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Conditional independence

Conditional independence

The key idea in understanding
the structure of a multivariate distribution
the structure of a sample of multivariate data

is conditional independence, a topic that has been extensively studied
both in spatial statistics and in graphical modelling.

X and Y are conditionally independent given Z :

X ⊥⊥ Y | Z

means that if you already know the value of Z , learning that of Y tells
you nothing more about X . Any dependence between X and Y is
indirect, mediated through Z .

It proves useful to represent conditional independences graphically.
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Conditional independence

Markov random fields: the local Markov property

?

  

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models Bristol, February 2014 4 / 63



Conditional independence

Markov random fields = Gibbs distributions
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Conditional independence

The Hammersley–Clifford theorem

The result that Markov random fields coincided with Gibbs
distributions, under certain conditions, was known as the
Hammersley–Clifford theorem.

Many years later, the theorem was superseded by a more complete
understanding of Markov properties in undirected graphical models:
we can distinguish Global, Local and Pairwise Markov properties, and
relate all these to the Factorisation property of Gibbs distributions; in
general

F =⇒ G =⇒ L =⇒ P

and under an additional condition implied by positivity they are all
equivalent.
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Conditional independence

Pairwise Markov property

  
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Conditional independence

Global Markov property

  
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Conditional independence

Graphical models

The conditional independence graph G of a multivariate distribution (for
a random vector X , say) tells us much about the structure of the
distribution. G = (V ,E) where the vertices V index the components of
X , and there is an (undirected) edge between vertices i and j , written
i ∼ j

unless Xi ⊥⊥ Xj | XV\{i,j}

Under conditions (positivity is sufficient), global and local Markov
properties also hold.
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Conditional independence

Structural learning

Given i.i.d. observations on X , we are often interested in inferring G,
the problem of structural learning.

G may be of direct interest; also determining G as part of inference
about covariance is a way of imposing parsimony.

This entails search in a huge discrete model space: there are

2(
v
2)

graphs on v vertices.
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Conditional independence

Contingency tables

Prognostic factors for Prognostic factors for 
coronary heart diseasecoronary heart disease

Analysis of a 26 contingency table
(Edwards & Havranek Biometrika 1985)

strenuous ki ?

(Edwards & Havranek, Biometrika, 1985)

physical work?smoking?

family history 
of CHD?

blood pressure 
> 140?

strenuous 
t l k?

ratio of  and 
li t i 3?

22

mental work?lipoproteins >3?
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Conditional independence

Structural learning

The main approaches
Score-based methods (e.g. optimisation of a penalised likelihood,
such as glasso or BIC)
Contraint-based methods (querying conditional independences,
e.g. PC algorithm)
Bayesian methods (deliver posterior probabilities over graphs (and
parameters))

Except in very small problems, we typically restrict the space of graphs
to be considered – e.g. to trees, forests, DAGs or decomposable
graphs.
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Conditional independence

SNPs and gene expression

Introduction
Score-based methods

Bayesian analysis
Constraint-based methods

Summary and challenges
Things I did not even get near

References

Structure estimation
Some examples
General points

SNPs and gene expressions
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Conditional independence

S&P 500 equity dataSPARSE NONPARAMETRIC GRAPHICAL MODELS 533

FIG. 10. Graphs build on S&P 500 stock data from Jan. 1, 2003 to Jan. 1, 2008. The graphs are estimated using (a) the glasso, (b) the
nonparanormal and (c) forest density estimation. The nodes are colored according to their GICS sector categories. Nodes are not shown that
have zero neighbors in both the glasso and nonparanormal graphs. Figure (d) shows the maximum weight spanning tree that results if the
data are not Winsorized to trim outliers.

from Lafferty, Liu, Wasserman (2012).
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Conditional independence

Genetic epidemiology

Graphical model
fitted to

contingency table
relating disease

status (aff), SNPs
– with Linkage
disequilibrium,

covariates, and 4
quantitative traits.

Abel & Thomas,
GAW17.
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Decomposable graphs

Decomposable graphical models

The case where G is decomposable has been much studied.
Decomposability is a graph theory concept with statistical and
computational implications.

Decomposable graphs are also known as triangulated or chordal: a
graph is decomposable if and only if it has no chordless k -cycles for
k ≥ 4.

not decomposable decomposable
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Decomposable graphs

Decomposability: junction trees

A graph is decomposable if and only if it has a junction tree
representation.

A junction tree is a graph whose vertices are cliques (maximal
complete subgraphs), with the property that the cliques containing any
prescribed set of vertices forms a connected sub-tree.

We label the links of a junction tree with the separators, intersections
of the adjacent cliques. There may be many junction trees for a given
decomposable graph.
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Decomposable graphs

A small decomposable graph

Non-uniqueness 7 6 5
of junction tree

2 3 41

267 236 345626 36267 236 345626 36

2

12

12
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Decomposable graphs

Probabilistic significance of decomposability

If the distribution of a random vector X has a decomposable
conditional independence graph, then it has a remarkable
representation in terms of (often low-dimensional) marginals:

p(X ) =

∏
C∈C p(XC)∏
S∈S p(XS)

This is the ultimate generalisation of the fact that for an ordinary
Markov chain

p(X ) = p(X0)
N∏

i=1

p(Xi |Xi−1) =

∏N
i=1 p(X{i−1,i})∏N−1

i=2 p(Xi−1)

For a general decomposable graph, the same kind of factorisation
follows the branches of the junction tree.
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Decomposable graphs

Computational significance of decomposability

There are many consequences for computing with distributions on
decomposable graphs, including junction tree algorithms (message
passing/probability propagation) for Bayes nets (discrete graphical
models).
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Decomposable graphs

Statistical significance of decomposability

Explicit Maximum likelihood estimates and exact tests for conditional
independence for contingency tables and multivariate Gaussian
distributions on decomposable graphs.

Dawid & Lauritzen’s hyper-Markov laws - a framework for the
construction of consistent prior distributions respecting the graphical
structure.

Clique–separator factorisation yields dramatic speed-ups in structural
learning.
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Decomposable graphs

How restrictive is decomposability?

How many graphs are decomposable?

There are 2(
v
2) graphs altogether on v vertices.

For v ≤ 3 vertices, all are decomposable
for 4 vertices, 61/64
for 6, ≈ 55%
for 8, ≈ 12%.

The 3 non-decomposable 4-vertex graphs:

Is decomposability a serious constraint?Is decomposability a serious constraint?








22
n

out of

• How many graphs are decomposable?

2out of

Number of
vertices

Proportion of graphs
that are
decomposable

3 all
  4 61/64 – all but:

   6 ~80%
16 45%

• Models using decomposable graphs are 
16 ~45%

‘dense’
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Decomposable graphs

Does that matter?

There is no reason why Nature should be kind enough to give us data
from graphical models that are decomposable. . .

But given any (undirected) graphical model, we can add (‘fill in’) edges
to make the graph decomposable.
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Decomposable graphs

Does that matter?

There is no reason why Nature should be kind enough to give us data
from graphical models that are decomposable. . .

But given any (undirected) graphical model, we can add (‘fill in’) edges
to make the graph decomposable.

not decomposable decomposable

So long as our model for the data, given the graph G, allows arbitrarily
small interactions, we will lose little by assuming decomposability – we
will merely tend to infer (hopefully, slightly) more complicated graphs
than necessary.
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Decomposable graphs

And assuming decomposability has tremendous
advantages....

Computational advantages in fitting the model
Evaluating the fit
Prediction
Sampling data from fitted model
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Bayesian model determination in decomposable graphs

Bayesian graphical model determination

Given n i.i.d. samples X = (X1,X2, . . . ,Xn) from a multivariate
distribution on Rv parameterised by the graph G and parameters θ, a
typical formulation takes the form

p(G, θ,X) = π(G)p(θ|G)p(X|G, θ)

and we perform joint structural/quantitative learning by computing the
posterior p(G, θ|X) ∝ p(G, θ,X).
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Conjugate priors on decomposable graphs

Recall that in any decomposable graphical model the likelihood has
the form

p(X |G) =
∏

C∈C p(XC |G)∏
S∈S p(XS|G)

So any prior on the graph G that factorises similarly as a product over
cliques divided by a product over separators will be conjugate.
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Byrne’s structural Markov property

A graph law π(G) over the set U of undirected decomposable graphs
on V is structurally Markov (Byrne, 2011) if for any covering pair (A,B),
we have :

GA ⊥ GB | {G ∈ U(A,B)} [π],

where U(A,B) is the set of decomposable graphs for which (A,B) is a
decomposition.

(A,B) is a covering pair if A ∪ B = V
(A,B) is a decomposition if A∩B is complete, and separates A \B
and B \ A.
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Byrne’s structural Markov property

A graph law π(G) over the set U of undirected decomposable graphs
on V is structurally Markov (Byrne, 2011) if for any covering pair (A,B),
we have :

GA ⊥ GB | {G ∈ U(A,B)} [π],

where U(A,B) is the set of decomposable graphs for which (A,B) is a
decomposition.

Byrne shows that a graph law is structurally Markov if and only if has
the form

π(G) ∝
∏

C∈C φC∏
S∈S φS

where {φA : A ⊆ V} are arbitrary positive set-indexed parameters.
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

A new weak structural Markov property

A graph law π(G) over the set U of undirected decomposable graphs
on V is weakly structurally Markov (WSM) if for any covering pair
(A,B), we have :

GA ⊥ GB | {G ∈ UA(A,B)} [π],

where UA(A,B) is the set of decomposable graphs for which (A,B) is a
decomposition, and A ∩ B is a clique in GA.

This places fewer conditional independence conditions on π, so
potentially corresponds to a richer class of graph priors – but we will
see that we can still say something concrete about the form of these
laws.
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

A weak structural Markov property

16 possibilities for GA
(if A ∩ B remains a clique in GA)
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Clique–separator factorisation graph laws

We can show that a graph law is weakly structurally Markov if and only
if has the form

π(G) ∝
∏

C∈C φC∏
S∈S ψS

where {φA : A ⊆ V}, {ψA : A ⊆ V} are arbitrary positive set-indexed
parameters.

This more general form allows valuable extra flexibility in prior
specification; this class of priors has also been studied by Bornn and
Caron (2011).
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

φC = exp(4(|C| − 1)) for |C| ≤ 4, else 0; ψS = exp(4|S|)
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Example sample from a CSF graph law

φC = exp(4(|C| − 1)) for |C| ≤ 4, else 0;
ψS = exp(4) for|S| = 1, else∞
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Example sample from a CSF graph law

φC = exp(4(|C| − 1) + 3#{v ∈ C : mod (v ,10) = 0}) for |C| ≤ 4, else 0;
ψS = exp(4) for|S| = 1, else∞
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Example sample from a CSF graph law
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

Example sample from an edge-penalty graph law

φC = ψC = exp(−α|C|(|C| − 1)/2) with α = .75 – i.e.
π(G) ∝ exp(−α#edges)
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Bayesian model determination in decomposable graphs Priors on decomposable graphs

WSM=CSF – sketch proof

Consider a particular junction tree of G, with junction tree links
connecting Cj to Ch(j) via separator Sj . For each j , let Rj be any subset
of Ch(j) that is a proper superset of Sj .

The conditional independence assertions of WSM imply both
For any choice of such {Rj}, we have

π(G) =
∏

j

π(G(Cj ))×
∏
j≥2

π(G(Rj ,Cj ))

π(G(Rj ))π(G(Cj ))

where G(...) is the graph with cliques . . ..
π(G(R,C))/π(G(R))π(G(C)) depends only on S, for all sets of
vertices R,C for which R ∪C = V and R ∩C = S, and where both
R and C are strict supersets of S.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Posterior using a prior with the weak structural Markov
property

The posterior for G is

p(G|X ) ∝
∏

C∈C[φCp(XC |G)]∏
S∈S [ψSp(XS|G)]

that is, a CSF law with parameters φAp(XA|G) and ψAp(XA|G).
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Bayesian decomposable graphical model
determination

For trees, there are explicit finite algorithms for computing MAP
estimates; also perfect simulation is possible for random spanning
trees, so a full Bayesian analysis can be conducted.

It would be interesting to find a way to extend these ideas to
decomposable graphs, but that has not so far been successful.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Bayesian decomposable graphical model
determination

For decomposable graphs, joint structural/quantitative learning
therefore currently requires MCMC sampling of the posterior
p(G, θ|X) ∝ p(G, θ,X): this means running a Markov chain whose
states have the form (G, θ) – a graph and a vector of parameters.

This chain is constructed to have equilibrium distribution p(G, θ|X) by
ensuring that all moves have detailed balance with respect to this
distribution, by using a Metropolis–Hastings sampler.

See Giudici & G (1999) (Gaussian case) and Giudici, G & Tarantola
(2000) (contingency table case). These assume parameter priors
p(θ|G) that are consistent across G, using the Dawid & Lauritzen
hyper-Markov laws.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Bayesian decomposable graphical model
determination

Typically, a move involves proposing a single-edge perturbation to the
graph G, together with appropriate changes to θ. In MCMC sampling
using single-edge moves, a junction tree representation of the current
G permits both

cheap pre-testing that the proposed new graph G′ is
decomposable
fast local updating of the graph from G to G′ when the move
passes the Metropolis–Hastings acceptance test
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Pre-tests for maintaining decomposability

Conditions for maintaining decomposability in single-edge moves:
Frydenberg & Lauritzen Disconnecting x and y by removing an
edge (x , y) from G will result in a decomposable graph if and only
if x and y are contained in exactly one clique.
Giudici & Green Connecting x and y by adding an edge (x , y) to G
will result in a decomposable graph if and only if x and y are
contained in cliques that are adjacent in some junction tree of G.
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Single edge move

Once the test is 7 6 5
complete, actually 
committing to adding 
or deleting the edge 
is little work

2 3 41

267 236 345626 36267 236 345626 36

2

12

22
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Bayesian model determination in decomposable graphs MCMC for structural/quantitative learning

Single edge move

7 6 5Once the test is 
complete, actually 
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Bayesian model determination in decomposable graphs Sampling junction trees

Using the junction tree as the state

We recently found a simple way to speed up sampling dramatically, by
ruling out the need to change the topology of the junction tree – we do
this by using directly the junction tree J as part of the model
parameterisation, in place of the graph G.

This means augmenting the model so that, conditional on G, the
junction tree J is a priori drawn uniformly from among all equivalent
junction trees, thus replacing the prior π(G) on decomposable graphs
by

π̃(J) =
π(G(J))
µ(G(J))

where G(J) is the decomposable graph determined by J and µ(G) is
the number of equivalent junction trees representing G.

Fortunately, we have an efficient local method for evaluating µ(G).
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Bayesian model determination in decomposable graphs Sampling junction trees

Using the junction tree as the state

Trade-off between
faster, more restrictive choice of proposed vertex pairs (x , y)
specifying edges to be added/deleted, and avoidance of the
manipulation from one junction tree to another, and
we do not allow some edge moves that would yield a
decomposable graph, because the junction tree needs to be
manipulated, so the space of possible (junction tree) states of the
chain is less connected.

Certain multiple-edge moves that change the topology of the junction
tree in a simple way can also be included.
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Bayesian model determination in decomposable graphs Sampling junction trees

Using the junction tree as the state

Whether two
decomposable

graphs are
adjacent in the

junction tree
representation

depends on the
choice of junction

tree. 127
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Examples/demonstrations

A graphical Gaussian intra-class model

Given a decomposable graph G on v vertices labelled 1,2, . . . , v , and
real scalar parameters σ2 > 0 and ρ, we define a non-negative definite
matrix V = VG(σ2, ρ) by

Vij =

{
σ2 if i = j
ρσ2 if (i , j) is an edge in G,

and (V−1)ij = 0 if (i , j) is not an edge in G.

By Grone et al (1984), since G is decomposable and V restricted to
each clique is positive definite, V exists and is unique, in fact the
unique completion of the specified entries that is positive definite; it is
the variance matrix of a v–variate Gaussian distribution for which G is
the conditional independence graph. We call this the graphical
Gaussian intra-class model (GGIM).
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Examples/demonstrations

A 50-vertex graphical Gaussian intra-class model

We simulated 1000 GGIM observations on 50 variables with σ2 = 30
and ρ = 0.2. We used a second order Markov Chain graphical
structure, that is, (V−1)ij = 0 for all i and j such that |i − j | > 2.
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Examples/demonstrations

A 50-vertex graphical Gaussian intra-class model

A graph typical of
the type sampled
early in their runs

by all three
samplers for the

GGIM model. The
edge between

variables 1 and 39
is spurious, and

has to be removed
before the correct

edges near
variables 25 and

26 can be added.
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Examples/demonstrations

A 50-vertex graphical Gaussian intra-class model

● ● ● ● ●● ●● ●●● ●● ●●● ● ●

● ● ●●●● ● ●●● ●●●●●● ●● ●●● ●●● ● ●●●● ●●● ● ● ● ●● ●● ● ●● ●● ●●●●●●● ●● ●● ●●●● ●●●●●●●●●● ●

tr
ue

fa
ls

e

0.0 0.2 0.4 0.6 0.8 1.0

(posterior probabilities of edge presence for the 95 ‘true’ edges and
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Examples/demonstrations

A graphical model for Linkage Disequilibrium

Abel & Thomas (SAGMB, 2011), Thomas & Camp (Amer J Hum Gen,
2004)

genotype SNP data, unphased
multinomial model, unknown graph (coding LD)
assumes graph decomposable, sets max edge length (e.g. 15–40)
multinomial cell probabilities maximised out
sampler alternates between updating graph, and imputing phase
and other missing data
Abel & Thomas demonstrate up to 100,000 loci on 60 individuals,
and on 500 loci up to 12,500 individuals.
Example: first 500 loci on chromosome 1 for the 60 unrelated
parents in the original HapMap Yoruba data set
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Examples/demonstrations

A graphical model for Linkage Disequilibrium
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Examples/demonstrations

A graphical model for Linkage Disequilibrium

implemented with some clever use of moving windows
attains cross-validation accuracy in imputing missing genotypes
comparable to best alternatives
more effort and flexibility in modelling allelic associations may be
important in difficult data sets
computationally expensive
efficient use of memory

very large panels
fitted model phases haplotypes and imputes missing data on a
huge scale very quickly

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models Bristol, February 2014 56 / 63



Non-decomposable graphs

Non-decomposable graphs

If G is not decomposable, we still have the prime component
factorisation

p(X ) =

∏
P∈P p(XP)∏
S∈S p(XS)

where the prime components Pi are the maximal subgraphs that
cannot be decomposed: in a non-decomposable graph, at least one is
not complete.
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Non-decomposable graphs

Bayesian model determination with
non-decomposable graphs

The additional difficulties in sampling non-decomposable graphical
models are (Jones et al, Stat. Sci., 2005):

The normalising constants in the non-complete prime component
marginals do not have closed form, so we need Monte Carlo
methods to estimate them.
These Monte Carlo calculated values have high variance.
When you make single-edge perturbations to the graph, there is
no guarantee of significant cancellations in likelihood ratios.

These difficulties hugely increase computing time – in their
experiments, 420 times for a 12-node, 15-edge example; 5500 times
for 15-node, 26-edge example (this is for Gaussian models, using
conjugate priors on variances).
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Non-decomposable graphs

Bayesian model determination with
non-decomposable graphs

Jones et al (Stat. Sci., 2005) conclude that sampling from the posterior
is not practical for problems with much more than 15 nodes – and
resort to (fast) heuristics like stochastic shotgun search to identify a
graph with high posterior probability instead.
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Non-decomposable graphs

A 1000-vertex graphical Gaussian intra-class model
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Non-decomposable graphs

A 1000-vertex graphical Gaussian intra-class model
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Some issues for future work

Parallelisation
Latent variables
‘Nearly decomposable’ graphs?
Decision theory approach to delivering ‘optimal’ graph – with loss
function on presence of individual edges – ignore decomposability
constraint?
Perfect simulation

Green & Thomas (UTS/Bristol & Utah) Bayesian graphical models Bristol, February 2014 62 / 63



“Sampling decomposable graphs using a Markov chain on junction
trees”, by Green and Thomas, Biometrika, 2013; arXiv:1104.4079
“Enumerating the junction trees of a decomposable graph”, JCGS,
2009, by Thomas and Green
“Enumerating the decomposable neighbours of a decomposable
graph under a simple perturbation scheme”, CSDA, 2009, by
Thomas and Green
Webpage: www.stats.bris.ac.uk/∼peter/
Email: P.J.Green@bristol.ac.uk
Steffen Lauritzen’s Wald lectures, Istanbul, 2012:
http://www.stats.ox.ac.uk/∼steffen
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