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Introduction

In many contexts, valuable to have criteria for determining whether one set of
random variables displays a greater degree of dependence than another. Here
we adopt the “stochastic dominance approach”:

Relate partial orderings expressed directly in terms of joint prob. dists. to
orderings expressed indirectly through properties of objective functions
whose expectations are used to evaluate the dists.

Since expectations of additively separable functions depend only on marginal
dists., attitudes towards dependence must be represented through
non-separability properties.

Motivated by economic applications, we propose “supermodularity”
(Topkis, 1978) to capture a preference for greater dependence.

The arguments of supermodular functions are “complementary”:
cross-partial derivatives are non-negative.

Our objectives: To characterize the “supermodular stochastic ordering”
and related orderings, identify sufficient conditions in specific environments,
and explore applications.
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Overview

1 Motivations

Economic motivations/applications
Why aren’t familiar tools for measuring “correlation” adequate?

2 Supermodular functions, elementary transformations, and our dual
characterization of the supermodular (SPM) stochastic ordering

3 How to apply our characterization: constructive methods

4 Related orderings: increasing SPM ordering; symmetric SPM ordering;
ordering based on dispersion of cdfs of order statistics

5 Sufficient conditions in specific environments

6 Application to systemic risk
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Motivations/applications (1)

(Ex ante) comparisons of ex post inequality under uncertainty (Meyer and
Mookherjee, 1987):

In group settings where individual rewards are uncertain, groups may be
concerned, ex ante, about ex post inequality of rewards. Then evaluating
relative appeal of reward schemes X ≡ (X1, . . . ,Xn) and Y ≡ (Y1, . . . ,Yn)
requires comparing dependence in X and Y , e.g. by comparing
E [w(X1, . . . ,Xn)] vs. E [w(Y1, . . . ,Yn)] for any supermodular ex post
welfare function w .
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Motivations/applications (2)

Comparisons of multidimensional deprivation (Atkinson and Bourguignon,
1982):

Individual-level data on n attributes (Ai
1, . . . ,A

i
n) (e.g. income, health,

education)

Evaluate
∑

i D(Ai
1, . . . ,A

i
n), where D(·) is the individual deprivation

function. Supermodularity of D reflects a dislike of positive interdependence
in population distribution of (A1, . . . ,An).
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Motivations/applications (3)

Comparisons of systemic risk in financial systems (Beale et al, 2011):

Under most definitions, “systemic risk” is greater, the more positively
dependent are bank returns or bank failures.

For ex., Beale et al propose a “systemic cost function”

c(Y1, . . . ,Yn) = C (
n∑

i=1

I{Yi≤si}),

where Yi is bank i ’s return and si is bank i ’s failure threshold. C (·) is
convex since “as more banks fail in the same time period, the economic
disruption tends to increase disproportionately”.

For all convex C and for all (s1, . . . , sn), this systemic cost function
c(Y1, . . . ,Yn) is supermodular. Consequently, holding fixed the marginal
distributions of the Yi and “increasing their dependence” increases expected
systemic cost.
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Why aren’t familiar tools adequate? (1)

Many orderings (e.g. linear correlation coefficient) are not invariant to
coordinate relabeling or coarsening of categories:

Here, corr(X1,X2) > (<) corr(Y1,Y2) ⇐⇒ M > (<) L+H
2

If M = H If M = L
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Why aren’t familiar tools adequate? (2)

“Dependence” is a more subtle concept in ≥ 3 dimensions than in 2:

In 2 dimensions, positive and negative dependence are “mirror images”, but
for n > 2 dimensions, this symmetry breaks down.

For n = 2 and for any plausible concept of positive dependence,
(Y1,Y2) positively dependent =⇒ (−Y1,Y2) negatively dependent.

For n > 2, no simple way to convert a positively dependent random
vector (Y1,Y2, . . . ,Yn) into a negatively dependent one—e.g.
(−Y1,Y2, . . . ,Yn) is not negatively dependent.
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Why aren’t familiar tools adequate? (3)

For n > 2 dimensions, pairwise measures are not always adequate:

(X1,X2,X3) ∈ {0, 1}3 and (Y1,Y2,Y3) ∈ {0, 1}3 have identical marginal
dists.

For each pair (i , j) and for k = 0, 1, Pr(Xi = Xj = k) > Pr(Yi = Yj = k),
so clearly (Xi ,Xj) are more positively dependent than (Yi ,Yj) for each (i , j).

But Pr(X1 = X2 = X3 = 1) < Pr(Y1 = Y2 = Y3 = 1), so if objective
function w equals 1 at (1,1,1) and 0 elsewhere, then Ew(X ) < Ew(Y ).
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General setting

Distributions on support L = ×n
i=1Li , where Li is a finite subset of R and

|Li | = li .

L is a finite lattice, with usual order z ≤ v ⇔ zi ≤ vi ∀i .

L has d =
∏n

i=1 li elements.

Wlog, as explained below, take Li = {0, 1, . . . , li − 1}.

Objective functions w and distributions f on L can be viewed as vectors in
Rd . The expected value of w given f is the scalar product of w with f :

E [w |f ] =
∑
z∈L

w(z)f (z) = w · f .
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The supermodular ordering (� SPM)

A function w is supermodular (SPM) on L, written w ∈ S, if
w(z ∧ v) + w(z ∨ v) ≥ w(z) + w(v) for all z , v ∈ L. Define ei to be the unit

vector in the i th dimension. Topkis (1978) has shown that

w ∈ S ⇐⇒ w(z + ei + ej) + w(z) ≥ w(z + ei ) + w(z + ej)

for all i 6= j and z s.t. z + ei + ej ∈ L.

For continuous v.’s and smooth w , w is SPM iff ∂2w
∂zi∂zj

(z) ≥ 0 ∀z , ∀i 6= j .

Definition
Let the random vectors Y and X have distributions g and f , respectively, on L.
Y dominates X (g dominates f ) acc. to the supermodular ordering, written
Y �SPM X (g �SPM f ), if and only if Ew(Y ) ≥ Ew(X ) (w · g ≥ w · f ) for all
supermodular functions w .
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The supermodular ordering (� SPM)

Invariance to monotonic relabelings of the coordinates:

If w is SPM, then w̃(z) ≡ w(r1(z1), . . . , rn(zn)) is SPM whenever {ri}ni=1

are all nondecreasing or all nonincreasing. Hence the SPM ordering is
preserved by monotonic relabelings of the coordinates from (z1, . . . , zn) to
(r1(z1), . . . , rn(zn)).

So it is wlog to take Li = {0, 1, . . . , li − 1}.

And the SPM ordering is preserved by coarsening of the support.
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(Adjacent) elementary transformations (ET’s)

Definition

For any z ∈ L s.t. z + ei + ej ∈ L, an (adjacent) elementary transformation
(ET) tzi,j is the function on L s.t.

tzi,j(z) = tzi,j(z + ei + ej) = 1 and tzi,j(z + ei ) = tzi,j(z + ej) = −1,

and tzi,j(v) = 0 for all other nodes v ∈ L. Let T denote the class of all such tzi,j . If
for some z ∈ L, some i , j , and some scalar α > 0, g − f = αtzi,j , then we say that
g is obtained from f by an ET of size α.

ET’s increase dependence while leaving marginal distributions unchanged.

ET’s as defined above affect only two of the n dimensions and affect values
only at four adjacent points in L.

w is SPM iff for every ET, the expectation of w is (weakly) increased:

w ∈ S ⇐⇒ w · t ≥ 0 ∀t ∈ T
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Dual characterization of the supermodular ordering

Theorem

g �SPM f if and only if there exist nonnegative coefficients {αt}t∈T such that

g − f =
∑
t∈T

αtt.

Proof: Define T C = {
∑

t∈T αtt : αt ≥ 0 ∀t ∈ T }. Since

w ∈ S ⇐⇒ w · t ≥ 0 ∀t ∈ T , S is the dual cone of T C . Given T C is closed
and convex, it follows from duality that T C is the dual cone of S, i.e.,

(g − f ) ∈ T C ⇐⇒ w · (g − f ) ≥ 0 ∀w ∈ S. �
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Dual characterization of the supermodular ordering

Theorem

g �SPM f if and only if there exist nonnegative coefficients {αt}t∈T such that

g − f =
∑
t∈T

αtt.

Recall: We defined ET’s to affect only two of the n dimensions and only four
adjacent points in L. With this narrow definition, our set of ET’s is minimal:

Proposition

All elements of T are extreme rays of T C , i.e. no ET can be expressed as a
non-negative weighted sum of other ET’s.

This result greatly simplifies the pratical application of the theorem above.
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Implications of the decomposition theorem

Necessary conditions for g �SPM f (X �SPM Y ):

1 g and f have identical marginal dists.—since ET’s are marginal-preserving

2 Cov(r(Yi ), s(Yj)) ≥ Cov(r(Xi ), s(Xj)) for all increasing r(·), s(·)—implied
by identical marginals and supermodularity of w(z) = r(zi ) · s(zj)

3 g dominates f acc. to the ”concordance ordering” (Joe, 1990):

g �CONC f ⇔ ∀v ∈ L,
∑
z≥v

g(z) ≥
∑
z≥v

f (z) and
∑
z≤v

g(z) ≥
∑
z≤v

f (z)

—implied by supermodularity of w(z) = I{z≥v} and w(z) = I{z≤v}
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Two dimensions vs. more than two dimensions

Proposition

i) Given f , g with identical 1-diml. marginals, if and only if n = 2, there is a
unique set of coefficients {αt}t∈T , of arbitrary sign, s.t. g − f =

∑
t∈T αtt.

ii) For n = 2, g �SPM f ⇐⇒ g �CONC f .

iii) For L = {0, 1}3, g �SPM f ⇐⇒ g �CONC f .

iv) For any support L strictly larger than L = {0, 1}3,

g �SPM f =⇒ g �CONC f but g �CONC f 6=⇒ g �SPM f .

ii) due to Tchen (1980); iii) to Hu, Yie, and Ruan (2005); iv) to Müller and
Scarsini (2000) and Meyer and Strulovici (2012)
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How to apply the characterization of �SPM for n > 2?

We use our dual characterization to develop several constructive methods:

1 For a given pair g and f , we formulate a linear program whose optimal value
is zero if and only if g �SPM f .

2 To compare many distributions, we develop an algorithm that, for any
discrete support L, generates a minimal set of inequalities characterizing
�SPM on L.

Our algorithm is based on the “double description method” (Motzkin
et al., 1953) used to switch btw. alternative representations of
polyhedral cones.
For any L, it generates the extreme rays of the cone of supermodular
functions on L.
Easy to code, but algorithmic complexity is high.

3 With small supports, or various forms of symmetry, we provide direct
derivations of the inequalities on g − f that are necessary and sufficient for
g �SPM f —see Meyer and Strulovici (2012).
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The increasing supermodular ordering (�ISPM)

In many contexts, we want the random variables not just to be more dependent
(rather than less) but also to be higher (rather than lower). Say g �ISPM f if and
only if w · g ≥ w · f for all increasing supermodular functions w .

Theorem
g �ISPM f if and only if the following two conditions hold:

1 for each i , the i th marginal distribution of g stochastically dominates the i th

marginal of f ;

2 g �SPM (f + γ), where γ vanishes everywhere except on the “bottom edges”
of L and is such that (f + γ) and g have identical marginal distributions.
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The symmetric supermodular ordering (�SSPM)

In many contexts, natural or convenient to assume that the SPM objective
functions are symmetric with respect to the n dimensions.

For ex., a symmetric systemic cost function would be unaffected by
permutations of the banks’ returns, and symmetry of an ex post welfare
function reflects anonymity of individuals.

We define Y �SSPM X if and only if Ew(Y ) ≥ Ew(X ) for all symmetric SPM w .

For any dist. f on L = (L1)n, its symmetrized version f symm is defined by

f symm(z) =
1

n!

∑
σ∈Σ(n)

f (σ(z)),

where Σ(n) is the set of all permutations σ of n-diml. vectors.

Proposition

g �SSPM f ⇐⇒ g symm �SPM f symm.
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The symmetric supermodular ordering (�SSPM)

For L = {0, 1}n (binary random vectors), the SSPM ordering has a simple form:

Proposition

On L = {0, 1}n, Y �SSPM X if and only if
∑n

i=1 I{Yi=1} �CX

∑n
i=1 I{Xi=1}, where

�CX denotes the univariate convex ordering.

Proof: Any symmetric w defined on {0, 1}n can be written as

w(z) = φ(
n∑

i=1

zi )

for some φ defined on {0, 1, . . . , n}. And a symmetric w on {0, 1}n is SPM
if and only if φ is convex.

Implication: For two-point supports, for any number of dimensions,
comparison acc. to the symmetric SPM ordering reduces to a
well-understood one-dimensional problem.
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The dispersion ordering of dependence (�DISP)

Another notion of greater dependence in Y than in X : the cdfs of the order
statistics of Y are closer together or less dispersed than those of X .

Let Y(j) denote the j th smallest value from (Y1, . . . ,Yn) and FY(j)
its cdf.

Use the majorization (≺) ordering of vectors (Hardy et al) to formalize
lower dispersion.

For (Y1,Y2) and (X1,X2) below,

(FY(1)
(0),FY(2)

(0)) = (
3

4
,

1

4
) ≺ (1, 0) = (FX(1)

(0),FX(2)
(0)).
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The dispersion ordering of dependence (�DISP)

For random vector Y and s ∈ L, define the binary coarsening of Y
corresponding to s, Y s , by Y s

i = 0 if Yi ≤ si and Y s
i = 1 if Yi > si .

Y s
(j) is the j th order statistic of Y s , and FY s

(j)
is its cdf.

Definition
Y �DISP X if and only if for all s ∈ L, the cdfs of the order statistics of Y s are
less dispersed than those of X s , that is,

(FY s
(1)

(0), . . . ,FY s
(n)

(0)) ≺ (FX s
(1)

(0), . . . ,FX s
(n)

(0)) ∀s ∈ L.

Remark: If Y �DISP X , then Y and X have identical 1-diml. marginals.
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The dispersion ordering of dependence (�DISP)

Proposition

For all n ≥ 2,

Y �DISP X ⇐⇒ ∀s ∈ L, Y s �SSPM X s ⇐⇒ ∀s ∈ L,
n∑

i=1

I{Yi>si} �CX

n∑
i=1

I{Xi>si}.

Thus, the dispersion ordering is closely related to the SPM ordering and easily
checkable pointwise.

Proposition

i) For n = 2, Y �SPM X ⇐⇒ Y �DISP X.

ii) For n = 3, Y �SPM X =⇒ Y �DISP X ⇐⇒ Y �CONC X.

iii) For n > 3, Y �SPM X =⇒ Y �DISP X =⇒ Y �CONC X.
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Sufficient conditions for supermodular ordering

We derive two formally similar theorems applicable to different environments:

1 Use �SPM to compare positive dependence in mixture distributions
(mixtures of conditionally independent random variables)

2 Use �SSPM to compare asymmetric independent distributions acc. to degree
of asymmetry across dimensions, which is equivalent to using �SPM to
compare negative dependence in symmetrized versions of independent
distributions
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Mixture distributions: aggregate vs. idiosyncratic shocks

“Mixture dists.” (mixtures of conditionally independent random variables)
incorporate both aggregate and idiosyncratic shocks. Intuitively, when aggregate
shocks increase relative to idiosyncratic shocks, dependence increases.

Our objective: To identify an ordering, for mixture dists., of the relative size of
aggregate vs. idiosyncratic shocks that implies �SPM -dominance.

Parametric example: Xi = θ + εi ; θ, {εi}ni=1 independent

θ ∼ B(ηθ, p) is aggregate shock; {εi} ∼ B(η− ηθ, p) are idiosyncratic shocks

Raising ηθ while holding η fixed leaves the marginal dist. of each Xi

unchanged but increases the relative importance of the aggregate shock.

Our mixture distribution theorem implies that raising ηθ, holding η fixed,
makes (X1, . . . ,Xn) more supermodularly dependent.

Our theorem is non-parametric.
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Mixture dists.: sufficient conds. for �SPM-dominance

Cautionary example: Even with the additive structure Xi = θ + εi , for arbitrary
distributions an increase in Var(θ), holding marginal dists. fixed, does not
generally make (X1, . . . ,Xn) more supermodularly dependent.

Xi = θx + εi and Yi = θy + δi

θx , {εi}ni=1 independent and θy , {δi}ni=1 independent

θx and {δi}ni=1 iden. dist. on {−2, 0, 2}, with probs. 1
4 ,

1
2 ,

1
4 , resp.

θy and {εi}ni=1 iden. dist. on {−1, 0, 1}, with probs. 1
8 ,

3
4 ,

1
8 , resp.

The random vectors X and Y have identical marginal distributions.

θx is more variable than θy , and, ∀i , εi is less variable than δi , in the sense
of the convex ordering.

But X and Y cannot be ranked according to �SPM :

P(X1 ≥ 3,X2 ≥ 3) = 1
4

(
1
8

)2
< 1

8

(
1
4

)2
= P(Y1 ≥ 3,Y2 ≥ 3)

P(X1 ≥ 2,X2 ≥ 2) = 1
4

(
7
8

)2
> 7

8

(
1
4

)2
= P(Y1 ≥ 2,Y2 ≥ 2)
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Mixture dists.: sufficient conds. for �SPM-dominance

Example: A, B, C generate n-diml. symmetric mixture dists. on L = {0, 1, 2}n:

First, random selection of a row, with all rows equally likely: this represents
realization of aggregate shock

Second, n i.i.d. draws from the prob. dist. given by the selected row: this
represents realizations of idiosyncratic shocks

A =

(
1
2

1
2 0

0 1
2

1
2

)
B =

(
3
8

1
2

1
8

1
8

1
2

3
8

)
C =

(
1
4

1
2

1
4

1
4

1
2

1
4

)

Intuitively, the more different are the rows, the more important is the
aggregate shock and the more interdependent are (X1, . . . ,Xn).

But we must hold fixed the “expected” dist. (i.e. the average of the rows),
to ensure identical marginals. Here, A,B,C each generate a symmetric
mixture dist. with marginals ( 1

4 ,
1
2 ,

1
4 ) on {0, 1, 2}.

In each matrix, bottom row stochastically dominates top row =⇒ bottom
row represents better realization of aggregate shock.
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A =

(
1
2

1
2 0

0 1
2

1
2

)
B =

(
3
8

1
2

1
8

1
8

1
2

3
8

)
C =

(
1
4

1
2

1
4

1
4

1
2

1
4

)

Intuitively, the more different are the rows, the more important is the
aggregate shock and the more interdependent are (X1, . . . ,Xn).

The rows of C are identical (i.e. no aggregate shock), the rows of B differ
from each other, and the rows of A are differ from each other even more.

Result: The mixture dist. derived from A �SPM -dominates that derived
from B, which �SPM -dominates the independent dist. derived from C.

Our theorem generalizes the example and formalizes the intuition above:

We provide a partial ordering on q × l matrices representing “the rows are
more different from one another, holding fixed the average of the rows”.

We prove that this ordering is sufficient for �SPM -dominance btw. the
symmetric mixture dists. (of any dimension n) generated by the matrices.
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Mixture dists.: sufficient conds. for �SPM-dominance

Theorem

Let (X1, . . . ,Xn) and (Y1, . . . ,Yn) have symmetric mixture distributions
generated from q × l row-stochastic matrices A and B, respectively.

Conditions i) and ii) below are sufficient for (X1, . . . ,Xn) �SPM (Y1, . . . ,Yn):

i) The rows of A are stochastically ordered.

ii) A dominates B according to “cumulative column majorization”, i.e.

(
k∑

j=1

a1j , . . . ,

k∑
j=1

aqj) � (
k∑

j=1

b1j , . . . ,

k∑
j=1

bqj) ∀k ∈ {1, . . . , l − 1}.

Remark: The theorem can be extended to asymmetric mixture distributions.
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Heterogenous lotteries: sufficient conditions for �SSPM

Application: Optimal allocation of resources across projects (Hoeffding, 1956;
Karlin and Novikoff, 1963; Bond and Gomes, 2009)

Let (X1, . . . ,Xn) ∈ {0, 1}n be outcomes (failure or success) on n projects

Pr(Xi = 1) = pi ; conditional on (p1, . . . , pn), outcomes indep. across tasks

Question: How to allocate a fixed
∑n

i=1 pi across projects to maximize
Ew(X1, . . . ,Xn) for w symmetric across projects?

Answer: If w is symmetric and SPM, optimal to choose equal success probability
for all projects. If w is symmetric and submodular, optimal to choose success
probabilities as unequally as possible (subj. to fixed

∑
i pi ).

For Xi ∈ {0, 1}, any symmetric SPM w = φ(
∑

i Xi ), where φ is convex.
Dist. of

∑
i Xi is “riskier”, the less dispersed (in the sense of majorization)

are the components of (p1, . . . , pn).
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Heterogeneous lotteries: sufficient conds. for �SSPM

Key idea: Lower dispersion among heterogeneous independent lotteries, holding
fixed the average of the lotteries =⇒ �SSPM -dominance of the indep. dists.
⇐⇒ �SPM -dominance of the symmetrized versions of the distributions.

Example: P(X1 = 1) = 0, P(X2 = 1) = 1 vs. P(Y1 = 1) = P(Y2 = 1) = 1
2

Symmetrized version of (X1,X2) is (X ′1,X
′
2) and of (Y1,Y2) is (Y ′1,Y

′
2)

Since (0, 1) � ( 1
2 ,

1
2 ), (X1,X2) �SSPM (Y1,Y2) and (X ′1,X

′
2) �SPM (Y ′1,Y

′
2)

The X lotteries are more heterogeneous, and their symmetrized version X ′

displays more negative interdependence.
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Sufficient conditions for �SSPM

Lower dispersion among heterogeneous independent lotteries, holding fixed the
average of the lotteries =⇒ �SSPM -dominance of the independent dists.
⇐⇒ �SPM -dominance of the symmetrized versions of the distributions.

Theorem

Let (X1, . . . ,Xn) be indep. with dist. f and (Y1, . . . ,Yn) be indep. with dist. g .
Let the dist. of Xi (resp. Yi ) be described by the i th row of an n × l
row-stochastic matrix A (resp. B). Define (X ′1, . . . ,X

′
n) ∼ f symm and

(Y ′1, . . . ,Y
′
n) ∼ g symm.

Conditions i) and ii) below are sufficient for (X1, . . . ,Xn) �SSPM (Y1, . . . ,Yn)
(equivalently, X ′ �SPM Y ′):

i) The rows of A are stochastically ordered.

ii) A dominates B according to “cumulative column majorization”, i.e.

(
k∑

j=1

a1j , . . . ,

k∑
j=1

aqj) � (
k∑

j=1

b1j , . . . ,

k∑
j=1

bqj) ∀k ∈ {1, . . . , l − 1}.
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Asset-swapping among banks and systemic risk

Based on Allen, Babus, and Carletti’s (2012) analysis of banking networks:

Project returns (θ1, . . . , θ6) ∈ {L,H}6 are i.i.d., with P(θi = H) = p.

In network C, banks form 2 clusters; network U is unclustered.

The marginal dist. of the return to each bank’s portfolio is the same in the
two networks, but interdependence differs.

Suppose a bank fails (default status=1) if its reutrn is ≤ d ∈ [L,H),
otherwise it is solvent (default status=0). Let banks’ default statuses in
clustered network be described by (Y1, . . . ,Y6) ∈ {0, 1}6 and in unclustered
network by (Z1, . . . ,Z6) ∈ {0, 1}6.
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Asset-swapping among banks and systemic risk

Proposition

For any prob. of project success p and for any common failure threshold d,
(Y1, . . . ,Y6) �SSPM (Z1, . . . ,Z6). Hence for any systemic cost function which is a
symmetric and supermodular function of bank failures, expected systemic cost is
higher under the clustered than under the unclustered network.
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Conclusion

1 Provided a characterization of the supermodular ordering in terms of
elementary, dependence-increasing transformations

2 Developed constructive methods for applying the characterization

3 Characterized related orderings (ISPM, SSPM, DISP) in terms of SPM
ordering

4 Identified sufficient conditions for SPM or SSPM dominance in specific
environments

5 Applications to welfare economics, committee decision-making, systemic
risk, matching,...
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Sufficient conditions for �SSPM

Application 2: Ex post inequality under uncertainty: tournaments vs.
independent schemes

Given n indivs. and n prizes {P1, . . . ,Pn}, with Pi ≥ Pj ∀i < j , a
tournament assigns positive prob. only to outcome vectors that are
permutations of (1, . . . , n). A symmetric tournament assigns equal prob.
to each of these n! vectors.

Intuitively, tournaments generate negative interdependence in rewards.

Compare tournament reward schemes with schemes that provide each indiv.
with same marginal dist. over rewards but determine rewards independently.

Does an arbitrary tournament generate “more negative interdependence”
acc. to �SPM than the corres. independent scheme? Or if not, acc. to
�SSPM?

Proposition

(Meyer and Mookherjee, 1987) For any n, the dist. of prizes in a symmetric
tournament is dominated acc. to �SPM by the corresponding independent dist.
with the same marginals.
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Tournaments vs. independent schemes

Example: Tournament assigns prob. 1
2 to outcome vectors (P1,P2,P3) and

(P2,P3,P1).

This tournament is not dominated acc. to �SPM by the corresponding
independent scheme.

Reason: while rewards for indivs. 1 and 3 (or 2 and 3) are negatively
dependent, rewards for indivs. 1 and 2 are positively dependent.

This shows the subtlety of “negative interdependence” in n > 2 dimens.

But in this context, natural to use orderings which treat indivs. symmetrically
(anonymously), so natural to use the weaker ordering �SSPM .

Corollary (of �SSPM Theorem)

For any number of individuals (dimensions) n, given any (arbitrarily asymmetric)
tournament, the prize distribution under the tournament is dominated acc. to
�SSPM by the corresponding independent dist. with the same marginals.
Equivalently, for any tournament, its symmetrized distribution displays more
negative interdependence acc. to �SPM than the symmetrized version of the
corresponding independent scheme with the same marginals.
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The symmetric supermodular ordering (� SSPM)

For L = {0, 1}n (binary random vectors), the SSPM ordering has a simple form.
Define c(x) ≡

∑n
i=1 I{xi=1}. Any symmetric w defined on L = {0, 1}n can be

written as w(x) = w̃(c(x)) for some w̃ defined on L̃1 ≡ {0, 1, . . . , n}. Any dist. f
on L maps into a dist. f̃ on L̃1 defined by f̃ (z) =

∑
{x :c(x)=z} f (x). ET’s on L

map into (adjacent) mean-preserving spreads on L̃1, and a symmetric w defined
on L is SPM iff φ defined on L̃1 is convex.

Proposition

On L = {0, 1}n, g �SSPM f if and only if g̃ dominates f̃ according to the
univariate convex ordering on L̃1 = {0, 1, . . . , n}.

For two-point supports, for any number n of dimensions, comparison acc.
to the symmetric SPM ordering reduces to a well-understood
one-dimensional problem.
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The symmetric supermodular ordering (� SSPM)

For l-point supports, for any number n of dimensions, comparison acc. to the
symmetric SPM ordering reduces to an (l-1)-dimensional problem:

For x ∈ L = {0, 1, . . . , l − 1}n and k ∈ {0, 1, . . . , l − 1}, define
c̄k(x) =

∑n
i=1 I{xi≥k} and the “cumulative count vector”

c̄(x) = (c̄1(x), . . . , c̄ l−1(x)) ∈ L̃l−1 ⊂ {0, 1, . . . , n}l−1.

For any symmetric w on L, w(x) = w̃(c̄(x)) for some w̃ defined on L̃l−1.

Any dist. f on L maps into a dist. f̃ on L̃l−1 with f̃ (z) ≡
∑
{x :c̄(x)=z} f (x).

Each ET on L maps into either a univariate (adjacent) mean-preserving
spread on L̃l−1 or an ET on L̃l−1.

A symmetric w defined on L is SPM iff w̃ defined on L̃l−1 is
component-wise convex and SPM.

Proposition

On L = {0, 1 . . . , l − 1}n, g �SSPM f if and only if g̃ dominates f̃ according to
the componentwise-convex and supermodular ordering on L̃l−1.
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Continuous Supports

Let dists. F,G have continuous densities on a convex, compact lattice
L = ΠiLi of Rn.

Say G �CSPM F if for all integrable supermodular functions w on L,
E [w |G ] ≥ E [w |F ].

A finite coarsening L̃ of L is a finite partitioning L̃i of each Li , s.t. x ∈ L̃
represents a hyper-rectangle Πi [li , ui ) of L. The coarsening of F on L̃ is the
dist. F̃ s.t. ∀x ∈ L̃, F̃ (x) = F (Πi [li , ui )). Similarly, the coarsened version w̃
of w on L̃ is

w̃(x) =

∫
Πi [li ,ui )

w(t)dt∫
Πi [li ,ui )

dt
.

Proposition: G �CSPM F if and only if for all finite coarsenings L̃ of L,
G̃ �SPM F̃ in the discrete sense.
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