPFL

Statistics Seminar,
University of Bristol

June 13, 2014

Joint work with Victor M. Panaretos

Mikael Kuusela (EPFL) Empirical Bayes Unfolding June 13, 2014 1 / 26



CERN and the Large Hadron Collider

Mikael Kuusela (EPFL) Empirical Bayes Unfolding June 13, 2014 2 / 26



CMS Experiment at the LHC
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Statistics at CERN

Hypothesis testing / interval estimation with a large number of
nuisance parameters

Higgs boson, supersymmetry, beyond Standard Model physics,...

Nonparametric multiple regression

Energy response calibration

Statistical inverse problems

Unfolding

Classification

Improve S/B ratio, particle identification, triggering

Pattern recognition

Particle tracking

Mikael Kuusela (EPFL) Empirical Bayes Unfolding June 13, 2014 4 / 26



The Unfolding Problem

Any measurement carried out at the LHC is affected by the finite
resolution of the particle detectors

This causes the observed spectrum of events to be “smeared” or
“blurred” with respect to the true one

The unfolding problem is to estimate the true spectrum using the
smeared observations

Mathematically closely related to deblurring in optics and tomographic
image reconstruction in medical imaging
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Unfolding is an Ill-Posed Inverse Problem

The main issue in unfolding is the ill-posedness of the mapping from
the true spectrum to the smeared spectrum

The (pseudo)inverse of this mapping is very sensitive to small
perturbations of the data

Need to regularize the problem by introducing additional information
about plausible solutions

Current “state-of-the-art”:
1 EM iteration with early stopping
2 Generalized Tikhonov regularization

Two major challenges:
1 How to choose the regularization strength?
2 How to quantify the uncertainty of the solution?

In this talk, we propose an empirical Bayes unfolding framework for
tackling these issues
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Problem Formulation Using Poisson Point Processes (1)

The appropriate mathematical model for unfolding is that of indirectly
observed Poisson point processes

A random measure M is a Poisson point process with intensity
function f and state space E iff

1 M(B) ∼ Poisson(λ(B)), where λ(B) =
∫
B
f (s) ds, for every Borel set

B ⊂ E
2 M(B1), . . . ,M(Bn) are independent random variables for disjoint Borel

sets B1, . . . ,Bn ⊂ E

The intensity function f uniquely characterizes the law of M

I.e., all the information about the behavior of M is contained in f
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Problem Formulation Using Poisson Point Processes (2)

Let M and N be two Poisson point processes with intensities f and g
and state spaces E and F , respectively

Assume that M represents the true, particle-level events and N the
smeared, detector-level events

Then

g(t) = (Kf )(t) =

∫
E
k(t, s)f (s) ds,

where the smearing kernel k represents the response of the detector
and is given by

k(t, s) = p(Yi = t|Xi = s, ith event observed)P(ith event observed|Xi = s),

where Xi is the ith true event and Yi the corresponding smeared event

Task: Estimate f given a single realization of the process N
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Empirical Bayes Unfolding

We propose to estimate f based on the following key principles:
1 Discretization of the true intensity f using a cubic B-spline basis

expansion, that is,

f (s) =

p∑
j=1

βjBj(s),

where Bj , j = 1, . . . , p, are the B-spline basis functions
2 Posterior mean estimation of the B-spline coefficients

β = [β1, . . . , βp]T

3 Empirical Bayes selection of the scale δ of the regularizing
smoothness prior p(β|δ)

4 Frequentist uncertainty quantification and bias correction using the
parametric bootstrap
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Discretization of the Problem

Let {Fi}ni=1 be a partition of the smeared space F with n intervals

Let yi = N(Fi ) be the number of points observed in interval Fi
I.e., we record the observations into a histogram y = [y1, . . . , yn]T

Then

E(yi |β) =

∫
Fi

g(t) dt =

∫
Fi

∫
E
k(t, s)f (s) ds dt

=

p∑
j=1

(∫
Fi

∫
E
k(t, s)Bj(s) ds dt︸ ︷︷ ︸

:=Ki,j

)
βj =

p∑
j=1

Ki ,jβj

Hence, we need to solve the Poisson regression problem

y|β ∼ Poisson(Kβ)

for an ill-conditioned matrix K
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Bayesian Estimation of the Spline Coefficients

Posterior for β:

p(β|y, δ) =
p(y|β)p(β|δ)

p(y|δ)
, β ∈ Rp

+,

where the likelihood is given by

p(y|β) =
n∏

i=1

(
∑p

j=1 Ki,jβj)
yi

yi !
e−

∑p
j=1 Ki,jβj , β ∈ Rp

+

We regularize the problem using the Gaussian smoothness prior

p(β|δ) ∝ exp
(
−δ‖f ′′‖2

2

)
= exp

(
−δβTΩβ

)
, β ∈ Rp

+,

with δ > 0 and Ωi,j =
∫
E
B ′′i (s)B ′′j (s) ds

This becomes a proper pdf once we impose Aristotelian boundary
conditions

We use a single-component Metropolis–Hastings algorithm to sample from
the posterior

The univariate proposal densities are chosen to approximate the full
conditionals p(βk |β−k , y, δ) of the Gibbs sampler as proposed by
Saquib et al. (1998)
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Empirical Bayes Estimation of the Hyperparameter

We propose choosing the hyperparameter δ (i.e. the regularization
parameter) via marginal maximum likelihood:

δ̂ = δ̂(y) = arg max
δ>0

p(y|δ) = arg max
δ>0

∫
Rp

+

p(y|β)p(β|δ) dβ

The marginal maximum likelihood estimate δ̂ is found using a Monte
Carlo expectation-maximization algorithm (Geman and McClure,
1985, 1987; Saquib et al., 1998):

E-step: Sample β(1), . . . ,β(S) from the posterior p(β|y, δ(t))
and compute Q(δ; δ(t)) = 1

S

∑S
s=1 log p(β(s)|δ)

M-step: Set δ(t+1) = arg max δ>0 Q(δ; δ(t))

The spline coefficients β are then estimated using the mean of the
empirical Bayes posterior: β̂ = E(β|y, δ̂)

The estimated intensity is f̂ (s) =
∑p

j=1 β̂jBj(s)
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What Does Empirical Bayes Do?

δ̂ = arg max
δ>0

p(y|δ) = arg max
δ>0

∫
p(y|θ)p(θ|δ) dθ

p(θ|δ)
p(y|θ)

2×
∫
p(y|θ)p(θ|δ) dθ

θ
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Empirical Bayes vs. Hierarchical Bayes

Hierarchical Bayes is a natural alternative for empirical Bayes

But need to choose the hyperprior p(δ)

It is a priori unclear how this should be done
Different choices can result in non-negligible differences in the posterior
The choice is not necessarily invariant under reparametrizations

Empirical Bayes on the other hand:

Chooses a unique, “best” regularizer among the family of
priors {p(β|δ)}δ>0

Requires only the choice of the family {p(β|δ)}δ>0

Is by construction transformation invariant

Empirical Bayes has become part of the standard methodology in
generalized additive models (Wood, 2011) and Gaussian processes
(Rasmussen and Williams, 2006)

What about inverse problems?
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Uncertainty Quantification and Bias Correction (1)

The credible intervals of the empirical Bayes posterior p(β|y, δ̂) could
in principle be used to make confidence statements about f

But due to the data-driven choice of the prior, these intervals lose their
subjective Bayesian interpretation
Furthermore, their frequentist properties are poorly understood

Instead, we propose using the parametric bootstrap to construct
frequentist confidence bands for f :

1 Obtain a resampled observation y∗

2 Rerun the MCEM algorithm with y∗ to find δ̂∗ = δ̂(y∗)
3 Compute β̂∗ = E(β|y∗, δ̂∗)
4 Obtain f̂ ∗(s) =

∑p
j=1 β̂

∗
j Bj(s)

5 Repeat R times

The bootstrap sample {f̂ ∗(r)}Rr=1 is then used to compute
approximate frequentist confidence intervals for f (s) for each s ∈ E

This procedure also takes into account uncertainty regarding the
choice of the hyperparameter δ
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Uncertainty Quantification and Bias Correction (2)

One can envisage various ways of obtaining the resampled
observations y∗ and of using the bootstrap sample {f̂ ∗(r)}Rr=1 to
compute approximate frequentist confidence bands

We propose using:

Resampling: y∗
i.i.d.∼ Poisson(Kβ̂), where β̂ = E(β|y, δ̂)

Intervals: Pointwise 1− 2α basic bootstrap intervals, given by

[2f̂ (s)− f̂ ∗1−α(s), 2f̂ (s)− f̂ ∗α (s)]

Here f̂ ∗α (s) denotes the α-quantile of the bootstrap sample evaluated
at point s ∈ E

The bootstrap may also be used to correct for the unavoidable bias in
the point estimate f̂

Bootstrap estimate of the bias: b̂ias
∗(
f̂ (s)

)
= 1

R

∑R
r=1 f̂

∗(r)(s)− f̂ (s)

Bias-corrected point estimate: f̂BC(s) = f̂ (s)− b̂ias
∗(
f̂ (s)

)
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Demonstration: Setup

True intensity

f (s) = λtot

{
π1N (s| − 2, 1) + π2N (s|2, 1) + π3

1

|E |

}
,

with π1 = 0.2, π2 = 0.5 and π2 = 0.3

Smeared intensity

g(t) =

∫
E
N (t − s|0, 1)f (s) ds

E = F = [−7, 7], discretized using n = 40 histogram bins and p = 30
B-spline basis functions

The condition number of the smearing matrix K is 2.6 · 108

⇒ Problem severely ill-posed!
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Demonstration: Empirical Bayes Unfolding, λtot = 20 000
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(a) Empirical Bayes unfolding with λ
tot

 = 20000
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Figure : Empirical Bayes unfolding, λtot = 20 000, 95 % pointwise basic intervals
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Demonstration: Empirical Bayes Unfolding, λtot = 1 000
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Figure : Empirical Bayes unfolding, λtot = 1 000, 95 % pointwise basic intervals
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Demonstration: Hierarchical Bayes Unfolding, λtot = 1 000
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Figure : Hierarchical Bayes, δ ∼ Gamma(1, 0.05), 95 % credible intervals
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Demonstration: Hierarchical Bayes Unfolding, λtot = 1 000
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(a) Hierarchical Bayes unfolding with λ
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 = 1000
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Figure : Hierarchical Bayes, δ ∼ Gamma(0.001, 0.001), 95 % credible intervals
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Z → e+e−: Setup

We demonstrate empirical Bayes unfolding with real data by unfolding
the Z → e+e− invariant mass spectrum measured in CMS

The data are published in Chatrchyan et al. (2013) and correspond to
integrated luminosity of 4.98 fb−1 collected in 2011 at

√
s = 7 TeV

67 778 “high quality” electron-positron pairs with invariant masses
65–115 GeV in 0.5 GeV bins

Response: convolution with the Crystal Ball function

CB(m|∆m, σ2, α, γ) =

Ce−
(m−∆m)2

2σ2 , m−∆m
σ > −α,

C
(
γ
α

)γ
e−

α2

2

(
γ
α − α−

m−∆m
σ

)−γ
, m−∆m

σ ≤ −α

CB parameters estimated with maximum likelihood using 30 % of the
data assuming that the true intensity is the non-relativistic
Breit–Wigner with PDG values for the Z mass and width

Only the remaining 70 % used for unfolding
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Z → e+e−: Event Display
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Z → e+e−: Empirical Bayes Unfolding
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Figure : Empirical Bayes unfolding with bias correction and 95 % pointwise
basic intervals
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Conclusions

We have introduced an empirical Bayes unfolding framework which
enables a principled choice of the regularization parameter and
frequentist uncertainty quantification
Our studies are motivated by a real-world data analysis problem
at CERN

We work in direct collaboration with CERN physicists to improve the
unfolding techniques used in LHC data analysis

Our method provides reasonable estimates in very challenging
unfolding scenarios
Uncertainty quantification in unfolding is hampered by the presence
of an unavoidable bias from the regularization

But basic bootstrap resampling still provides an encouraging first
approximation

Further details in:
Kuusela, M. and Panaretos, V. M. (2014). Empirical Bayes unfolding of
elementary particle spectra at the Large Hadron Collider. arXiv:1401.8274
[stat.AP].
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Backup
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Intuition on the Basic Bootstrap Intervals

Inversion of a CDF pivot (“Neyman construction”):

[θ̂L, θ̂U ] s.t.

∫ θ̂0

−∞
p(θ̂|θ = θ̂U) dθ̂ = α,

∫ θ̂0

−∞
p(θ̂|θ = θ̂L) dθ̂ = 1− α

α α

p(θ̂|θ = θ̂0)

p(θ̂|θ = θ̂U)p(θ̂|θ = θ̂L)

θ̂L θ̂0 θ̂U
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Intuition on the Basic Bootstrap Intervals

Basic bootstrap interval: [θ̂L, θ̂U ] = [2θ̂0 − θ̂∗1−α, 2θ̂0 − θ̂∗α]

α α

p(θ̂|θ = θ̂0) = g(θ̂)

g(θ̂ + θ̂0 − θ̂U)g(θ̂ + θ̂0 − θ̂L)

θ̂L θ̂0 θ̂U
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Demonstration: Setup

λtot 1 000 20 000

MCEM iterations 30 20

δ(0) 1 · 10−5

MCMC sample size during EM 1 000 500

MCMC sample size for β̂ 1 000

R 200

Running time for f̂ 9 min 3 min

Running time with bootstrap 9 h 56 min 3 h 36 min
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Z → e+e−: Setup

We unfold the n = 30 bins on the interval F = [82.5 GeV, 97.5 GeV] and
use p = 38 B-spline basis functions to reconstruct the true intensity on the
interval E = [81.5 GeV, 98.5 GeV]

Here p > n facilitates the mixing of the MCMC sampler and E ) F
accounts for boundary effects

Other parameters:

MCEM iterations 20

δ(0) 1 · 10−6

MCMC sample size during EM 500

MCMC sample size for β̂ 5 000

R 200

Running time for f̂ 5 min

Running time with bootstrap 6 h 13 min
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Aristotelian Boundary Conditions (1)

The prior p(β|δ) ∝ exp
(
−δβTΩβ

)
with Ωi ,j =

∫
EB
′′
i (s)B ′′j (s) ds is

potentially improper since Ω has rank p − 2
If the prior is improper, then the marginal p(y|δ) is also improper and it
makes no sense to use empirical Bayes for estimating δ

The problem can be solved by imposing the so called Aristotelian
boundary conditions
That is, we condition on the unknown boundary values of f (or
equivalently on β1 and βp) and place additional hyperpriors on these
values:

p(β|δ) = p(β2, . . . , βp−1|β1, βp, δ)p(β1|δ)p(βp|δ), β ∈ Rp
+,

with

p(β2, . . . , βp−1|β1, βp, δ) ∝ exp(−δβTΩβ),

p(β1|δ) ∝ exp
(
−δγLβ2

1

)
,

p(βp|δ) ∝ exp
(
−δγRβ2

p

)
,

where γL, γR > 0 are fixed constants
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Aristotelian Boundary Conditions (2)

As a result p(β|δ) ∝ exp
(
−δβTΩAβ

)
where the elements of ΩA are

given by

ΩA,i ,j =


Ωi ,j + γL, if i = j = 1,

Ωi ,j + γR, if i = j = p,

Ωi ,j , otherwise

The augmented matrix ΩA is positive definite and hence the modified
prior is a proper pdf

The Aristotelian prior has the added benefit that by controlling γL
and γR we are able to control the variance of f̂ near the boundaries

In our numerical experiments we had:

Gaussian mixture model data: γL = γR = 5
Z → e+e− data: γL = γR = 70
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Demonstration: No regularization
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Figure : Unfolding of the Gaussian mixture model data (λtot = 20 000)
without regularization.
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Convergence of MCEM
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Figure : Convergence of the MCEM algorithm for estimating the hyperparameter δ
with the Gaussian mixture model data
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MCMC Diagnostics
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Figure : Convergence and mixing diagnostics for the single-component
Metropolis–Hastings sampler for variables β5 and β21 with the Gaussian mixture
model data with λtot = 20 000: from left to right, the trace plots, histograms,
estimated autocorrelation functions and cumulative means of the samples.
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Convergence of Empirical Bayes Unfolding
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Figure : Convergence of the mean integrated squared error (MISE) with the
Gaussian mixture model data as the expected sample size λtot grows. The error
bars indicate approximate 95 % confidence intervals.
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Monte Carlo EM Algorithm for Finding the MMLE

The Monte Carlo EM algorithm (Geman and McClure, 1985, 1987; Saquib
et al., 1998) for finding the marginal maximum likelihood estimate δ̂:

1 Pick some initial guess δ(0) > 0 and set t = 0
2 E-step:

1 Sample β(1),β(2), . . . ,β(S) from the posterior p(β|y, δ(t))
2 Compute:

Q(δ; δ(t)) =
1

S

S∑
s=1

log p(β(s)|δ)

3 M-step: Set δ(t+1) = arg max
δ>0

Q(δ; δ(t))

4 Set t ← t + 1

5 If some stopping rule is satisfied, set δ̂ = δ(t) and terminate the
iteration, else go to step 2
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B-Spline Basis Functions
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Details of the MCMC Implementation (1)

We use the single-component Metropolis–Hastings sampler of Saquib et al. (1998)

The kth full conditional satisfies

log p(βk |β−k , y, δ) =
n∑

i=1

yi log

( p∑
j=1

Ki,jβj

)
−

n∑
i=1

p∑
j=1

Ki,jβj

− δ
p∑

i=1

p∑
j=1

Ωi,jβiβj + const := f (βk ,β−k)

Taking a 2nd order Taylor expansion of the log-term around the current position
βk of the Markov chain, we find

f (β∗k ,β−k) ≈d1,k(β∗k − βk) +
d2,k

2
(β∗k − βk)2

− δ
(

Ωk,k(β∗k )2 + 2
∑
i 6=k

Ωi,kβiβ
∗
k

)
+ const := g(β∗k ,β),

where

d1,k = −
n∑

i=1

Ki,k

(
1− yi

µi

)
, d2,k = −

n∑
i=1

yi

(
Ki,k

µi

)2

with µ = Kβ
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Details of the MCMC Implementation (2)

As a function of β∗k , the approximate full conditional

g(β∗k ,β) =d1,k(β∗k − βk) +
d2,k

2
(β∗k − βk)2

− δ
(

Ωk,k(β∗k)2 + 2
∑
i 6=k

Ωi ,kβiβ
∗
k

)
+ const

is a Gaussian with mean

mk =
d1,k − d2,kβk − 2δ

∑
i 6=k Ωi ,kβi

2δΩk,k − d2,k

and variance

σ2
k =

1

2δΩk,k − d2,k
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Details of the MCMC Implementation (3)

If mk ≥ 0, the proposal β∗k is sampled from N (mk , σ
2
k) truncated

to [0,∞)

If mk < 0, the proposal β∗k is sampled from Exp(λ) with

∂

∂β∗k
log p(β∗k |β)

∣∣∣
β∗k =0

=
∂

∂β∗k
g(β∗k ,β)

∣∣∣
β∗k =0

giving λ = −d1,k + d2,kβk + 2δ
∑

i 6=k Ωi ,kβi

Denote: p(β∗k |β) := q(β∗k , βk ,β−k), p(β|y, δ) := h(βk ,β−k)

The acceptance probability for the kth component of the
single-component Metropolis–Hastings algorithm is given by

a(β∗k ,β) = min

{
1,

h(β∗k ,β−k)q(βk , β
∗
k ,β−k)

h(βk ,β−k)q(β∗k , βk ,β−k)

}
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The Expectation-Maximization Algorithm

The EM algorithm is an iterative method for finding the maximum of
the likelihood L(θ; y) = p(y|θ)

Applies in cases where the data y can be seen as an incomplete
version of some complete data x (that is, y = g(x)) with
complete-data likelihood L(θ; x) = p(x|θ)

The EM iteration:
1 Pick some initial guess θ(0) and set t = 0
2 E-step: Compute Q(θ;θ(t)) = E(log p(x|θ)|y,θ(t))
3 M-step: Set θ(t+1) = arg max θ Q(θ;θ(t))
4 Set t ← t + 1
5 If some stopping rule is satisfied, set θ̂MLE = θ(t) and terminate the

iteration, else go to step 2

The EM iteration never decreases the incomplete-data likelihood

That is, L(θ(t+1); y) ≥ L(θ(t); y) for all t = 0, 1, 2, . . .
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