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Problem Description: Aim
I aim? model and predict agricultural land use
I why? food security, landscape, environmental impact
I this project: focus on crop choice

Main Issue
an abundance of uncertain factors influencing crop choices
I soil type
I previous years’ crops
I intensity & time of rainfall
I temperature
I crop price
I fertilizer price
I farmer’s attitude towards risk
I farmer’s assets
I farm size
I . . . 6



Problem Description: Data

I historical crop data (IACS)
I historical rainfall data (MET office)
I historical fertiliser price data (Dairyco)
I soil type map (LandIS)
I expert information on historic crop profit predicitions (John Nix book)
I expert information on yield level per crop & soil type (John Nix book)
I predictions of future price and climate scenarios (decision maker)
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Problem Description: Model

I crop sequences typically follow set patterns
year 1 year 2 year 3 year 4

field 1 wheat fallow wheat beans
field 2 barley barley sugar beet wheat
field 3 grass grass wheat grass

I patterns not entirey deterministic: we use a Markov chain
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Problem Description: Model (Simplified)

W = wheat, R = rapeseed, L = legumes, O = other

W

L

R

O

I key idea: probabilities are a multicategorical logistic function of a
linear combination of the continuous factors (climate and price)
influencing crop choices [1]

p(W | L) = function of β0 + β1 × price + β2 × climate

I aim of statistical inference: identify β0, β1, and β2 from data
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Problem Description: Likelihood

I J = number of crops
I k = time
I Yk = current crop ∈ {1, . . . , J}
I Yk+1 = next crop ∈ {1, . . . , J}
I Xk = current economy, climate, . . . (regressors) ∈ RM

I β = regression coefficients ∈ RJ×(J−1)×M

pkj = exp(βYk ,j · Xk ) for j = 1 . . . J − 1 (1)

pkJ = 1 (2)

Yk+1 ∼ dcat(pk1, . . . , pkJ) (3)

I soil type not included as regressor:
separate model for each soil type
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Problem Description: Prior

Issues

I little prior information about β’s
I flat prior , prior ignorance
I too flat prior→ numerical issues (JAGS barks very loudly)
I particular worry about rare crop types & extreme events

inferences must not purely reproduce arbitrary prior assumptions
I likelihood is from curved exponential family
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Problem Description: Prior
A Possible Solution (Part 1): Conjugate Prior

I a conjugate prior for our likelihood is of the form [2]:

f0(β|s0, t0) ∝ exp

 J∑
i=1

∑
x∈X

s0i(x)


J∑

j=1

t0ij(x)βijx − log
J∑

j=1

exp(βijx)


 (4)

I X = finite set of regressor values x where we specify prior knowledge
I t0ij(x) = ‘matches’ prior transition probability

for going from crop i to j for regressor value x
I s0i(x) = controls variance (large values = peaked prior)

benefit of conjugacy = interpretability of parameters!
updating trivial, but no closed form for posterior predictive
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Problem Description: Prior

A Possible Solution (Part 2): Near-Vacuous Set of Conjugate Priors

I choose for X a reasonable prior range for regressors
I fix s0i(x) to a constant value—determines learning speed
I choose set of t0ij(x) covering every possible distribution

restrict to extreme points for computations

number of extreme points
# crops 2 3 4 5

# regressors 2 16 256 65536 4294967296
# regressors 3 81 6561 43046721 1853020188851841
# regressors 4 256 65536 4294967296 18446744073709551616
# regressors 5 625 390625 152587890625 23283064365386962890625

situation similar to Walley’s imprecise Dirichlet model [6]
but a lot more extreme points to explore!!
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Approach 1: Markov Chain Monte Carlo

= build a Markov chain which samples from the posterior

Upsides

I full posterior inference

Downsides
I too slow: single run in JAGS = 2 hours

I 10000 samples
I 4 crops
I 2 regressors
I 30000 data points

full analysis = 15 years
I sampling error across runs can be controlled
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Approach 2: MAP Estimation

= use posterior mode obtained via numerical optimisation

Upsides

I very fast
single run = fraction of a second
full analysis typically within 30 minutes

I no sampling error across runs

Downsides

I no full uncertainty quantification
I only reasonable as rough approximation to expectation

(i.e. linear utility in a decision context)
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Approach 2: Validation Against Non-Parametric Estimate
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Approach 2: Cross-Validation
How good is the model at predicting which crop is grown?

region deter- single indeterminate set
minacy accuracy output size accuracy

Anglia 0.968 0.722 2.008 0.855
Mease 0.988 0.758 2.140 0.929
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Approach 2: Prediction
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Decision Analysis

I interested in stimulating increase in legumes
I utility function:

U(a, b) = a − κb

a = fraction of legumes across all farms;
function of b and model parameters β

b = subsidy level
κ = weight constant

I maximize expected utility by considering all β∗ MAP estimates:{
arg max

b
U(a(b , β∗), b) : β∗ ∈ B∗

}
range of optimal policy recommendations

in most cases, actually a unique policy identified
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Decision Analysis: Results
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Conclusion

I conjugacy useful for curved families: interpretation
I robust Bayesian analysis on high-dimensional models is hard:

tough trade-offs (forgo MCMC, use MAP)
I you may not know whether there is a prior sensitivity problem

until you have done the robust analysis!

Open questions & future work

I reuse a single MCMC run to explore multiple priors at once?
I cleverly explore large quantities of extreme priors

(ideas from linear programming?)
I other approximate methods (e.g. ABC)?
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Thank you!
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URL: http://www.sipta.org/isipta13/index.php?id=paper&paper=033.html.

[6] Peter Walley.
Inferences from multinomial data: Learning about a bag of marbles.
Journal of the Royal Statistical Society, Series B, 58(1):3–34, 1996.
URL: http://www.jstor.org/stable/2346164.

27

http://dx.doi.org/10.1007/978-3-319-08852-5_49
http://www.sipta.org/isipta15/data/paper/17.pdf
http://www.sipta.org/isipta13/index.php?id=paper&paper=033.html
http://www.jstor.org/stable/2346164

	Problem Description
	Approach 1: Markov Chain Monte Carlo
	Approach 2: MAP Estimation
	Decision Analysis
	Conclusion

