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Statistical inference in non-equilibrium networks
Apple’s inventor network over a 6-year period. Source: Kenedict.

Given the current state of a network,
what can we say about a previous state?



Randomly growing trees

Preferential attachment:

P (un = u) =
dTn (u)

2n − 2

Uniform attachment:

P (un = u) =
1
n

In general:

P (un = u) =
(dTn (u))α

Z

Many other tree growth models...
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The influence of the seed — preferential attachment

seed S10

seed P10

PA (n = 500,S10)

PA (n = 500,P10)



The influence of the seed — uniform attachment
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Measuring the influence of the seed

I A crude measure: limit as a countably infinite tree

 seed has no influence for PA or UA

But for superlinear attachment (α > 1),
see Oliveira, Spencer (2005)

I A finer measure: weak local limit (Benjamini-Schramm)
 seed has no influence for PA or UA

See Rudas, Tóth, Valkó (2007) (PA trees)
and Berger, Borgs, Chayes, Saberi (2014) (in general)
for weak local limits.
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Measuring the influence of the seed

I A much finer measure: total variation distance

δPA(S,T ) := lim
n→∞

TV(PA(n,S),PA(n,T ))

Hypothesis testing question:

H0 : R ∼ PA(n,S), H1 : R ∼ PA(n,T )

Q: test with asymptotically (in n) non-negligible power?
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Main results

Preferential attachment:

Theorem (Bubeck-Mossel-R., arXiv:1401.4849v3, March 2014)

If the degree profiles of S and T are different, and both have at least
3 vertices, then

δPA (S,T ) > 0.

Theorem (Curien-Duquesne-Kortchemski-Manolescu, June 2014)

If S and T are non-isomorphic and both have at least 3 vertices, then

δPA (S,T ) > 0.

Uniform attachment:

Theorem (Bubeck-Eldan-Mossel-R., arXiv:1409.7685, Sept. 2014)

If S and T are non-isomorphic and both have at least 3 vertices, then

δUA (S,T ) > 0.



PA heuristics: maximum degree
Degree evolution governed by Pólya urns(

2n − 2− dPA(n,S) (i) ,dPA(n,S) (i)
)

I Replacement matrix:
(

2 0
1 1

)
; initial condition:

I If i ∈ S then (2 |S| − 2− dS (i) ,dS (i));
I If i /∈ S then (2i − 3,1).

Rescaled degrees converge almost surely:

dPA(n,S) (i) /
√

n n→∞−−−→ Di (S)

∆ (PA (n,S)) /
√

n n→∞−−−→ Dmax (S)

Dmax (S) = max
i≥1

Di (S)

See Móri (2005), Janson (2006), Peköz, Röllin, Ross (2013, 2014).
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Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)
Let S be a finite tree and let m := |{i ∈ {1, . . . , |S|} : dS (i) = ∆ (S)}|.
Then

P (Dmax (S) > t) ∼ m × c (|S| ,∆ (S)) t1−2|S|+2∆(S) exp
(
−t2/4

)
as t →∞, where the constant c is explicit.

 the seed influences the polynomial factor!

Corollary (Distinguishing seeds)
If |S| −∆ (S) 6= |T | −∆ (T ), then

δPA (S,T ) > 0.

Two trees with the same
degree profile:
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The approach of Curien et al.

Dτ (T ) :=
∑
ϕ

∏
u∈τ

[dT (ϕ (u))]`(u)

Combinatorial interpretation: Dτ (T ) = # decorated embeddings

Heuristic:
I large degree nodes contribute the most;
I captures geometric structure of large degree nodes.



The approach of Curien et al.

General framework:

I Construct a family of martingales
using decorated embeddings:

M(S)
τ (n) =

∑
τ ′4τ

cn
(
τ , τ ′

)
Dτ ′ (PA (n,S)) .

I For any S and T , there exists τ and n such that

E
[
M(S)
τ (n)

]
6= E

[
M(T )
τ (n)

]
.

I Prove that the martingales are bounded in L2.
I Conclude using the Paley-Zygmund inequality that

δPA (S,T ) > 0.



The Brownian looptree

Theorem (Curien-Duquesne-Kortchemski-Manolescu, June 2014)

For any S there exists a random compact metric space L(S) such that
the following convergence holds a.s. in the Gromov-Hausdorff
topology:

n−1/2 · Loop (PA (n,S))
n→∞−−−→ 2

√
2 · L(S).



The Brownian looptree

The metric space L is constructed as a quotient of
Aldous’s Brownian Continuum Random Tree.

Conjecture (Curien-Duquesne-Kortchemski-Manolescu, June 2014)

For any pair of seeds S and T ,

δPA (S,T ) = TV
(
L(S),L(T )

)
.



Uniform attachment

Preferential attachment: the degrees of v` and vr are
unbalanced in S but balanced in T ,

and this likely remains so throughout the process.

Uniform attachment: the subtree sizes under v` and vr are
unbalanced in S but balanced in T ,

and this likely remains so throughout the process.



An example: distinguishing P4 and S4

Measuring balancedness:

g (T ,e) :=
|T1|2 |T2|2

|T |4

G (T ) :=
∑

e

g (T ,e)

In order to show that δUA (P4,S4) > 0, it suffices to show that

lim inf
n→∞

|E [G (UA (n,P))]− E [G (UA (n,S))]| > 0

lim sup
n→∞

(Var[G(UA(n,P))] + Var[G(UA(n,S))]) <∞



An example: distinguishing P4 and S4

Let {eP
j } and {eS

j } denote the edges.
For every j ≥ 4:

g
(

UA (n,P) ,eP
j

)
d
= g

(
UA (n,S) ,eS

j

)
.

We also have this for j = 1 and j = 3, so

E [G (UA (n,P))]− E [G (UA (n,S))] = E[g(UA(n,P), eP
2 )]− E[g(UA(n,S), eS

2 )]

=
2n3 + 5n2 + 8n + 5

140n3 → 1
70

.

For the variance we use Cauchy-Schwarz:

Var[G(UA (n,S))] ≤

n−1∑
j=1

√
Var[g(UA (n,S) ,ej )]

2

,

and estimates on moments of the beta-binomial distribution to give

E[g(UA (n,S) ,ej )
2] ≤ C/j4.
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General statistics

Fτ (T ) :=
∑
ϕ

∏
u∈τ

[
fϕ(u) (T )

]
`(u)

Combinatorial interpretation: Fτ (T ) = # decorated embeddings

Heuristic:
I embeddings that are “central” contribute the most;
I captures global balancedness properties of the tree.



General framework

I Construct a family of martingales
using decorated embeddings:

M(S)
τ (n) =

∑
τ ′4τ

cn
(
τ , τ ′

)
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Main technical issue: second moment

Lemma (First moment)
Let τ ∈ D+ be a decorated tree with positive labels and |τ | ≥ 2,
and let S be a seed tree. Then

nw(τ) <
∼ E

[
Fτ (UA (n,S))

]
<
∼ nw(τ),

where w (τ) =
∑

u∈τ ` (u).

Lemma (Second moment)
Let τ ∈ D+ be a decorated tree with positive labels and |τ | ≥ 2,
and let S be a seed tree. Then

(a) E
[
Fτ (UA (n,S))2

]
<
∼ n2w(τ),

(b) E
[(

Fτ (UA (n + 1,S))− Fτ (UA (n,S))
)2
]
<
∼ n2w(τ)−2.



Main technical issue: second moment

Top row: a decorated tree τ and two decorated embeddings,
ϕ

1
and ϕ

2
, of it into a larger tree T .

Bottom row: an associated decorated tree σ and the
decorated embedding ψ of it into T .

Note: w (σ) ≤ 2w (τ).



Main technical issue: second moment

Top row: a decorated tree τ and two decorated embeddings,
ϕ

1
and ϕ

2
, of it into a larger tree T .

Bottom row: an associated decorated tree σ and the
decorated embedding ψ of it into T .

Note: w (σ) ≤ 2w (τ), but no a priori bound on |σ|.
 use the fact that diam (UA (n,S)) = O (log n) whp.



Main technical issue: second moment

Top row: There are two types of decorated embeddings that use the
new vertex.

Bottom row: associated decorated trees and decorated embeddings.

Roughly speaking, the two arrows associated with the new vertex
give the extra factor of n−2 required in the bound of (b).



Summary and open questions
Takeaways:

I Every seed has an influence,
both in PA and in UA

I Degrees (PA) and
balancedness (UA)
are key statistics

Open questions:
I Multiple edges added at each time step?
I Is δα (S,T ) > 0 for α ∈ (0,1)?

Is it monotone in α? Is it convex?
I Other models of randomly growing graphs.
I Estimation. Finding the seed.
I The effect of extra information.
I Applications...

Thank you!
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