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Conditional independence

The key idea in understanding
@ the structure of a multivariate distribution
@ the structure of a sample of multivariate data

is conditional independence, a topic that has been extensively studied
both in spatial statistics and in graphical modelling.
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Conditional independence

The key idea in understanding

@ the structure of a multivariate distribution

@ the structure of a sample of multivariate data
is conditional independence, a topic that has been extensively studied
both in spatial statistics and in graphical modelling.

X and Y are conditionally independent given Z:
Xuy|Zz

means that if you already know the value of Z, learning that of Y tells
you nothing more about X. Any dependence between X and Y is
indirect, mediated through Z.
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Conditional independence

The key idea in understanding
@ the structure of a multivariate distribution
@ the structure of a sample of multivariate data

is conditional independence, a topic that has been extensively studied
both in spatial statistics and in graphical modelling.

X and Y are conditionally independent given Z:
Xuy|Zz

means that if you already know the value of Z, learning that of Y tells
you nothing more about X. Any dependence between X and Y is
indirect, mediated through Z.

It proves useful to represent conditional independences graphically.
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Conditional independence

Markov random fields: the local Markov property

OL0/@
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Markov random fields = Gibbs distributions
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Conditional independence

The Hammersley—Clifford theorem

The result that Markov random fields coincided with Gibbs

distributions, under certain conditions, was known as the
Hammersley—Clifford theorem.
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The Hammersley—Clifford theorem

The result that Markov random fields coincided with Gibbs
distributions, under certain conditions, was known as the
Hammersley—Clifford theorem.

Many years later, the theorem was superseded by a more complete
understanding of Markov properties in undirected graphical models:
we can distinguish Global, Local and Pairwise Markov properties, and
relate all these to the Factorisation property of Gibbs distributions; in
general

F=G=L=P

and under an additional condition implied by positivity they are all
equivalent.
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Co! nal independence

Pairwise Markov property

OLO|®
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Co! nal independence

Global Markov property

OL0®
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Graphical models

The conditional independence graph G of a multivariate distribution (for
a random vector X, say) tells us much about the structure of the
distribution. G = (V, E) where the vertices V index the components of
X, and there is an (undirected) edge between vertices i and j, written
i~

unless  X; 1L X; | X\ iy
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Graphical models

The conditional independence graph G of a multivariate distribution (for
a random vector X, say) tells us much about the structure of the
distribution. G = (V, E) where the vertices V index the components of
X, and there is an (undirected) edge between vertices i and j, written
i~

unless  X; 1L X; | X\ iy
Under conditions (positivity is sufficient), global and local Markov
properties also hold.
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Structural learning

Given i.i.d. observations on X, we are often interested in inferring G,
the problem of structural learning.

G may be of direct interest; also determining G as part of inference
about covariance is a way of imposing parsimony.
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Structural learning

Given i.i.d. observations on X, we are often interested in inferring G,
the problem of structural learning.

G may be of direct interest; also determining G as part of inference
about covariance is a way of imposing parsimony.

This entails search in a huge discrete model space: there are
2(2)

graphs on v vertices.
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Contingency tables

Prognostic factors for
coronary heart disease

Analysis of a 28 contingency table
(Edwards & Havranek, Biometrika, 1985)

blood pressure ‘
> 140? '

ratio of o and B
lipoproteins >3?

strenuous
physical work?

family history
of CHD?

strenuous
mental work?

22
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Structural learning

The main approaches

@ Score-based methods (e.g. optimisation of a penalised likelihood,
such as glasso or BIC)

@ Contraint-based methods (querying conditional independences,
e.g. PC algorithm)

@ Bayesian methods (deliver posterior probabilities over graphs (and
parameters))
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Structural learning

The main approaches

@ Score-based methods (e.g. optimisation of a penalised likelihood,
such as glasso or BIC)

@ Contraint-based methods (querying conditional independences,
e.g. PC algorithm)

@ Bayesian methods (deliver posterior probabilities over graphs (and
parameters))

Except in very small problems, we typically restrict the space of graphs
to be considered — e.qg. to trees, forests, DAGs or decomposable
graphs.
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SNPs and gene expression

min BIC forest
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S&P 500 equity data

o/D

(a) glasso graph (1316 edges) (b) nonparanormal graph (1316 edges)

from Lafferty, Liu, Wasserman (2012).
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Conditional independence

Genetic epidemiology

Graphical model
fitted to
contingency table
relating disease
status (aff), SNPs
— with Linkage
disequilibrium,
covariates, and 4
quantitative traits.
Abel & Thomas,
GAW17.

0
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Decomposable graphical models

The case where G is decomposable has been much studied.

Decomposability is a graph theory concept with statistical and
computational implications.

e o3

not decomposable decomposable
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Decomposable graphical models

The case where G is decomposable has been much studied.
Decomposability is a graph theory concept with statistical and
computational implications.

Decomposable graphs are also known as triangulated or chordal: a
graph is decomposable if and only if it has no chordless k-cycles for

not decomposable decomposable
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Decomposability: junction trees

A graph is decomposable if and only if it has a junction tree
representation.

A junction tree is a graph whose vertices are cliques (maximal
complete subgraphs), with the property that the cliques containing any
prescribed set of vertices forms a connected sub-tree.
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Decomposability: junction trees

A graph is decomposable if and only if it has a junction tree
representation.

A junction tree is a graph whose vertices are cliques (maximal
complete subgraphs), with the property that the cliques containing any
prescribed set of vertices forms a connected sub-tree.

We label the links of a junction tree with the separators, intersections
of the adjacent cliques. There may be many junction trees for a given
decomposable graph.
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Decomposable graphs

A small decomposable graph

Non-uniqueness
of junction tree
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Decomposable graphs

A small decomposable graph

Non-uniqueness
of junction tree
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Decomposable graphs

Probabilistic significance of decomposability

If the distribution of a random vector X has a decomposable
conditional independence graph, then it has a remarkable
representation in terms of (often low-dimensional) marginals:

_ Ileee P(Xc)
PX) = Mo P(Xs)
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Probabilistic significance of decomposability

If the distribution of a random vector X has a decomposable
conditional independence graph, then it has a remarkable
representation in terms of (often low-dimensional) marginals:

[Tcec P(Xc)
[Ises P(Xs)

This is the ultimate generalisation of the fact that for an ordinary
Markov chain

p(X) =

N
H/ 1p(X{/ 1/})
X) = p(X P(Xi| X
P()p(o)g(| 1) = %7 p(X 1)

For a general decomposable graph, the same kind of factorisation
follows the branches of the junction tree.
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Computational significance of decomposability

There are many consequences for computing with distributions on
decomposable graphs, including junction tree algorithms (message

passing/probability propagation) for Bayes nets (discrete graphical
models).
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Statistical significance of decomposability

Explicit Maximum likelihood estimates and exact tests for conditional
independence for contingency tables and multivariate Gaussian
distributions on decomposable graphs.
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Statistical significance of decomposability

Explicit Maximum likelihood estimates and exact tests for conditional
independence for contingency tables and multivariate Gaussian
distributions on decomposable graphs.

Dawid & Lauritzen’s hyper-Markov laws - a framework for the
construction of consistent prior distributions respecting the graphical
structure.
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Statistical significance of decomposability

Explicit Maximum likelihood estimates and exact tests for conditional
independence for contingency tables and multivariate Gaussian
distributions on decomposable graphs.

Dawid & Lauritzen’s hyper-Markov laws - a framework for the
construction of consistent prior distributions respecting the graphical
structure.

Clique—separator factorisation yields dramatic speed-ups in structural
learning.
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How restrictive is decomposability?

How many graphs are decomposable?

There are 2(2) graphs altogether on v vertices.

For v < 3 vertices, all are decomposable
for 4 vertices, 61/64

for 6, ~ 55%

for 8, ~ 12%.

The 3 non-decomposable 4-vertex graphs: 8:8 % %
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Does that matter?

There is no reason why Nature should be kind enough to give us data
from graphical models that are decomposable. . .
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Does that matter?

There is no reason why Nature should be kind enough to give us data
from graphical models that are decomposable. . .

But given any (undirected) graphical model, we can add (‘fill in’) edges
to make the graph decomposable.

not decomposable
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Does that matter?

There is no reason why Nature should be kind enough to give us data
from graphical models that are decomposable. . .

But given any (undirected) graphical model, we can add (‘fill in’) edges
to make the graph decomposable.

EOONL DO

not decomposable decomposable

So long as our model for the data, given the graph G, allows arbitrarily
small interactions, we will lose little by assuming decomposability — we
will merely tend to infer (hopefully, slightly) more complicated graphs
than necessary.
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Decomposable graphs

And assuming decomposability has tremendous
advantages....

@ Computational advantages in fitting the model
@ Evaluating the fit

@ Prediction

@ Sampling data from fitted model

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models Bristol, February 2014 25/63



Bayesian graphical model determination

Given ni.i.d. samples X = (Xj, Xz, ..., Xj;) from a multivariate
distribution on R" parameterised by the graph G and parameters 6, a
typical formulation takes the form

and we perform joint structural/quantitative learning by computing the
posterior p(G, 0|X) x p(G, 0, X).
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Priors on decomposable graphs
Conjugate priors on decomposable graphs

Recall that in any decomposable graphical model the likelihood has
the form
_ HeecP(Xcl9)
[[ses P(Xs]9)

So any prior on the graph G that factorises similarly as a product over
cliques divided by a product over separators will be conjugate.

p(X|G)
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Priors on decomposable graphs
Byrne’s structural Markov property

A graph law 7(G) over the set 4l of undirected decomposable graphs

on Vis structurally Markov (Byrne, 2011) if for any covering pair (A, B),
we have :

Ga L G| {9 € WA B)} I[n],

where LU(A, B) is the set of decomposable graphs for which (A, B) is a
decomposition.
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Priors on decomposable graphs
Byrne’s structural Markov property

A graph law 7(G) over the set 4l of undirected decomposable graphs

on Vis structurally Markov (Byrne, 2011) if for any covering pair (A, B),
we have :

Ga L G| {9 € WA B)} I[n],

where LU(A, B) is the set of decomposable graphs for which (A, B) is a
decomposition.

@ (A,B)isacovering pairif AUB=V

@ (A, B) is a decomposition if AN B is complete, and separates A\ B
and B\ A.
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Priors on decomposable graphs
Byrne’s structural Markov property

A graph law 7(G) over the set 4l of undirected decomposable graphs

on V' is structurally Markov (Byrne, 2011) if for any covering pair (A, B),
we have :

Ga L G| {9 € WA B)} [r],

where LU(A, B) is the set of decomposable graphs for which (A, B) is a
decomposition.
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Priors on decomposable graphs
Byrne’s structural Markov property

A graph law 7(G) over the set 4l of undirected decomposable graphs
on V' is structurally Markov (Byrne, 2011) if for any covering pair (A, B),
we have :

Ga L Gs[{G €A B)} [n],

where LU(A, B) is the set of decomposable graphs for which (A, B) is a
decomposition.

Byrne shows that a graph law is structurally Markov if and only if has

the form
x HCeC ¢C

m9) HSES ¢s

where {¢4 : A C V} are arbitrary positive set-indexed parameters.
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Priors on decomposable graphs
A new weak structural Markov property

A graph law 7(G) over the set 4l of undirected decomposable graphs
on V is weakly structurally Markov (WSM) if for any covering pair
(A, B), we have :

Ga L G| {G € YA B)} [n],

where U4(A, B) is the set of decomposable graphs for which (A, B) is a
decomposition, and AN B is a clique in G4.
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Priors on decomposable graphs
A new weak structural Markov property

A graph law 7(G) over the set 4l of undirected decomposable graphs
on V is weakly structurally Markov (WSM) if for any covering pair
(A, B), we have :

Ga L G | {G € WA B)} [n],
where U4(A, B) is the set of decomposable graphs for which (A, B) is a
decomposition, and AN B is a clique in G4.

This places fewer conditional independence conditions on 7, so
potentially corresponds to a richer class of graph priors — but we will
see that we can still say something concrete about the form of these
laws.
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

A weak structural Markov property

16 possibilities for G

(if An B remains a clique in G
L]
1
N
e

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models

X

J 1
Nz
BE
Pz

Ga L Gg|{G € WA B)} [x],

~

R,

]_]::I:-

4 possibilities for Gg
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Priors on decomposable graphs
Clique—separator factorisation graph laws

We can show that a graph law is weakly structurally Markov if and only
if has the form

[Icec 9c
ﬂ-(g) > HSES Vs

where {¢pa: AC V}, {4 : AC V} are arbitrary positive set-indexed
parameters.
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Priors on decomposable graphs
Clique—separator factorisation graph laws

We can show that a graph law is weakly structurally Markov if and only
if has the form Mo 6
cec¥C
m(G) x ===
(©) HSeS vs

where {¢pa: AC V}, {4 : AC V} are arbitrary positive set-indexed
parameters.

This more general form allows valuable extra flexibility in prior
specification; this class of priors has also been studied by Bornn and
Caron (2011).
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

oc =exp(4(|C| — 1)) for |C| < 4, else 0; g = exp(4|S])
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

oc =exp(4(|C| — 1)) for |C| < 4, else 0;
Vs = exp(4) for|S| = 1, else co
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Example sample from a CSF graph law

18
g el
/ |
]
;
{
Al !
LY Ty
201 h-m
#
\ /
m ]
fi 20
(8]

oc =exp(4(|C| —1)+3#{ve C: mod (v,10) = 0}) for |C| < 4, else 0;
s = exp(4) for|S| =1, else o
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Example sample from a CSF graph law
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Priors on decomposable graphs
Example sample from an edge-penalty graph law

oc = e = exp(—a|C|(|C| —1)/2) with a = .75 —i.e.
7(G) ox exp(—a#edges)
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WSM=CSF — sketch proof

Consider a particular junction tree of G, with junction tree links
connecting C; to Cp;) via separator S;. For each j, let R; be any subset
of Cy(j that is a proper superset of S;.
The conditional independence assertions of WSM imply both

@ For any choice of such {R;}, we have

7(GRG))

H” g9 XH G g(C))

where G(-) is the graph with cliques . . ..
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WSM=CSF — sketch proof

Consider a particular junction tree of G, with junction tree links
connecting C; to Cp;) via separator S;. For each j, let R; be any subset
of Cy(j that is a proper superset of S;.
The conditional independence assertions of WSM imply both

@ For any choice of such {R;}, we have

7(GRG))

H”g(cl <1 G C))

/>2

where G(-) is the graph with cliques . . ..

o (G0 /m(GA))(G(C)) depends only on S, for all sets of
vertices R, C for which RUC = V and RN C = S, and where both
R and C are strict supersets of S.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Posterior using a prior with the weak structural Markov
property

The posterior for G is

[Tceclécp(XclG)]
PLGIX) o [Tscslvsp(Xs|G)]

that is, a CSF law with parameters ¢ap(Xa|G) and 1ap(XalG).
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MCMC for structural/quantitative learning
Bayesian decomposable graphical model
determination

For trees, there are explicit finite algorithms for computing MAP
estimates; also perfect simulation is possible for random spanning
trees, so a full Bayesian analysis can be conducted.

It would be interesting to find a way to extend these ideas to
decomposable graphs, but that has not so far been successful.
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MCMC for structural/quantitative learning
Bayesian decomposable graphical model
determination

For decomposable graphs, joint structural/quantitative learning
therefore currently requires MCMC sampling of the posterior
p(G,0|X) x p(G, 0, X): this means running a Markov chain whose
states have the form (G, 6) — a graph and a vector of parameters.

This chain is constructed to have equilibrium distribution p(G, 6|X) by
ensuring that all moves have detailed balance with respect to this
distribution, by using a Metropolis—Hastings sampler.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Bayesian decomposable graphical model
determination

For decomposable graphs, joint structural/quantitative learning
therefore currently requires MCMC sampling of the posterior
p(G,0|X) x p(G, 0, X): this means running a Markov chain whose
states have the form (G, 6) — a graph and a vector of parameters.

This chain is constructed to have equilibrium distribution p(G, 6|X) by
ensuring that all moves have detailed balance with respect to this
distribution, by using a Metropolis—Hastings sampler.

See Giudici & G (1999) (Gaussian case) and Giudici, G & Tarantola
(2000) (contingency table case). These assume parameter priors
p(0|G) that are consistent across G, using the Dawid & Lauritzen
hyper-Markov laws.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Bayesian decomposable graphical model
determination

Typically, a move involves proposing a single-edge perturbation to the
graph G, together with appropriate changes to . In MCMC sampling

using single-edge moves, a junction tree representation of the current
G permits both

@ cheap pre-testing that the proposed new graph G’ is
decomposable

@ fast local updating of the graph from G to G’ when the move
passes the Metropolis—Hastings acceptance test
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MCMC for structural/quantitative learning
Pre-tests for maintaining decomposability

Conditions for maintaining decomposability in single-edge moves:

Frydenberg & Lauritzen Disconnecting x and y by removing an
edge (x, y) from G will result in a decomposable graph if and only
if x and y are contained in exactly one clique.
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MCMC for structural/quantitative learning
Pre-tests for maintaining decomposability

Conditions for maintaining decomposability in single-edge moves:

Frydenberg & Lauritzen Disconnecting x and y by removing an
edge (x, y) from G will result in a decomposable graph if and only
if x and y are contained in exactly one clique.

Giudici & Green Connecting x and y by adding an edge (x, y) to G
will result in a decomposable graph if and only if x and y are
contained in cliques that are adjacent in some junction tree of G.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Single edge move

Once the testis
complete, actually
committing to adding

or deleting the edge a

is little work
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Single edge move

Once the test is
complete, actually ,
committing to adding
or deleting the edge
is little work

It makes only

a (relatively)

local change

to the junction tree
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Sampling junction trees
Using the junction tree as the state

We recently found a simple way to speed up sampling dramatically, by
ruling out the need to change the topology of the junction tree — we do
this by using directly the junction tree J as part of the model
parameterisation, in place of the graph G.
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Sampling junction trees
Using the junction tree as the state

We recently found a simple way to speed up sampling dramatically, by
ruling out the need to change the topology of the junction tree — we do
this by using directly the junction tree J as part of the model
parameterisation, in place of the graph G.

This means augmenting the model so that, conditional on G, the
junction tree J is a priori drawn uniformly from among all equivalent
junction trees, thus replacing the prior 7(G) on decomposable graphs
by

where G(J) is the decomposable graph determined by J and p(G) is
the number of equivalent junction trees representing G.
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Sampling junction trees
Using the junction tree as the state

We recently found a simple way to speed up sampling dramatically, by
ruling out the need to change the topology of the junction tree — we do
this by using directly the junction tree J as part of the model
parameterisation, in place of the graph G.

This means augmenting the model so that, conditional on G, the
junction tree J is a priori drawn uniformly from among all equivalent
junction trees, thus replacing the prior 7(G) on decomposable graphs
by

where G(J) is the decomposable graph determined by J and p(G) is
the number of equivalent junction trees representing G.

Fortunately, we have an efficient local method for evaluating 1(G).
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Sampling junction trees
Using the junction tree as the state

Trade-off between

@ faster, more restrictive choice of proposed vertex pairs (x, y)
specifying edges to be added/deleted, and avoidance of the
manipulation from one junction tree to another, and

@ we do not allow some edge moves that would yield a
decomposable graph, because the junction tree needs to be
manipulated, so the space of possible (junction tree) states of the
chain is less connected.
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Sampling junction trees
Using the junction tree as the state

Trade-off between

@ faster, more restrictive choice of proposed vertex pairs (x, y)
specifying edges to be added/deleted, and avoidance of the
manipulation from one junction tree to another, and

@ we do not allow some edge moves that would yield a
decomposable graph, because the junction tree needs to be
manipulated, so the space of possible (junction tree) states of the
chain is less connected.

Certain multiple-edge moves that change the topology of the junction
tree in a simple way can also be included.
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Szl o ve o ez
Using the junction tree as the state

Whether two
decomposable
graphs are ‘1;:\22
adjacent in the
junction tree I y
representation

depends on the 6D 7555
choice of junction E
tree. A2D (b)
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A graphical Gaussian intra-class model

Given a decomposable graph G on v vertices labelled 1,2, ..., v, and

real scalar parameters ¢ > 0 and p, we define a non-negative definite
matrix V = Vg(o?, p) by

o? ifi=]j
Vi=9 o ., . .
po< if (i,f) is an edge in G,

and (V~1); = 0if (/,/) is not an edge in G.
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A graphical Gaussian intra-class model

Given a decomposable graph G on v vertices labelled 1,2, ..., v, and
real scalar parameters ¢ > 0 and p, we define a non-negative definite
matrix V = Vg(o?, p) by

o? ifi=]j
Vi=9 o ., . .
po< if (i,f) is an edge in G,

and (V~1); = 0if (/,/) is not an edge in G.

By Grone et al (1984), since G is decomposable and V restricted to
each clique is positive definite, V exists and is unique, in fact the
unique completion of the specified entries that is positive definite; it is
the variance matrix of a v—variate Gaussian distribution for which G is
the conditional independence graph. We call this the graphical
Gaussian intra-class model (GGIM).
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A 50-vertex graphical Gaussian intra-class model

We simulated 1000 GGIM observations on 50 variables with o2 = 30
and p = 0.2. We used a second order Markov Chain graphical
structure, that is, (V~1);; = 0 for all i and j such that |i — j| > 2.
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Examples/demonstrations

A 50-vertex graphical Gaussian intra-class model

A graph typical of
the type sampled
early in their runs
by all three
samplers for the
GGIM model. The
edge between
variables 1 and 39
is spurious, and
has to be removed
before the correct
edges near
variables 25 and
26 can be added.

12
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A 50-vertex graphical Gaussian intra-class model

false

- |_.,mmn.e o oo o o
o m”m}“

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

true
1

(posterior probabilities of edge presence for the 95 ‘true’ edges and
the 1130 ‘false’ ones)
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A graphical model for Linkage Disequilibrium

Abel & Thomas (SAGMB, 2011), Thomas & Camp (Amer J Hum Gen,
2004)

@ genotype SNP data, unphased

@ multinomial model, unknown graph (coding LD)

@ assumes graph decomposable, sets max edge length (e.g. 15-40)
@ multinomial cell probabilities maximised out

@ sampler alternates between updating graph, and imputing phase
and other missing data
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A graphical model for Linkage Disequilibrium

Abel & Thomas (SAGMB, 2011), Thomas & Camp (Amer J Hum Gen,
2004)

@ genotype SNP data, unphased

@ multinomial model, unknown graph (coding LD)

@ assumes graph decomposable, sets max edge length (e.g. 15-40)
@ multinomial cell probabilities maximised out

o

sampler alternates between updating graph, and imputing phase
and other missing data

@ Abel & Thomas demonstrate up to 100,000 loci on 60 individuals,
and on 500 loci up to 12,500 individuals.

@ Example: first 500 loci on chromosome 1 for the 60 unrelated
parents in the original HapMap Yoruba data set

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models Bristol, February 2014 53/63



A graphical model for Linkage Disequilibrium

P2
T <
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A graphical model for Linkage Disequilibrium
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A graphical model for Linkage Disequilibrium

@ implemented with some clever use of moving windows

@ attains cross-validation accuracy in imputing missing genotypes
comparable to best alternatives

@ more effort and flexibility in modelling allelic associations may be
important in difficult data sets

@ computationally expensive

o efficient use of memory

e very large panels
o fitted model phases haplotypes and imputes missing data on a
huge scale very quickly
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Non-decomposable graphs

If G is not decomposable, we still have the prime component
factorisation I (Xp)
P(Ap
p X) = PeP
)= MecspXs)

where the prime components P; are the maximal subgraphs that
cannot be decomposed: in a non-decomposable graph, at least one is

not complete.

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models Bristol, February 2014 57 /63



Non-decomposable graphs

Bayesian model determination with
non-decomposable graphs

The additional difficulties in sampling non-decomposable graphical
models are (Jones et al, Stat. Sci., 2005):

@ The normalising constants in the non-complete prime component

marginals do not have closed form, so we need Monte Carlo
methods to estimate them.

@ These Monte Carlo calculated values have high variance.

@ When you make single-edge perturbations to the graph, there is
no guarantee of significant cancellations in likelihood ratios.
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Non-decomposable graphs

Bayesian model determination with
non-decomposable graphs

The additional difficulties in sampling non-decomposable graphical
models are (Jones et al, Stat. Sci., 2005):

@ The normalising constants in the non-complete prime component
marginals do not have closed form, so we need Monte Carlo
methods to estimate them.

@ These Monte Carlo calculated values have high variance.

@ When you make single-edge perturbations to the graph, there is
no guarantee of significant cancellations in likelihood ratios.

These difficulties hugely increase computing time — in their
experiments, 420 times for a 12-node, 15-edge example; 5500 times

for 15-node, 26-edge example (this is for Gaussian models, using
conjugate priors on variances).
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Non-decomposable graphs

Bayesian model determination with
non-decomposable graphs

Jones et al (Stat. Sci., 2005) conclude that sampling from the posterior
is not practical for problems with much more than 15 nodes — and
resort to (fast) heuristics like stochastic shotgun search to identify a
graph with high posterior probability instead.
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A 1000-vertex graphical Gaussian intra-class model

Green & Thomas (UTS/Bristrc;IV& Utah) Bayesian graphical models Bristol, February 2014 61/63



.
Some issues for future work

@ Parallelisation
@ Latent variables
@ ‘Nearly decomposable’ graphs?

@ Decision theory approach to delivering ‘optimal’ graph — with loss
function on presence of individual edges — ignore decomposability
constraint?

@ Perfect simulation
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@ “Sampling decomposable graphs using a Markov chain on junction
trees”, by Green and Thomas, Biometrika, 2013; arXiv:1104.4079

@ “Enumerating the junction trees of a decomposable graph”, JCGS,
2009, by Thomas and Green

@ “Enumerating the decomposable neighbours of a decomposable
graph under a simple perturbation scheme”, CSDA, 2009, by
Thomas and Green

@ Webpage: www.stats.bris.ac.uk/~peter/
@ Email: P.J.Green@bristol.ac.uk

@ Steffen Lauritzen’s Wald lectures, Istanbul, 2012:
http://www.stats.ox.ac.uk/~steffen
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