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Motivation

Derivatives of the likelihood help optimizing / sampling.

For many models they are not available.

One can resort to approximation techniques.
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Using derivatives in sampling algorithms

Modified Adjusted Langevin Algorithm

At step t, given a point θt , do:
propose

θ⋆ ∼ q(dθ | θt) ≡ N (θt + σ2

2
∇θ log π(θt), σ2),

with probability

1 ∧ π(θ⋆)q(θt | θ⋆)
π(θt)q(θ⋆ | θt)

set θt+1 = θ⋆, otherwise set θt+1 = θt .
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Using derivatives in sampling algorithms

Figure : Proposal mechanism for random walk Metropolis–Hastings.
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Using derivatives in sampling algorithms

Figure : Proposal mechanism for MALA.
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Using derivatives in sampling algorithms

In what sense is MALA better than MH?

Scaling with the dimension of the state space

For Metropolis–Hastings, optimal scaling leads to

σ2 = O(d−1),

For MALA, optimal scaling leads to

σ2 = O(d−1/3).

Roberts & Rosenthal, Optimal Scaling for Various
Metropolis-Hastings Algorithms, 2001.
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Hidden Markov models
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Figure : Graph representation of a general hidden Markov model.

Hidden process: initial distribution µθ, transition fθ.

Observations conditional upon the hidden process, from gθ.
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Assumptions

Input:
Parameter θ : unknown, prior distribution p.
Initial condition µθ(dx0) : can be sampled from.
Transition fθ(dxt |xt−1) : can be sampled from.
Measurement gθ(yt |xt) : can be evaluated point-wise.
Observations y1:T = (y1, . . . , yT ).

Goals:
score: ∇θ log L(θ; y1:T ) for any θ,
observed information matrix: −∇2

θ log L(θ; y1:T ) for any θ.

Note: throughout the talk, the observations, and thus the
likelihood, are fixed.
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Why is it an intractable model?

The likelihood function does not admit a closed form expression:

L(θ; y1, . . . , yT ) =
∫

X T+1
p(y1, . . . , yT | x0, . . . xT , θ)p(dx0, . . . dxT | θ)

=
∫

X T+1

T∏
t=1

gθ(yt | xt) µθ(dx0)
T∏

t=1
fθ(dxt | xt−1).

Hence the likelihood can only be estimated, e.g. by standard
Monte Carlo, or by particle filters.

What about the derivatives of the likelihood?
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Fisher and Louis’ identities

Write the score as:

∇ℓ(θ) =
∫

∇ log p(x0:T , y1:T | θ)p(dx0:T | y1:T , θ).

which is an integral, with respect to the smoothing distribution
p(dx0:T | y1:T , θ), of

∇ log p(x0:T , y1:T | θ) = ∇ log µθ(x0)

+
T∑

t=1
∇ log fθ(xt | xt−1) +

T∑
t=1

∇ log gθ(yt | xt).

However pointwise evaluations of ∇ log µθ(x0) and
∇ log fθ(xt | xt−1) are not always available.
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New kid on the block: Iterated Filtering

Perturbed model
Hidden states X̃t = (θ̃t , Xt).{

θ̃0 ∼ N (θ0, τ2Σ)
X0 ∼ µθ̃0

(·)
and

{
θ̃t ∼ N (θ̃t−1, σ2Σ)
Xt ∼ fθ̃t

(· | Xt−1 = xt−1)

Observations Ỹt ∼ gθ̃t
(· | Xt).

Score estimate
Consider VP,t = Cov[θ̃t | y1:t−1] and θ̃F ,t = E[θ̃t | y1:t ].

T∑
t=1

VP,t
−1

(
θ̃F ,t − θ̃F ,t−1

)
≈ ∇ℓ(θ0)

when τ → 0 and σ/τ → 0. Ionides, Breto, King, PNAS, 2006.
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Iterated Filtering: the mystery

Why is it valid?

Is it related to known techniques?

Can it be extended to estimate the second derivatives (i.e.
the Hessian, i.e. the observed information matrix)?

How does it compare to other methods such as finite
difference?
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Iterated Filtering

Given a log likelihood ℓ and a given point, consider a prior

θ ∼ N (θ0, σ2).

Posterior expectation when the prior variance goes to zero

First-order moments give first-order derivatives:

|σ−2 (E[θ|Y ] − θ0) − ∇ℓ(θ0)| ≤ Cσ2.

Phrased simply,

posterior mean − prior mean
prior variance

≈ score.

Result from Ionides, Bhadra, Atchadé, King, Iterated filtering,
2011.
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Extension of Iterated Filtering

Posterior variance when the prior variance goes to zero

Second-order moments give second-order derivatives:

|σ−4
(
Cov[θ|Y ] − σ2

)
− ∇2ℓ(θ0)| ≤ Cσ2.

Phrased simply,

posterior variance − prior variance
prior variance2 ≈ hessian.

Result from Doucet, Jacob, Rubenthaler on arXiv, 2013.
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Proximity mapping
Given a real function f and a point θ0, consider for any σ2 > 0

θ 7→ f (θ) exp
{

− 1
2σ2 (θ − θ0)2

}

θ
θ0

Figure : Example for f : θ 7→ exp(−|θ|) and three values of σ2.
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Proximity mapping

Proximity mapping

The σ2-proximity mapping is defined by

proxf : θ0 7→ argmaxθ∈R f (θ) exp
{

− 1
2σ2 (θ − θ0)2

}
.

Moreau approximation

The σ2-Moreau approximation is defined by

fσ2 : θ0 7→ C supθ∈R f (θ) exp
{

− 1
2σ2 (θ − θ0)2

}
where C is a normalizing constant.
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Proximity mapping

θ

Figure : θ 7→ f (θ) and θ 7→ fσ2(θ) for three values of σ2.
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Proximity mapping

Property

Those objects are such that

proxf (θ0) − θ0

σ2 = ∇ log fσ2(θ0) −−−→
σ2→0

∇ log f (θ0)

Moreau (1962), Fonctions convexes duales et points proximaux
dans un espace Hilbertien.

Pereyra (2013), Proximal Markov chain Monte Carlo
algorithms.
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Proximity mapping

Bayesian interpretation

If f is a seen as a likelihood function then

θ 7→ f (θ) exp
{

− 1
2σ2 (θ − θ0)2

}
is an unnormalized posterior density function based on a
Normal prior with mean θ0 and variance σ2.

Hence
proxf (θ0) − θ0

σ2 −−−→
σ2→0

∇ log f (θ0)

can be read

posterior mode − prior mode
prior variance

≈ score.
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Stein’s lemma

Stein’s lemma states that

θ ∼ N (θ0, σ2)

if and only if for any function g such that E [|∇g(θ)|] < ∞,

E [(θ − θ0) g (θ)] = σ2E [∇g (θ)] .

If we choose the function g : θ 7→ exp ℓ (θ) /Z with
Z = E [exp ℓ (θ)] and apply Stein’s lemma we obtain

1
Z
E [θ exp ℓ(θ)] − θ0 = σ2

Z
E [∇ℓ (θ) exp (ℓ (θ))]

⇔ σ−2 (E [θ | Y ] − θ0) = E [∇ℓ (θ) | Y ] .

Notation: E[φ(θ) | Y ] := E[φ(θ) exp ℓ(θ)]/Z.
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Stein’s lemma
For the second derivative, we consider

h : θ 7→ (θ − θ0) exp ℓ (θ) /Z.

Then

E
[
(θ − θ0)2 | Y

]
= σ2 + σ4E

[
∇2ℓ(θ) + ∇ℓ(θ)2 | Y

]
.

Adding and subtracting terms also yields

σ−4
(
V [θ | Y ] − σ2

)
= E

[
∇2ℓ(θ) | Y

]
+

{
E

[
∇ℓ(θ)2 | Y

]
− (E [∇ℓ(θ) | Y ])2

}
.

. . . but what we really want is

∇ℓ(θ0), ∇ℓ2(θ0)

and not
E [∇ℓ(θ) | Y ] ,E

[
∇ℓ2(θ) | Y

]
.
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Core Idea

The prior is a essentially a normal distribution N (θ0, σ2), but in
general has a density denoted by κ.

Posterior concentration induced by the prior

Under some assumptions, when σ → 0:
the posterior looks more and more like the prior,
the shift in posterior moments is in O(σ2).

Our arXived proof suffers from an overdose of Taylor
expansions.
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Details

Introduce a test function h such that |h(u)| < c|u|α for some
c, α.
We start by writing

E {h (θ − θ0)| y} =
∫

h (σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ (u) du∫
exp {ℓ (θ0 + σu) − ℓ(θ0)} κ (u) du

using u = (θ − θ0)/σ and then focus on the numerator∫
h (σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ (u) du

since the denominator is a particular instance of this expression
with h : u 7→ 1.
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Details

For the numerator:∫
h (σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ (u) du

we use a Taylor expansion of ℓ around θ0 and a Taylor
expansion of exp around 0, and then take the integral with
respect to κ.
Notation:

ℓ(k)(θ).u⊗k =
∑

1≤i1,...,ik≤d

∂kℓ(θ)
∂θi1 . . . ∂θik

ui1 . . . uik

which in one dimension becomes

ℓ(k)(θ).u⊗k = dk f (θ)
dθk uk .
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Details

Main expansion:∫
h(σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ(u)du =∫

h(σu)κ(u)du + σ

∫
h(σu)ℓ(1)(θ0).u κ(u)du

+ σ2
∫

h(σu)
{1

2
ℓ(2)(θ0).u⊗2 + 1

2
(ℓ(1)(θ0).u)2

}
κ(u)du

+ σ3
∫

h(σu)
{ 1

3!
(ℓ(1)(θ0).u)3 + 1

2
(ℓ(1)(θ0).u)(ℓ(2)(θ0).u⊗2)

+ 1
3!

ℓ(3)(θ0).u⊗3
}

κ(u)du + O(σ4+α).

In general, assumptions on the tails of the prior and the
likelihood are used to control the remainder terms and to
ensure there are O(σ4+α).
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Details

We cut the integral into two bits:∫
h(σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ(u)du

=
∫

σ|u|≤ρ
h(σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ(u)du

+
∫

σ|u|>ρ
h(σu) exp {ℓ (θ0 + σu) − ℓ(θ0)} κ(u)du

The expansion stems from the first term, where σ|u| is
small.
The second term ends up in the remainder in O(σ4+α)
using the assumptions.

Classic technique in Bayesian asymptotics theory.
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Details

To get the score from the expansion, choose

h : u 7→ u.

To get the observed information matrix from the
expansion, choose

h : u 7→ u2,

and surprisingly (?) further assume that κ is mesokurtic,
i.e. ∫

u4κ(u)du = 3
(∫

u2κ(u)du
)2

⇒ choose a Gaussian prior to obtain the hessian.

Pierre Jacob Derivative estimation 26/ 39



Outline

1 Context

2 General results and connections

3 Posterior concentration when the prior concentrates

4 Hidden Markov models

Pierre Jacob Derivative estimation 27/ 39



Hidden Markov models
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Figure : Graph representation of a general hidden Markov model.
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Hidden Markov models

Direct application of the previous results

1 Prior distribution N (θ0, σ2) on the parameter θ.

2 The derivative approximations involve E[θ|Y ] and
Cov[θ|Y ].

3 Posterior moments for HMMs can be estimated by
particle MCMC,

SMC2,

ABC
or your favourite method.

Ionides et al. proposed another approach.
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Iterated Filtering

Modification of the model: θ is time-varying.
The associated loglikelihood is

ℓ̄(θ1:T ) = log p(y1:T ; θ1:T )

= log
∫

X T+1

T∏
t=1

g(yt | xt , θt) µ(dx1 | θ1)
T∏

t=2
f (dxt | xt−1, θt).

Introducing θ 7→ (θ, θ, . . . , θ) := θ[T ] ∈ RT , we have

ℓ̄(θ[T ]) = ℓ(θ)

and the chain rule yields

dℓ(θ)
dθ

=
T∑

t=1

∂ℓ̄(θ[T ])
∂θt

.
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Iterated Filtering

Choice of prior on θ1:T :

θ̃1 = θ0 + V1, V1 ∼ τ−1κ
{

τ−1 (·)
}

θ̃t+1 − θ0 = ρ
(
θ̃t − θ0

)
+ Vt+1, Vt+1 ∼ σ−1κ

{
σ−1 (·)

}
Choose σ2 such that τ2 = σ2/(1 − ρ2). Covariance of the prior
on θ1:T :

ΣT = τ2



1 ρ · · · · · · · · · ρT−1

ρ 1 ρ · · · · · · ρT−2

ρ2 ρ 1 . . . ρT−3

... . . . . . . . . . ...

ρT−2 . . . 1 ρ
ρT−1 · · · · · · · · · ρ 1


.
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Iterated Filtering

Applying the general results for this prior yields, with
|x| =

∑T
t=1 |xi |:

|∇ℓ̄(θ[T ]
0 ) − Σ−1

T

(
E

[
θ̃1:T | Y

]
− θ

[T ]
0

)
| ≤ Cτ2

Moreover we have∣∣∣∣∣
T∑

t=1

∂ℓ̄(θ[T ])
∂θt

−
T∑

t=1

{
Σ−1

T

(
E

[
θ̃1:T | Y

]
− θ

[T ]
0

)}
t

∣∣∣∣∣
≤

T∑
t=1

∣∣∣∣∣∂ℓ̄(θ[T ])
∂θt

−
{

Σ−1
T

(
E

[
θ̃1:T | Y

]
− θ

[T ]
0

)}
t

∣∣∣∣∣
and

dℓ(θ)
dθ

=
T∑

t=1

∂ℓ̄(θ[T ])
∂θt

.
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Iterated Filtering

The estimator of the score is thus given by

T∑
t=1

{
Σ−1

T

(
E

[
θ̃1:T | Y

]
− θ

[T ]
0

)}
t

which can be reduced to

Sτ,ρ,T (θ0) = τ−2

1 + ρ

[
(1 − ρ)

{T−1∑
t=2

E
(

θ̃t
∣∣∣ Y

)}
− {(1 − ρ) T + 2ρ} θ0

+E
(

θ̃1
∣∣∣ Y

)
+ E

(
θ̃T

∣∣∣ Y
)]

,

given the form of Σ−1
T . Note that in the quantities E(θt | Y ),

Y = Y1:T is the complete dataset, thus those expectations are
with respect to the smoothing distribution.
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Iterated Filtering

If ρ = 1, then the parameters follow a random walk:

θ̃1 = θ0 + N (0, τ2) and θ̃t+1 = θ̃t + N (0, σ2).

In this case Ionides et al. proposed the estimator

Sτ,σ,T = τ−2
(
E

(
θ̃T | Y

)
− θ0

)
as well as

S (bis)
τ,σ,T =

T∑
t=1

VP,t
−1

(
θ̃F ,t − θ̃F ,t−1

)
with VP,t = Cov[θ̃t | y1:t−1] and θ̃F ,t = E[θt | y1:t ].

Those expressions only involve expectations with respect to
filtering distributions.
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Iterated Filtering

If ρ = 0, then the parameters are i.i.d:

θ̃1 = θ0 + N (0, τ2) and θ̃t+1 = θ̃0 + N (0, τ2).

In this case the expression of the score estimator reduces to

Sτ,T = τ−2
T∑

t=1

(
E

(
θ̃t | Y

)
− θ0

)
which involves smoothing distributions.

There’s only one parameter τ2 to choose for the prior.
However smoothing for general hidden Markov models is
difficult, and typically resorts to “fixed lag approximations”.
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Iterated Smoothing

Only for the case ρ = 0 are we able to obtain simple expressions
for the observed information matrix. We propose the following
estimator:

Iτ,T (θ0) = −τ−4
{ T∑

s=1

T∑
t=1

Cov
(

θ̃s, θ̃t
∣∣∣ Y

)
− τ2T

}
.

for which we can show that∣∣∣Iτ,T − (−∇2ℓ(θ0))
∣∣∣ ≤ Cτ2.
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Numerical results

Linear Gaussian state space model where the ground truth is
available through the Kalman filter.

X0 ∼ N (0, 1) and Xt = ρXt−1 + N (0, V )
Yt = ηXt + N (0, W ).

Generate T = 100 observations and set
ρ = 0.9, V = 0.7, η = 0.9 and W = 0.1, 0.2, 0.4, 0.9.

240 independent runs, matching the computational costs
between methods in terms of number of calls to the transition
kernel.
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Numerical results
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Figure : 240 runs for Iterated Smoothing and Finite Difference.
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Numerical results

●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5
tau

R
M

S
E

parameter ● ● ● ●1 2 3 4

Iterated Smoothing

●●
●

●
●

● ● ● ● ●
●
●

●

● ●

● ● ● ● ●

●

●

●
●

●
●

● ● ● ●
●

●

●
●

●
● ● ● ● ●

10

100

1000

10000

0.0 0.1 0.2 0.3 0.4 0.5
tau

R
M

S
E

parameter ● ● ● ●1 2 3 4

Iterated Filtering 1

●●●● ● ● ● ● ● ●

●●●● ● ● ●
● ● ●

●●●● ●
●

●
● ● ●

●●●●
●

●
● ● ● ●

10

100

1000

10000

0.0 0.1 0.2 0.3 0.4 0.5
tau

R
M

S
E

parameter ● ● ● ●1 2 3 4

Iterated Filtering 2

Figure : 240 runs for Iterated Smoothing and Iterated Filtering.
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