
Community detection with spectral methods

Marc Lelarge 1

Charles Bordenave2 Laurent Massoulié3 Jiaming Xu4

1INRIA-ENS

2CNRS Université de Toulouse

3INRIA-Microsoft Research Joint Centre

4UIUC

University of Bristol, November 2014



Motivation

Community detection in social or biological networks in the
sparse regime with a small average degree.

Performance analysis of spectral algorithms on a toy model
(where the ground truth is known!).
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A model: the stochastic block model



The sparse stochastic block model

A random graph model on n nodes with three parameters,
a,b, c ≥ 0.
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The sparse stochastic block model

A random graph model on n nodes with three parameters,
a,b, c ≥ 0.

Independently for each
pair (u, v):

if σu = σv = +1, draw
the edge w.p. a/n.
if σu 6= σv , draw the
edge w.p. b/n.
if σu = σv = −1, draw
the edge w.p. c/n.

a/n, b/n, c/n.



Community detection problem

Reconstruct the underlying communities (i.e. spin
configuration σ) based on one realization of the graph.
Asymptotics: as n→∞, the parameters a,b, c might
depend of n and tend to infinity as well.
Sparse graph: in all cases, max(a,b, c)/n→ 0.
2 notions of performance:
w.h.p. o(n) vertices are misclassified = almost exact
partition
w.h.p. strictly less than half of the vertices are misclassified
= positively correlated partition.
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A first attempt: looking at degrees

Degree in community +1 is:
D+ ∼ Bin

(n
2 − 1, a

n

)
+ Bin

(n
2 ,

b
n

)
As soon as max(a,b)

n → 0, we have

E[D+] ≈ a + b
2

, and Var(D+) ≈ a + b
2

.

and similarly, in community −1:

E[D−] ≈ c + b
2

, and Var(D−) ≈ c + b
2

.

Clustering based on degrees should ’work’ as soon as:

(E[D+]− E[D−])2 � max(Var(D+),Var(D−))

i.e. (ignoring constant factors)

(a− c)2 � b + max(a, c).
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Is it any good?

Data: A the adjacency matrix of the graph.
We define the mean column for each community:

A+ =
1
n



a
...
a
b
...
b


, and A− =

1
n



b
...
b
c
...
c


The variance of each entry is ≤ max(a,b, c)/n.
Pretend the columns are i.i.d., spherical Gaussian and k = n!



Clustering a mixture of Gaussians

Consider a mixture of two spherical Gaussians in Rn with
respective means m1 and m2 and variance σ2.
Pb: given k samples ∼ 1/2N (m1, σ

2) + 1/2N (m2, σ
2), recover

the unknown parameters m1, m2 and σ2.



Doing better than naive algorithm

If ‖m1 −m2‖2 � nσ2, then the densities ’do not overlap’ in Rn.

Projection preserves variance σ2. So projecting onto the line
formed by m1 and m2 gives 1-dim. Gaussian variables with no
overlap as soon as ‖m1 −m2‖2 � σ2. We gain a factor of n.
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Algorithm for clustering a mixture of Gaussians

Each sample is a column of the following matrix:

A = (A1,A2, . . . ,Ak ) ∈ Rn×k

Consider the SVD of A:

A =
n∑

i=1

λiuivT
i , ui ∈ Rn, vi ∈ Rk , λ1 ≥ λ2 ≥ . . .

Then the best approximation for the direction (m1,m2) given by
the data is u1.

Project the points from Rn onto this line and then do clustering.
Provided k is large enough, this ’works’ as soon as:
‖m1 −m2‖2 � σ2.



Back to our clustering problem

Data: A the adjacency matrix of the graph.
The mean columns for each community are:

A+ =
1
n



a
...
a
b
...
b


, and A− =

1
n



b
...
b
c
...
c


The variance of each entry is ≤ max(a,b, c)/n.



Heuristics for community detection

The naive algorithm should work as soon as

‖A+ − A−‖2 � n
max(a,b, c)

n︸ ︷︷ ︸
Var

(a− b)2 + (b − c)2 � n max(a,b, c)

Spectral clustering should allow you a gain of n, i.e.

(a− b)2 + (b − c)2 � max(a,b, c)

Our previous analysis shows that clustering based on degrees
works as soon as

(a− c)2 � max(a,b, c).

When a = c, no information given by the degrees.
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Symmetric model: a = c

Symmetric model: total population of size n splitted in 2 equal
size communities. Probability of an edge intra: a/n and inter
b/n.
As a result, the degree in each community is:
D+ ∼ D− ∼ D ∼ Bin

(n
2 − 1, a

n

)
+ Bin

(n
2 ,

b
n

)
.

Are we close to the Gaussian case?
Degree is a projection so is it Gaussian?

if a + b →∞, then D ≈ a+b
2 +

√
a+b

2 N (0,1)

if a + b ≺ ∞, then D ≈ Poi
(a+b

2

)
.

Additional difficulties: the matrix A is symmetric, i.e. non i.i.d.
columns and the number of samples is equal to the dimension
n.
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Efficiency of Spectral Algorithms

Boppana ’87, Condon, Karp ’01, Carson, Impagliazzo ’01,
McSherry ’01, Kannan, Vempala, Vetta ’04...

Theorem

Suppose that for sufficiently large K and K ′,

(a− b)2

a + b
≥ (�)K + K ′ ln (a + b) ,

then ’trimming+spectral+greedy improvement’ outputs a
positively correlated (almost exact) partition w.h.p.

Coja-Oghlan ’10
Heuristic based on analogy with mixture of Gaussians:

(a− b)2 � a + b



Phase transition

Theorem

If τ > 1, then positively correlated reconstruction is possible.
If τ < 1, then positively correlated reconstruction is impossible.

τ =
(a− b)2

2(a + b)
.

Conjectured by Decelle, Krzakala, Moore, Zdeborova ’11 based
on statistical physics arguments.

Non-reconstruction proved by Mossel, Neeman, Sly ’12.
Reconstruction proved by Massoulié ’13 and Mossel,
Neeman, Sly ’13.
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2 improvements

In the case a,b →∞, we remove the log factor in
Coja-Oghlan’s result.

In the case a,b finite, we compute the detectability threshold
using the non-backtracking operator .
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Spectral analysis

Assume that a→∞, and a− b ≈
√

a + b so that a ∼ b.

A =
a + b

2
1√
n

1T
√

n
+

a− b
2

σ√
n
σT
√

n
+ A− E[A]

a+b
2 is the mean degree and degrees in the graph are very

concentrated if a � ln n. We can construct

A− a + b
2n

J =
a− b

2
σ√
n
σT
√

n
+ A− E[A]
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Spectrum of the noise matrix

The matrix A− E[A] is a symmetric random matrix with
independent centered entries having variance ∼ a

n .
To have convergence to the Wigner semicircle law, we need to
normalize the variance to 1

n .

ESD
(

A− E[A]√
a

)
→ µsc(x) =

{ 1
2π

√
4− x2, if |x | ≤ 2;

0, otherwise.



Naive spectral analysis

To sum up, we can construct:

M =
1√
a

(
A− a + b

2n
J
)

= θ
σ√
n
σT
√

n
+

A− E[A]√
a

,

with θ = a−b√
2(a+b)

.

We should be able to detect signal as soon as

θ > 2⇔ (a− b)2

2(a + b)
> 4



Naive spectral analysis

To sum up, we can construct:

M =
1√
a

(
A− a + b

2n
J
)

= θ
σ√
n
σT
√

n
+

A− E[A]√
a

,

with θ = a−b√
2(a+b)

.

We should be able to detect signal as soon as

θ > 2⇔ (a− b)2

2(a + b)
> 4



We can do better!

A lower bound on the spectral radius of M = θ σ√
n
σT
√

n + W :

λ1(M) = sup
‖x‖=1

‖Mx‖ ≥ ‖M σ√
n
‖

But

‖M σ√
n
‖2 = θ2 + ‖W σ√

n
‖2 + 2〈W ,

σ√
n
〉

≈ θ2 +
1
n

∑
i,j

W 2
ij

≈ θ2 + 1.

As a result, we get

λ1(M) > 2⇔ θ > 1⇔ (a− b)2 > 2(a + b).
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Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

λ1(θσσT + W )
a.s→
{
θ + 1

θ if θ > 1,
2 otherwise.

Let σ̃ be the eigenvector associated with λ1(θuuT + W ), then

|〈σ̃, σ〉|2 a.s→
{

1− 1
θ2 if θ > 1,

0 otherwise.

Watkin Nadal ’94, Baik, Ben Arous, Péché ’05



Phase transition for a→∞

Proposition

Assume a � ln n. Then the simple spectral method outputs an
almost exact partition, provided (a−b)2

(a+b) � 1. Moreover, no

algorithm can find an almost exact parition if (a−b)2

(a+b) ≺ 1.

If a ≥ ln4 n, then the simple spectral method outputs a
positively correlated partition, provided

(a− b)2

(a + b)
> 2.

Proof: control the spectral norm thanks to Vu ’05 and adapt the
argument in Benaych-Georges, Nadakuditi ’11.
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Spectral Algorithm

Original adjacency matrix with 2 communities. a = 120, b = 92,
θ = a−b√

2(a+b)
= 1.46385...
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Spectral Algorithm

Rank-1 approximation of the adjacency matrix. a = 120,
b = 92, θ = a−b√

2(a+b)
= 1.46385...



Spectral Algorithm: more communities

Original adjacency matrix with 5 communities.



Spectral Algorithm: more communities

Spectrum of the original adjacency matrix.



Spectral Algorithm: more communities

Rank-4 approximation of the adjacency matrix.



Extension: r symmetric communities

Proposition

Assume a ≥ ln4 n and r ≥ 2 symmetric communities. Then the
clustering problem is solvable by the simple spectral method,
provided

(a− b)2

r(a + (r − 1)b)
> 1.



A parenthesis: Ramanujan graph

Spectral method perfoms well on matrices enjoying a spectral
separation property.
For a d-regular graph G, the relaxation of the minimum
bisection computes the second eigenvalue λ2:

max
∑
(u,v)

σuAuvσv

s.t.
∑

i

σi = 0, ‖σ‖2 = 1.

G is Ramanujan if max|λi |<d |λi | ≤
√

d − 1. Ramanujan graphs
maximize the spectral gap.
Random d-regular graphs are Ramanujan Friedman ’08
Erdős-Rényi graphs with average degree d are such that
ρ(A− dJ) ≤ O(

√
d) provided d � log n Feige Ofek ’05
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Problems when the average degree is finite

High degree nodes: a star with degree d has eigenvalues
{−
√

d ,0,
√

d}.
In the regime where a and b are finite, the degrees are
asymptotically Poisson with mean a+b

2 . The adjacency

matrix has Ω

(√
ln n

ln ln n

)
eigenvalues.

Low degree nodes: instead of the adjacency matrix, take
the (normalized) Laplacian but then isolated edges
produce spurious eigenvalues.

One solution: trimming is working for the SBM. But what if the
degree distribution is more skewed?
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Non-backtracking matrix

Let ~E = {(u, v); {u, v} ∈ E} be the set of oriented edges,
m = |~E |.
If e = (u, v) ∈ ~E , we denote e1 = u and e2 = v .

The non-backtracking matrix is an m ×m matrix defined by

Bef = 1(e2 = f1)1(e1 6= f2)

B is NOT symmetric: BT 6= B. We denote its eigenvalues by
λ1, λ2, . . . with λ1 ≥ · · · ≥ |λm|.
Proposed by Krzakala et al. ’14.



Connection with a multi-type branching process

Idea 1: iterating B counts the number of non-backtracking
walks.
Stars (indeed trees) will have only zero as eigenvalues.
Idea 2: couple the local structure of the random graphs with a
branching process.
Each individual has a Poi(a/2) number of children of the same
type and a Poi(b/2) number of children from the opposite type.
Let Zt = (Z+

t ,Z
−
t ) be the population at generation t .
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Convergence of martingales

The mean progeny matrix

1
2

(
a b
b a

)
has eigenvalues α = a+b

2 with eigenvector
(1

1

)
and β = a−b

2 with
eigenvector

( 1
−1

)
.

The martingales

Mt =
Z+

t + Z−t
αt , Nt =

Z+
t − Z−t
βt

converge a.s. and in L2 as soon as β2 > α.

If β2 < α, then Z+
t −Z−

t
αt/2 converges weakly to a random variable

with finite variance.
Kesten Stigum ’66



Spectrum of the non-backtracking matrix

If β2 > α, then there are two eigenvalues: λ1 = α and λ2 = β
out of the bulk |λ3| ≤

√
α + o(1).

β2 > α⇔ (a− b)2 > 2(a + b).



The non-backtracking matrix on real data

from Krzakala, Moore, Mossel, Neeman, Sly, Zdeborovà ’13



Extensions

For the labeled stochastic block model, we also conjecture
a phase transition. We have partial results and an ’optimal’
spectral algorithm.
Some results for models with latent space allowing to relax
the low-rank assumption and overlapping communities. If
the signal strength is at least log n, then consistent
estimation of the edge label distribution is possible.
Connections with the reconstruction problem on a tree and
conjectures about computational complexity phase
transition.
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