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Statistical inference in non-equilibrium networks

Apple’s inventor network over a 6-year period. Source: Kenedict.

2007-2008 2009-2010 2011-2012

Given the current state of a network,
what can we say about a previous state?

Inferring network mechanisms: The Drosophila L . .
melanogaster protein interaction network Recovering time-varying networks of dependencies
in social and biological studies
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Not All Scale-Free Networks Are Born Equal:
The Role of the Seed Graph in PPI Network Network Archaeology: Uncovering Ancient Networks
from Present-Day Interactions
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Randomly growing trees




Randomly growing trees
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Randomly growing trees

Preferential attachment:

A C)
Flh=1=37"2
Un+1
L. Uniform attachment:
| P(up=u)= !
n=U=5
In general:
_ (dr, (u)*
_______ ]P)(Un - U) - Z

Many other tree growth models...



The influence of the seed — preferential attachment
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The influence of the seed — uniform attachment
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Measuring the influence of the seed

» A crude measure: limit as a countably infinite tree
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Measuring the influence of the seed

» A crude measure: limit as a countably infinite tree
seed has for PA or UA

But for (a>1),
see Oliveira, Spencer (2005)

» A finer measure: weak local limit (Benjamini-Schramm)
seed has for PA or UA
See Rudas, Toth, Valké (2007) (PA trees)

and Berger, Borgs, Chayes, Saberi (2014) (in general)
for weak local limits.



Measuring the influence of the seed

» A much finer measure: total variation distance

opa(S, T) := lim TV(PA(n, S),PA(n, T))

n—o0

dpa( s, o+ )=1lim TV( "~ =+ )

n—oo



Measuring the influence of the seed

» A much finer measure: total variation distance

opa(S, T) := lim TV(PA(n, S),PA(n, T))

Ho "R~ PA(I’I7 S), H1 "R~ PA(I’I, T)

Q: test with asymptotically (in n) non-negligible power?



Main results

Preferential attachment:
Theorem (Bubeck-Mossel-R., arXiv:1401.4849v3, March 2014)

If the degree profiles of S and T are different, and both have at least

3 vertices, then
Opa (S, T) > 0.

Theorem (Curien-Duquesne-Kortchemski-Manolescu, June 2014)
If Sand T are non-isomorphic and both have at least 3 vertices, then
Opa (S, T) > 0.

Uniform attachment:
Theorem (Bubeck-Eldan-Mossel-R., arXiv:1409.7685, Sept. 2014)

If Sand T are non-isomorphic and both have at least 3 vertices, then
oua (S, T) > 0.




PA heuristics: maximum degree

Degree evolution governed by
(2n—2 — dba(n,s) (1) , Doacn,s) (7))
Tn‘_' T

T Ungl

» Replacement matrix: (% 9); initial condition:
> If i € Sthen (2|S| — 2 — ds (i), ds (i));
- It i ¢ Sthen (2i —3,1).



PA heuristics: maximum degree

Degree evolution governed by
(2n—2 — dba(n,s) (1) , Doacn,s) (7))
Tn‘_' T

Un+1

» Replacement matrix: (% 9); initial condition:
> If i € Sthen (2|S| — 2 — ds (i), ds (i));
- It i ¢ Sthen (2i —3,1).

Rescaled degrees converge almost surely:

Ghan,s) (1) /v/n == D; (S)
A(PA(n,S)) /v/Nn =22 Diax (S)
Dmax (S) = rpfix Di (8)

See Mori (2005), Janson (2006), Pekoz, Rollin, Ross (2013, 2014).



Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)

Let Sbe afinitetree and let m:= |{i € {1,...,|S|} : ds (i) = A(S)}].
Then

P (Dmax (S) > t) ~ mx c(|S],A(S)) t1-2181+24(S) exp (—t2/4>

as t — oo, where the constant c is explicit.
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Influence of the seed on the maximum degree

Lemma (Tail behavior of the maximum degree)

Let Sbe afinitetree and let m:= |{i € {1,...,|S|} : ds (i) = A(S)}].
Then

P (Dmax (S) > t) ~ mx c(|S],A(S)) #1-2I5+24(S) exp (—t2/4>

as t — oo, where the constant c is explicit.

the seed influences the polynomial factor!

Two trees with the same
degree profile:

Corollary (Distinguishing seeds)

If |S| — A(S) # |T| — A(T), then {

dpa (S, T) > 0. [




The approach of Curien et al.

D-(T):=>_ ] ldr (v (u)yy

¢ uer

Combinatorial interpretation: D, (T) =

» large degree nodes contribute the most;
» captures geometric structure of large degree nodes.



The approach of Curien et al.

General framework:

» Construct a
using decorated embeddings:

M) (n)=>" ¢y (z,7') Do (PA(N, S)).

T'sT

» Forany S and T, there exists ~ and n such that
E [M@ (n)} £E [Mg) (n)} .

» Prove that the martingales are bounded in L?.
» Conclude using the that

Sea (S, T) > 0.



The Brownian looptree

Theorem (Curien-Duquesne-Kortchemski-Manolescu, June 2014)

For any S there exists a random compact metric space £(S) such that
the following convergence holds a.s. in the Gromov-Hausdorff

topology:
POIOGY: 172 Loop (PA (1, S)) 7225 2/3 . £(S).




The Brownian looptree

o o R — [Curien et al. (2014)]

The metric space L is constructed as a quotient of
Aldous’s

Conjecture (Curien-Duquesne-Kortchemski-Manolescu, June 2014)

For any pair of seeds Sand T,
Spa (S, T) =TV (c<3>,c<T>) .




Uniform attachment

T

: the degrees of v, and v, are
unbalanced in S but balanced in T,
and this likely remains so throughout the process.

: the subtree sizes under v, and v, are
unbalanced in S but balanced in T,
and this likely remains so throughout the process.



An example: distinguishing P, and Sy

€2 8’4
P4 €1 €3
€1 €2 €3
Measuring balancedness:
..... T R
_ TP IRF
g9(T,e):= T T, L e T

G(T):==> 9g(T.e)

In order to show that dua (P4, S4) > 0, it suffices to show that
Iinrlinf |E[G(UA(n,P))] —E[G(UA(n,S))]| >0

limsup (Var[G(UA(n, P))] + Var[G(UA(n, S))]) < oo

n—oo



An example: distinguishing P, and Sy

Let {e]} and {e’} denote the edges.
For every j > 4:

g(va(np).ef) Lg(va(ns).ef). , P, are

We also have this forj =1 and j = 3, so

E[G(UA (n, P))] — E[G(UA (n, 5))] = E[g(UA(n, P), &)] — E[g(UA(n, S), €5)]

_2n+5n"+8n+5 1
B 1403 70°




An example: distinguishing P, and Sy

Let {e]} and {e’} denote the edges.
For every j > 4:

g (UA(n, P), e}’) 49 (UA(n7 S), e/-s) . Py e A €3

We also have this forj =1 and j = 3, so

E[G(UA (n, P))] — E[G(UA (n, 5))] = E[g(UA(n, P), &)] — E[g(UA(n, S), €5)]

2’ +5m +8n+5 L1
- 140m 70°

For the variance we use Cauchy-Schwarz:

2
n—1
Var[G(UA (n, S))] < (Z \/Var[g(UA(n, S),ej)]) ,

j=1
and estimates on moments of the beta-binomial distribution to give

E[g(UA(n, S), €)% < C/j*.



General statistics

Combinatorial interpretation: F; (T) =

» embeddings that are “central” contribute the most;
» captures global balancedness properties of the tree.



General framework

» Construct a
using decorated embeddings:

M7(_5) (n) = Z Cn (171/) FI’ (UA(n,S)).

T'sT

» For any S and T, there exists ~ and n such that
E [MQ (n)} +E [Mg) (n)} .

» Prove that the martingales are bounded in L?.
» Conclude using the that

OUuA (S, T) > 0.



Main technical issue: second moment

Lemma (First moment)

Let = € D, be a decorated tree with positive labels and |7| > 2,
and let S be a seed tree. Then

@ 2 E [F, (UA(n,S))] < n*(®),

where w(7) = 3" .. ¢ (u).

Lemma (Second moment)
Let 7 € D, be a decorated tree with positive labels and |7| > 2,
and let S be a seed tree. Then

(a) E [F (UA(n,S)) } (),

(b) E[(F(UA(n+1,9)) - F(UA(n,9)))°] 2 P*@2

\




Main technical issue: second moment

e

Top row: a decorated tree = and two decorated embeddings,
v, and ¢, of itinto a larger tree T.
Bottom row: an associated decorated tree o and the
decorated embedding ¢ of it into 7.

Note: w (g) < 2w (7).



Main technical issue: second moment

Top row: a decorated tree = and two decorated embeddings,
v, and ¢, of itinto a larger tree T.
Bottom row: an associated decorated tree ¢ and the
decorated embedding » of it into T.
Note: w (o) < 2w (1), but no a priori bound on |g]|.
use the fact that diam (UA (n, S)) = O (log n) whp.



Main technical issue: second moment

Top row: There are two types of decorated embeddings that use the
new vertex.

Bottom row: associated decorated trees and decorated embeddings.

Roughly speaking, the two arrows associated with the new vertex
give the extra factor of n—2 required in the bound of (b).



Summary and open questions

Takeaways:

» Every seed has an influence,
both in PA and in
» Degrees (PA) and

balancedness (UA)
are key statistics

Open questions:

Multiple edges added at each time step?
Is 9o, (S, T) > 0fora € (0,1)?

Is it monotone in a? Is it convex?

Other models of randomly growing graphs.
Estimation. Finding the seed.

The effect of extra information.
Applications...
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Open questions:

Multiple edges added at each time step?
Is 9o, (S, T) > 0fora € (0,1)?

Is it monotone in a? Is it convex?

Other models of randomly growing graphs.
Estimation. Finding the seed.

The effect of extra information.
Applications...
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Thank you!



