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Warm-up: simple random walk

Take a simple random walk on the d-dimensional lattice.

It starts from the origin and moves, with equal probabilities, to the nearest
neighbours.
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It is well-known that the scaling limit of simple random walk is a Brownian
motion, a Gaussian process in continuous time on Rd . More precisely, the
law of (the linear interpolation of)

(Xm/
√

n)m=0,1,...,n

converges to the law of (σBt)0≤t≤1 where σ is a constant depending on
the dimension d . This convergence is “universal” and holds as well, for
instance, for triangular lattices.
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The Random Conductance Model

The Random Conductance Model

We define a random medium by giving random weights - often called
“conductances” - to the bonds of the lattice.
Consider first the case where the weights are independent, with the same
law. Assume that the conductances are bounded above and bounded away
from zero.
The configurations of the weights is called “environment”. For a fixed
environment, define the law of a random walk, where the transition
probabilities from a point to its neighbours are proportional to the weights
of the bonds.
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The Random Conductance Model
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wobei Z := c1 + c2 + c3 + c4.
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The Random Conductance Model
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The Random Conductance Model

General question:

Question

Can the random medium be replaced by an “averaged” deterministic
medium?

There are two, contradicting paradigms in the theory of random media:
Homogenization versus Intermittency.
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The Random Conductance Model

More precise question:

Question

Is the scaling limit of the random walk still σ times a Brownian motion?

Answer: Yes! (This was proved in in several papers by Martin Barlow, Luis
Renato Fontes/Pierre Mathieu, S. M. Kozlov, Vladas
Sidoravicius/Alain-Sol Sznitman,... and extended to the case of bounded,
strictly positive conductances).

An active direction of research is the extension of this theorem to the case
when the conductances form a stationary, ergodic random field. It is not
true in general, but true under boundedness conditions on the
conductances. In this case, σ has to be replaced with a deterministic,
positive definite covariance matrix Σ.
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The Random Conductance Model

Method of proof: decompose the walk in a martingale part and a
“corrector”. Show that the corrector can be neglected and apply the CLT
for martingales.
The corrector is in itself an interesting process, see Jean-Christophe
Mourrat/Felix Otto for recent results.
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The Random Conductance Model

Question

How does Σ depend on the law of the conductances?

Note that this is important from the viewpoint of “material sciences”!
Analytical counterpart of this question, many papers but still open
questions. Recent results by Antoine Gloria, Jean-Christophe Mourrat,
Stefan Neukamm, Felix Otto.
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Random walks on supercritical percolation clusters

Random walks on supercritical percolation clusters

To be more radical, consider bond percolation with parameter p on the
d-dimensional lattice: all bonds are open with probability p and closed
with probability 1− p, independently of each other. This corresponds to
conductances with values either 1 or 0.
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Random walks on supercritical percolation clusters

Take bond percolation on Zd , d ≥ 2. Choose p close enough to 1 such
that there is a (unique) infinite cluster.
Condition on the event that the origin is in the infinite cluster.
Start a random walk in the infinite cluster which can only walk on open
bonds, and which goes with equal probabilities to all neighbours. (In
particular, this random walk never leaves the infinite cluster.)
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Random walks on supercritical percolation clusters

Bond percolation p= 0.51
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Random walks on supercritical percolation clusters

Question

Is the scaling limit of this random walk still σ times a Brownian motion?

Answer: Yes! (This was proved by Noam Berger/Marek Biskup, Pierre
Mathieu/Andrey Piatnitski, Vladas Sidoravicius/Alain-Sol Sznitman ).
Method of proof: decompose the walk in a martingale part and a
“corrector”. Show that the corrector can be neglected and apply the CLT
for martingales.

Question

How does σ depend on p?
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Random walks on supercritical percolation clusters

Einstein-Relation

The Einstein relation gives a different interpretation of the variance as the
derivative of the speed of the random walk, when one has a drift in a
“favourite” direction `. This leads us to random walks with drift in
random environments.
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Random walks with drift in random environment

We add a drift in direction ` = e1: choose a parameter λ > 0 for the
strength of the drift and multiply the conductances with powers of eλ.
Example: d = 2, e1 = (1, 0).
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In the same way, define the random walk with drift on the supercitical
percolation cluster.
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Random walks with drift in random environment

Questions:

–does the random walk move with a constant linear speed, i.e.

does v(λ, p) := lim
n→∞

Xn

n
exist, and is it deterministic?

–If yes, is the component of v1(λ, p) = v(λ, p) · e1 in the favourite
direction strictly positive?
–How does v1(λ, p) depend on λ and on p?
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Random walks with drift in random environment

Back to the homogeneous medium: in this case, v(λ) can be computed
and v1(λ) looks as follows:

v1(λ)

λ0

1
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Random walks with drift in random environment

For the speed of the random walk on an infinite percolation cluster, the
following picture is conjectured:
for each p ∈ (pc , 1) we have, with v1(λ) = v1(λ, p):

0

v1(λ)

λλc
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Random walks with drift in random environment

Reason for the zero speed regime:

Trap
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Random walks with drift in random environment

Alexander Fribergh and Alan Hammond showed recently that there is, for
each p ∈ (pc , 1), a critical value λc such that v1(λ) > 0 for λ < λc and
v1(λ) = 0 for λ > λc . Quoting from their paper:
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Einstein-Relation

For the random walk among iid, bounded (above and away from 0)
random conductances, the following is known.

Theorem

(Lian Shen 2002)
For fixed drift, there is a law of large numbers:
For any λ > 0,

lim
n→∞

1

n
X (n) = v(λ), a.s.

where v(λ) is deterministic and v(λ) · e1 > 0.
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Einstein-Relation

Theorem

Einstein-Relation (NG, Jan Nagel und Xiaoqin Guo, in progress)
Assume that the conductances are iid, bounded above and bounded away
from 0.

lim
λ→0

v(λ)

λ
= Σe1 .

Further, v(λ) is differentiable for all λ and we can write a formula for the
derivative.

The theorem has been proved by Tomasz Komorowski and Stefano Olla
(2005) in the case where d ≥ 3 and the conductances only take two values.

It can be proved easily in the one-dimensional case and in the periodic
case.
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Einstein-Relation

Einstein relation for symmetric diffusions in random
environment

Consider diffusion X (t) in Rd with generator

Lωf (x) =
1

2
e2V

ω(x) div(e−2V
ω

aω∇f )(x), (1)

where V ω is a real function and aω is symmetric matrix. V ω and aω are
realizations of a random environment, defined on some prob. space
(Ω,A,Q).
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Einstein-Relation

Assumptions:
(1) Translation invariance, ergodicity
(2) Smoothness: x → V ω(x) and x → aω(x) are smooth (for simplicity)
(3) Uniform ellipticity: V ω is bounded and aω is uniformly elliptic, namely
there exists a constant κ such that, for all ω, x ∈ Rd and y ∈ Rd ,

κ|y |2 ≤ |aω(x)y |2 ≤ κ−1|y |2 .

(4) Finite range dependence.
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Einstein-Relation

Then, with σω =
√

aω and bω = 1
2divaω − aω∇V ω , X solves the

stochastic differential equation

dX (t) = bω(X (t)) dt + σω(X (t))dWt (2)

where W is a Brownian motion.
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Einstein-Relation

Theorem

(George Papanicolaou, Srinivasa Varadhan, Hirofumi Osada, S. M. Kozlov
1980, 1982) The process X satisfies a Central Limit Theorem i.e. 1√

t
X (t)

converges in law towards a Gaussian law. More is known: the rescaled
process (

X (n)(t)
)
t≥0

:=

(
1√
n

X (nt)

)
t≥0

(3)

satisfies an invariance principle: there exists a non-negative (deterministic)
symmetric matrix Σ such that the law of (X (n)(t))t≥0 converges to the
law of (

√
Σ W (t))t≥0.

The statement holds for almost any realization of the environment. Note
that Σ is in general not the average of aω.
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Einstein-Relation

Now, add a local drift in the equation satisfied by X : let ` ∈ Rd be a
vector, ` 6= 0, and take the equation

dXλ(t) = bω(Xλ(t))dt + σω(Xλ(t))dWt + aω(Xλ(t))λ`dt. (4)
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Einstein-Relation

Theorem

(Lian Shen 2003)
Assume Q has finite range of dependence and V ω is smooth and bounded.
Then the diffusion in random environment Xλ satisfies the law of large
numbers: For any λ > 0,

lim
t→∞

1

t
Xλ(t) = v(λ), a.s. (5)

where v(λ) is a deterministic vector and ` · v(λ) > 0.

Again, v is called the effective drift.
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Einstein-Relation

Strategy of the proof (for fixed λ): Show that the process is transient in
direction `,

lim
t
` · Xλ(t) = +∞ , a.s. (6)

Define regeneration times τ1, τ2, ... Show that E0 [τ2 − τ1] <∞. Conclude
that

lim
t→∞

1

t
Xλ(t) =

E0

[
Xλ(τ2)− Xλ(τ1)

]
E0 [τ2 − τ1]

a.s. (7)
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Einstein-Relation

Regeneration times

... cut the path AND the environment in independent pieces (or: almost
independent pieces, sufficiently independent pieces, . . . ).
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Einstein-Relation

Theorem

Einstein relation. (NG, Pierre Mathieu, Andrey Piatnitski)
The effective diffusivity can be interpreted with the derivative of the
effective drift:

lim
λ→0

v(λ)

λ
= Σ` . (8)

In other words, the function λ→ v(λ) has a derivative at 0 and we have
for any vector e

lim
λ→0

1

λ
e · v(λ) = e · Σ`. (9)
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Einstein-Relation

Why it should be true: heuristics

A key ingredient is Girsanov transform. For any t, the law of
(Xλ(s))0≤s≤t is absolutely continuous w. r. t. the law of (X (s))0≤s≤t and
the Radon-Nikodym density is the exponential martingale

eλB(t)−λ
2

2
〈B〉(t) (10)

where

B(t) =

t∫
0

`Tσω(X (s)) · dWs (11)

and

〈B〉(t) =

t∫
0

∣∣∣`Tσω(X (s))
∣∣∣2 ds (12)
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Einstein-Relation

In particular,

E0

[
Xλ(t)

]
= E0

[
X (t)eλB(t)−λ

2

2
〈B〉(t)

]
(13)

Hence
d

dλ
E0

[
Xλ(t)

]∣∣∣
λ=0

= E0 [X (t)B(t)] (14)

and

lim
t→∞

1

t

d

dλ
E0

[
Xλ(t)

]∣∣∣
λ=0

= lim
t→∞

1

t
E0 [X (t)B(t)] (15)
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Einstein-Relation

Exchanging the order of the limits yields

d

dλ
v(λ)|λ=0 = lim

t→∞

1

t
E0 [X (t)B(t)] (16)

A symmetry argument (using the reversibility) shows that

E0 [X (t)B(t)] = E0 [X (t)(` · X (t))] (17)

and we conclude that

d

dλ
v(λ)|λ=0 = lim

t→∞

1

t
E0 [X (t)(` · X (t))] = Σ` (18)
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Einstein-Relation

Why it is true: strategy of the proof

Joel Lebowitz and Hermann Rost showed, using the invariance principle
and Girsanov transform:

Theorem

(Joel Lebowitz, Hermann Rost, 1994)
Let α > 0. Then

lim
λ→0 ,t→+∞ ,λ2t=α

E0

[
Xλ(t)

λt

]
= Σ ` . (19)
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Einstein-Relation

Idea: work on the scale λ→ 0, t →∞, λ2t → α and eventually α→∞.
We show that

Proposition

lim
α→+∞

lim sup
λ→0 ,t→+∞ ,λ2t=α

∣∣∣∣E0

[
Xλ(t)

λt

]
− v(λ)

λ

∣∣∣∣ = 0. (20)

In order to show the proposition, follow Lian Shen’s construction of
regeneration times, but take into account the dependence on λ. To carry
this through, need uniform estimates for hitting times (on our scale).
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Einstein-Relation

The Einstein relation is conjectured to hold for many models, but it is
proved for few. Apart from the results mentioned, examples include:
–Balanced random walks in random environment (Xiaoqin Guo).
–Random walks on Galton-Watson trees (Gérard Ben Arous, Yueyun Hu,
Stefano Olla, Ofer Zeitouni).
–Tagged particle in asymmetric exclusion (Michail Loulakis).
The following examples are in progress:
–Random walks on percolation clusters of ladder graphs (NG, Matthias
Meiners, Sebastian Müller).
–Mott random walks (Alessandra Faggionato, NG, Michele Salvi).
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A result about monotonicity

How does v1(λ) depend on λ for a random walk among random
conductances?
For the homogeneous medium, we have

v1(λ)

λ0

1

For the infinite percolation cluster, the conjectured picture is

0

v1(λ)

λλc

40/42



A result about monotonicity

For the random walk among random conductances, we believe that the
picture can be

v1(λ)

λ0

1

We show (Noam Berger, NG, Jan Nagel, in progress): the speed in the
favourite direction is not increasing, provided δ is small enough and the
conductances take the values 1 (with probability > pc) and δ with
probability 1− p.
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A result about monotonicity

Thanks for your attention!
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